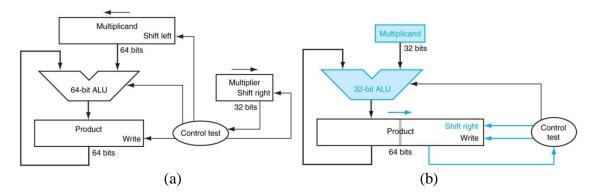
Computer Organization and Structure

Homework #3 Due: 2014/11/11

1. Hexadecimal (base 16) is also a commonly used numbering system for representing values in computers. The following table shows pairs of hexadecimal numbers.

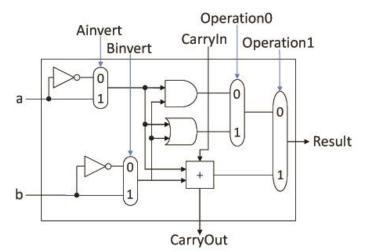

	<u>A</u>	B
1	0D34	DD17
2	BA1D	3617

- a. What is the sum of A and B if they represent unsigned 16-bit hexadecimal numbers? The result should be written in hexadecimal. Show your work.
- b. What is the sum of A and B if they represent signed 16-bit hexadecimal numbers stored in sign-magnitude format? The result should be written in hexadecimal. Show your work.
- c. Convert A into a decimal number, assuming it is unsigned. Repeat assuming it stored in sign-magnitude format. Show your work.

The following table also shows pars of hexadecimal numbers.

	A	B
1	BA7C	241A
2	AADF	47BE

- d. What is A B if they represent unsigned 16-bit hexadecimal numbers? The result should be written in o hexadecimal. Show your work.
- e. What is A B if they represent signed 16-bit hexadecimal numbers stored in sign-magnitude format? The result should be written in hexadecimal. Show your work.
- f. Convert A into a binary number. What makes base 16 (hexadecimal) an attractive numbering system for representing values in computers.
- 2. Given two versions of the functional block diagrams of multiply algorithm as below:


a. Please make a comparison and list the difference between these two versions. Please

also explain which version is better and the reason.

b. Calculate $0010_2 \times 0011_2$ using the version shown in (b), and list the contents of all the registers after each of four iterations (fill the table below).

Iteration	Multiplicand	Product
0 (initial)	0010	
1		
2		
3		
4		

3. The following diagram gives a 1-bit ALU. Complete the table by specifying the control signals for the desired operations. For a don't care signal, use 'X'.

Operations	Ainvert	Binvert	CarryIn	Operation0	Operation1
a + b					
a – b					
a or b					
a and b					
a nor b					

- 4. A majority function is generated in a combinational circuit when the output is equal to 1 if the input variables have more 1's than 0's. The output is 0 otherwise.
 - a. Please write the truth table for a 4-input majority function.
 - b. What are the functions in sum of products forms? (you can just use "little m" notation)
 - c. Please use the Karnaugh map to find the minimum sum of products form and the minimum sum of products form for the complement.
 - d. Please draw the logic schematic by using AND, OR, and INVERT gates.
- 5. In a Von Neumann architecture, groups of bits have no intrinsic meanings by themselves. What a bit pattern represents depends entirely on how it is used. The following table

shows bit patterns expressed in hexadecimal notation.

1	0x24A60004
2	0xAFBF0000

- a. What decimal number does the bit pattern represent if it is a two's-complement integer? An unsigned integer?
- b. If this bit pattern is placed into the Instruction Register, what MIPS instruction will be executed?
- c. What decimal number does the bit pattern represent if it is a floating point number? Use the IEEE 754 standard.

The following table shows decimal numbers.

1	-1609.5	
2	-983.8125	

- d. Write down the binary representation of the decimal number, assuming the IEEE 754 single precision format.
- e. Write down the binary representation of the decimal number, assuming the IEEE 754 double precision format.
- f. Write down the binary representation of the decimal number, assuming it was stored using the single precision IBM format (base 16, instead of base 2, with 7 bits of exponent).

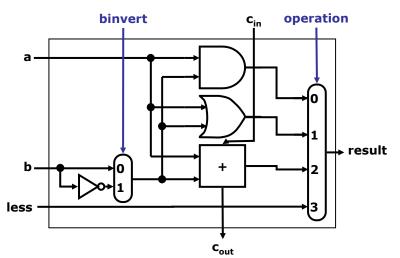


Figure 1: A 1-bit ALU that performs AND, OR, and addition on a and b or b'.

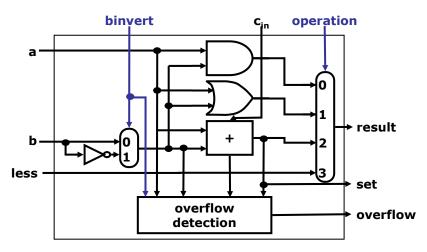


Figure 2: A 1-bit ALU for the most significant bit.