
Computer
Organization and Structure

Bing-Yu Chen
National Taiwan University

Parallel Processors
from Client to Cloud

 The Difficulty of Creating Parallel
Processing Programs

 Introduction to Graphics Processing
Units

1

Goal of Computing

Faster, faster and faster

2

Why Parallel Computing?

 Moore's law is
dead (for CPU
frequency)

3

Top500 (Nov 2014)

1. Tianhe-2(NUDT)
 3,120,000 cores (Intel Xeon E5, Intel Xeon Phi)

2. Titan (Cray)
 560,640 cores (Opetron 6274, NVIDIA K20x)

3. Sequoia (IBM)
 1,572,864 cores (Power BQC)

4. K computer (Fujitsu)
 705,024 cores (Sparc64)

5. Mira (IBM)
 786,432 cores (Power BQC)

4

Introduction

 Goal: connecting multiple computers
to get higher performance
 Multiprocessors

 Scalability, availability, power efficiency

 Task-level (process-level) parallelism
 High throughput for independent jobs

 Parallel processing program
 Single program run on multiple processors

 Multicore microprocessors
 Chips with multiple processors (cores)

5

Hardware and Software

 Hardware
 Serial: e.g., Pentium 4

 Parallel: e.g., quad-core Xeon e5345

 Software
 Sequential: e.g., matrix multiplication

 Concurrent: e.g., operating system

 Sequential/concurrent software can
run on serial/parallel hardware
 Challenge: making effective use of

parallel hardware
6

Parallel Programming

 Parallel software is the problem

 Need to get significant performance
improvement

 Otherwise, just use a faster uniprocessor,
since it’s easier!

 Difficulties

 Partitioning

 Coordination

 Communications overhead

7

Amdahl’s Law

 Sequential part can limit speedup

 Example: 100 processors, 90×
speedup?
 Tnew = Tparallelizable/100 + Tsequential

 Solving: Fparallelizable = 0.999

 Need sequential part to be 0.1% of
original time

90
/100F)F(1

1
Speedup

ableparallelizableparalleliz

8

Amdahl's law

9

Scaling Example

 Workload: sum of 10 scalars, and 10 × 10
matrix sum
 Speed up from 10 to 100 processors

 Single processor: Time = (10 + 100) × tadd

 10 processors
 Time = 10 × tadd + 100/10 × tadd = 20 × tadd

 Speedup = 110/20 = 5.5 (55% of potential)

 100 processors
 Time = 10 × tadd + 100/100 × tadd = 11 × tadd

 Speedup = 110/11 = 10 (10% of potential)

 Assumes load can be balanced across
processors

10

Scaling Example

 What if matrix size is 100 × 100?

 Single processor: Time = (10 + 10000) × tadd

 10 processors

 Time = 10 × tadd + 10000/10 × tadd = 1010 × tadd

 Speedup = 10010/1010 = 9.9 (99% of potential)

 100 processors

 Time = 10 × tadd + 10000/100 × tadd = 110 × tadd

 Speedup = 10010/110 = 91 (91% of potential)

 Assuming load balanced

11

Graphics Applications

 Movies

 Interactive entertainment

 Industrial design

 Architecture

 Culture heritage

20

History of Computer Graphics

 1960, Ivan Sutherland's Sketchpad

 The beginning of computer graphics

 1992, OpenGL 1.0

 1996, Voodoo I

 The first consumer 3D graphics card

 1996, DirectX 3.0

 The first version including Direct3D

21

History of Computer Graphics

 2000, DirectX 8.0
 The first version supporting HLSL

 2001, GeForce 3 (NV20)
 The first consumer GPU

 2004, OpenGL 2.0
 The first version supporting GLSL

 2006, GeForce 8 (G80)
 The first NVIDIA GPU supporting CUDA

 2008
 OpenCL (Apple, AMD, IBM, Qualcomm,

Intel, …)

22

History of GPUs

 Early video cards

 Frame buffer memory with address generation
for video output

 3D graphics processing

 Originally high-end computers (e.g., SGI)

 Moore’s Law lower cost, higher density

 3D graphics cards for PCs and game consoles

 Graphics Processing Units

 Processors oriented to 3D graphics tasks

 Vertex/pixel processing, shading, texture
mapping, rasterization

23

Synthetic Camera Model

camera

image plane/view plane

projector

p

projection of p

objects/modelsview frustrum/view volume

lighting

24

Ray Tracing and Geometric Optics

One way to form an image is
to follow rays of light from a
point source determine
which rays enter the lens of
the camera. However, each
ray of light may have
multiple interactions with
objects before being
absorbed or going to infinity.

25

Why not ray tracing?

 Ray tracing seems more physically based
so why don’t we use it to design a graphics
system?

 Possible and is actually simple for simple
objects such as polygons and quadrics with
simple point sources

 In principle, can produce global lighting
effects such as shadows and multiple
reflections but is slow and not well-suited
for interactive applications

26

The Rendering Pipeline
Scene graph

Object geometry

Lighting
Calculations

Clipping

Modeling
Transforms

Viewing
Transform

Projection
Transform

Rasterization
27

Computer Graphics Rendering

28

Graphics Pipeline

Input processor

Do geometry stuff

Do pixel stuff

Accumulate pixel result

Instructions
States
Data

Transforms
Lighting, etc.

Rasterize
Pixel shading

Z-buffer
Transparency

29

Make it faster

Input processor

Do geometry stuff

Do pixel stuff

Accumulate pixel result

Do geometry stuff
Do geometry stuff

Do pixel stuff
Do pixel stuff

30

Add Frame Buffer Support

Input processor

Do geometry stuff

Do pixel stuff

Accumulate pixel result

Do geometry stuff
Do geometry stuff

Do pixel stuff
Do pixel stuff

FB
(memory)

31

Get data
Process data
Output data

Add Programmability

Input processor

Do geometry stuff

Do pixel stuff

Accumulate pixel result

Do geometry stuff
Do geometry stuff

Do pixel stuff
Do pixel stuff

FB
(memory)

32

Uniform Shader

Front end

Do geometry stuff

Raster operations

FB
(memory)

Buffer

33

Scaling it up again

Front end

Do geometry stuff

Raster operations

FB
(memory)

Buffer

34

GPU Architectures

 Processing is highly data-parallel
 GPUs are highly multithreaded
 Use thread switching to hide memory latency

 Less reliance on multi-level caches

 Graphics memory is wide and high-bandwidth

 Trend toward general purpose GPUs
 Heterogeneous CPU/GPU systems
 CPU for sequential code, GPU for parallel code

 Programming languages/APIs
 DirectX, OpenGL
 C for Graphics (Cg), High Level Shader

Language (HLSL)
 Compute Unified Device Architecture (CUDA)

36

