Game Programming

Robin Bing-Yu Chen National Taiwan University

Game Texturing

- Texture Mapping
- Environment Mapping
- Bump Mapping
- Shadow Maps

The Quest for Visual Realism

Copyright©1997, Jeremy Birn

Texture Mapping

- Previously, we assume that reflection properties such as are constant within each triangle.
- However, some objects have complex appearance which arises from variation in reflection properties.
- The common technique to handle this kind of variation is to store it as a function or a pixel-based image and "map" it onto a surface.
- The function is called *texture map* and the process is called *texture mapping*.

Texture Maps

Tom Porter's Bowling Pin

Texture Mapping

Texture Maps

- How is texture mapped to the surface?
 - Dimensionality: 1D, 2D (image), 3D (solid)
 - Procedural v.s. table look-up
 - Texture coordinates (s,t)
 - □ Surface parameters (u,v)
 - Projection: spherical, cylindrical, planar
 - Reparameterization
- What does texture control?
 - Surface color and transparency
 - Illumination: environment maps, shadow maps
 - Reflection function: reflectance maps
 - Geometry: displacement and bump maps

Texture Mapping

2D mapping

3D mapping

Where does mapping take place?

- Mapping techniques are implemented at the end of the rendering pipeline
 - Very efficient because few polygons pass down the geometric pipeline

Simple Texture Mapping

10

Antialiasing

Aliasing

Point sampling of the texture can lead to aliasing errors

point samples in texture space

Magnification and Minification

Example:

Texture Polygon Magnification

Texture Polygon Minification

Changing Resolution

Nearest Neighbor

a.k.a.
 zero order interpolation
 use 1 nearest neighbor

7

Bilinear

a.k.a. first order interpolation use 4 nearest neighbors

?

Bicubic

a.k.a. second order interpolation use 16 nearest neighbors ?

nearest neighbor

bilinear

bicubic

ground truth

MIP Mapping

MIP Mapping is one popular technique for precomputing and performing this prefiltering

Computing this series of filtered images requires only a small fraction of additional storage over the original texture

Storing MIP Maps

Example

Environment Mapping

Sphere Mapping

Copyright©1999, Paul Debevec

Box Maps

Copyright©1999, Paul Debevec

Spherical Mapping

Box Mapping

Easy to use with simple orthographic projection

□ Also used in environmental maps

Second Mapping

Map from intermediate object to actual object

- Normals from intermediate to actual
- Normals from actual to intermediate

Vectors from center of intermediate

Environment Maps

environment map

ray traced

Bump Mapping

Textures can be used for more than just color

$$I = k_{\mathrm{a}}I_{\mathrm{a}} + \sum f_{\mathrm{att}_{i}}I_{\mathrm{p}_{i}}[k_{\mathrm{d}}(\vec{N} \bullet \vec{L}_{i}) + k_{\mathrm{s}}(\vec{R}_{i} \bullet \vec{V})^{n}]$$

- In bump mapping, a texture is used to perturb the normal:
 - The normal is perturbed in each parametric direction according to the partial derivatives of the texture.

Bump Mapping

Bump Mapping

Illumination Maps

Texture Mapping in Quake

Texture Only

Texture & Light Maps

Shadow Maps

Basic Steps of Shadow Maps

- Render the scene from the light's point of view,
- Use the light's depth buffer as a texture (shadow map),
- Projectively texture the shadow map onto the scene,
- Use "texture color" (comparison result) in fragment shading.

Shadow Buffer

