
Volume xx (200y), Number 3 pp. 1–23

Recent Advances in Mesh Morphing

Marc Alexa

Interactive Graphics Systems Group, Department of Computer Science, Technische Universität Darmstadt
Rundeturmstr. 6, 64283 Darmstadt, Germany

phone: ++49 6151 155 674, fax: ++49 6151 155 669
email: alexa@gris.informatik.tu-darmstadt.de

Abstract
Meshes have become a widespread and popular representation of models in computer graphics. Morphing tech-
niques aim at transforming a given source shape into a target shape. Morphing techniques have various appli-
cations ranging from special effects in television and movies to medical imaging and scientific visualization. Not
surprisingly, morphing techniques for meshes have received a lot of interest lately.
Thiswork sums up recent developments in the area of mesh morphing. It presents a consistent framework to classify
and compare various techniques approaching the same underlying problems from different angles.

1. Introduction

Morphing techniques transform one shape into another23.
With the introduction in TV and movies, morphing is nowa-
days known to an audience beyond the computer graphics
community. At the same time, morphing has estbalished it-
self as interesting research area. Recently, the focus is shift-
ing from handling representations of space (images, vol-
umes) to using explicit boundary representations, interpolat-
ing or blending the shape of the objects. This work concen-
trates on the popular piecewise linear boundary representa-
tions, namely meshes.

Blending shapes rather than the space they are embed-
ded in can lead to better results but is also more involved,
because a proper mapping between the shapes is needed.
Defining such a mapping is not trivial for two main reasons.
First, it requires a parametrization of the boundary represen-
tation, and second, the mapping might involve shapes with
different topology.

Besides the parameterization problem, which is funda-
mental in many areas dealing with meshes, morphing also
requires to find suitable paths for the elements of a mesh.
This part has an aesthetic component, however, several rea-
sonable conditions should be observed, i.e. the shape should
not self intersect or collaps as it varies from source to target
configuration.

Traditionally, morphing is applied to two shapes: a source
and a target shape. Morphing among more than two shapes

can be seen as generating elements in a space of shapes. This
has interesting applications for modeling, animation, and
analysis. Analysis using well-established methods such as
the principal component analysis has gained interest lately.

This report exlains mainly techniques for morphing be-
tween two meshes. This avoids some clutter in the formal-
ism. Once all methods are explained for two meshes, possi-
ble extensions to more than two meshes and their applica-
tions are discussed.

2. Terminology & Framework

Mesh morphing techniques involve computations on the ge-
ometry as well as the connectivity of meshes. For simplicity
this report concentrates on triangle meshes. In the context of
morphing it seems to be acceptable to triangulate polygonal
meshes prior to the application of a morphing technique. To
classify and understand mesh morphing techniques it is help-
ful to use the now widespread terminology from Spanier64.
A mesh M is described by a pair (K, V), where K is a
simplicial complex representing the connectivity of vertices,
edges, and faces and V = (v1, . . . ,vn) describes the geo-
metric positions of the vertices in R

d, where typically d = 3.

The abstract complex K describes vertices, edges, and
faces as {0, 1, 2}-simplices, that is, edges are pairs {i, j},
and faces are triples {i, j, k} of vertices. The topological re-
alization maps K to a simplicial complex |K| in R

n: The

submitted to COMPUTER GRAPHICS Forum (9/2002).

2 Marc Alexa / Recent Advances in Mesh Morphing

vertices are identified with the canonical basis of R
n and

each simplex s ∈ K is represented as the convex hull of the
points {ei} ∈ R

n, i ∈ s Thus, each 0-simplex is a point,
each 1-simplex is a line segment, and each 2-simplex is a
triangle in R

n.

The geometric realization φV (|K|) is a linear map of the
simplicial complex |K| to R

d, which is defined by associ-
ating the basis vectors ei ∈ R

n with the vertex positions
vi ∈ V . The map φV is an embedding if φV is bijective.
The importance of an embedding is that every point p on the
mesh can be uniquely represented with a barycentric coordi-
nate b, i.e. p = φV (b). Such barycentric coordinates have
at most three non-zero components and specify the position
of a point relative to a simplex. If the point is coincident with
a vertex it is a canonical basis vector, if the point lies on an
edge it has two non-zero components, otherwise it has three
and lies on a face.

The neighborhood ring of a vertex {i} is the set of adja-
cent vertices N (i) = {j|i, j ∈ K} and its star is the set of
incident simplices S(i) =

⋃
i∈s,s∈K s.

In the classical setting of mesh morphing two meshes
M0 = (K0, V0) and M1 = (K1, V1) are given. The goal
is to generate a family of meshes M(t) = (K, V (t)), t ∈
[0, 1] so that the shape represented by the new connectiv-
ity together with the geometries V (0) and V (1) is identical
with the original shapes, i.e. φV (0)(|K|) = φV0(|K0|) and
φV (1)(|K|) = φV1(|K1|). Most of the time the paths V (t)
are required to be smooth. The generation of this family of
shapes is typically done in three subsequent steps:

1. Finding a correspondence between the meshes. More
specifically, computing coordinates W0, W1 that lie on
the other mesh, i.e. W0 ∈ φV1(|K1|) and W1 ∈
φV0(|K0|). Each coordinate in W0, W1 is represented
as a barycentric coordinate with respect to a simplex
in the other mesh. Note that φW0 will not map |K0|
to φV1(|K1|) (and vice versa), as only the vertices are
mapped to the other mesh but not the edges and faces.
Particularly important is the alignment of automatically
detected or user specified features of the meshes.

2. Generating a new, consistent mesh connectivity K to-
gether with two geometric positions V (0), V (1) for each
vertex so that the shapes of the original meshes are repro-
duced. The traditional morphing approach to this prob-
lem is to create a superset of the simplicial complexes
K0 and K1. However, remeshing techniques as used in
multiresolution techniques are also attractive.

3. Creating paths V (t), t ∈]0, 1[for the vertices. While in
general this is an aesthetic problem, several constraints
seem reasonable to help in the design process. For ex-
ample, in most applications the shape is not expected to
collapse or self intersect and, generally, the paths are ex-
pected to be smooth.

In the following, recent work will be explained in terms
of the above mentioned problem areas. This state of the art

report focuses on mesh morphing, however, if believed to
be instructive also techniques dealing with polygons are dis-
cussed.

3. Correspondence of shapes

In this section we aim at finding corresponding vertex po-
sitions on two or more shapes. Given two meshes M0 and
M1, the result of this procedure is a set of barycentric co-
ordinates B0 so that the geometry W0 = φV1(B0) of the
barycentric coordinates on M1 is an embedding φW0 of
M0 on the surface of M1, and vice versa. The idea is that
this mapping of vertices from one mesh to the other accom-
plishes the main part of a bijective mapping between the sur-
faces of M0 and M1. After this step only the edges and
faces have to be adjusted accordingly.

The process is typically done by finding a common pa-
rameter domain D for the surfaces. By mapping each sur-
face bijectively to that parameter domain, the mapping be-
tween the shapes is established. The typical parameter do-
mains for meshes in the context of morphing are the sphere
S

2 (in case the meshes are topological spheres) or a col-
lection of topological disks represented as a piecewise lin-
ear parameter domain L. In case of the disks, the meshes
have to be decomposed into isomorphic structures of disks
(which requires them to be homeomorphic). A major con-
straint is to take into account user specified or autmatically
generated feature correspondences (i.e. vertex-vertex corre-
spondences). Dependending on the approach chosen, this is
done by reparameterization or by decomposing the meshes
according to the feature correspondence.

In case of mapping to a sphere, an embedding φS with
S = {s0, s1, . . .}, si ∈ R

3, |si| = 1 is computed. The em-
beddings on the sphere are aligned according to the feature
correspondence using a bijective map f that maps spheres
into spheres.

{i} ∈ K0
W0−−−−−→ φV1(B0)

φS0

⏐⏐� �⏐⏐φ−1
S1

S
2 −−−−−→

f
S

2

The main problems in this approach are to compute the ver-
tex coordinates S0, S1 on the sphere and the reparameteriza-
tion f .

The decomposition approach is more general and more
difficult. In addition to generate embeddings of the topolog-
cical disks one has to decompose the meshes in an isomor-
phic way, taking possible feature correspondences into ac-
count. Formally, an abstract simplicial complex L consist-
ing of a subset of the vertices in K0, K1 is used as coarse
approximation of both meshes:

φV0(|L|) ≈ φV0(|K0|), φV1(|L|) ≈ φV1(|K1|)
Typically, L is topological minor of K0 as well as K1, i.e.

submitted to COMPUTER GRAPHICS Forum (9/2002).

Marc Alexa / Recent Advances in Mesh Morphing 3

it is a partition of the meshes. Vertices in K0, K1 are identi-
fied with a face in L and all vertices belonging to a particular
face are embedded in its planar shape. Thus, the common
paramter domain is the topological realization |L|, where
each vertex is represented with a barycentric coordinate with
respect to a particular face in L. This requires to embed
pieces of the mesh in the plane.

{i} ∈ K0
W0−−−−−→ φV1(B0)

φL0

⏐⏐� �⏐⏐φ−1
L1

|L| −−−−−→
f

|L|

Following, techniques to embed simply-connected
bounded and unbounded meshes in the plane and on the
sphere are explained. Then, approaches to dissect the
meshes into isomorphic patch-networks (or, equivalently,
inducing base-domains |L| on M0,M1) are discussed.
After these basic embedding steps reparameterization for
feature alignemnt is introduced. Finally, some comments on
rarely mentioned details in the correspondence problem are
given.

3.1. Mapping topological disks

Simply-connected parts of the boundary of three dimen-
sional shapes are homeomorphic to a disk and, therefore,
called topological disks. In order to find a paramterization
of such pieces we need a bijective map of a bounded, simply
connected mesh to the plane.

In our application we need to find a bijective map between
patches. Thus, it is necessary to constrain the boundary of
the patches to a particular shape. Here, we concentrate on
mapping an arbitrary bounded and simply connected mesh
to a unit disk so that boundary vertices of the mesh lie on the
unit circle. This limits the applicability of several parameter-
ization approaches, which allow the boundary of a triangu-
lated surface to be non-convex or not to be fixed a priori to
achieve smoother or less distorted mappings30, 46, 72.

In a first step the boundary vertices are fixed on the unit
circle. First, the three vertices from the base domain L are
fixed in an equiangular way. This is necessary to make sure
that adjacent faces in the base domain have a continous
parameterization across base domain edges. The remaining
boundary vertices are fixed so that the arc lengths between
neighboring vertices are proportional to the original edge
lengths. The remaining (interior) vertices are free and their
position is determined by a relation to neighboring vertices.

Most of the publicized approaches to solve this task mini-
mize a quadratic error functional expressed as the vertex po-
sition relative to its neighbors. This boils down to solving a
system of linear equations. Non-linear approaches either use
higher order functionals to be minimized30, 46 or are of al-

gorithmic nature (e.g. Gregory et al.25, 26, which is discussed
after the linear techniques).

More specifically, let {vi} be the vertices to be mapped
to the disk so that the free interior vertices have indices 0 ≤
i < n and the fixed boundary vertices have indices n ≤
i < N . We aim at finding positions wi in the plane with
|wi| = 1, n ≤ i < N . The mapping is bijective if and only
if no edges cross or, alternatively,

∀(i, j, k) ∈ K. det

⎛
⎝wix wiy 1

wjx wjy 1
wkx wky 1

⎞
⎠ > 0. (1)

However, this quadratic expression is akward to use as a cri-
terion to guarantee that the planar embedding is valid, which
is why most approaches resort to the more restricitve but suf-
ficient linear conditions.

In the following we discuss three ways to define a lin-
ear system, whose solution yields positions for the vertices.
In addition, the Divide&Conquer appraoch of Gregory et
al.25, 26 is explained.

3.1.1. Barycentric mapping

Tutte70 has shown how to embed planar graphs in the plane
using a barycentric mapping. In our restricted setting, the
idea is simply to place every interior vertex at the centroid
of its neighbors:

wi =
∑

j∈N (i)

1

di
wj (2)

Setting Λ = {λi,j} with

λi,j =

{
d−1

i {i, j} ∈ K

0 {i, j} �∈ K
(3)

this can be written as the mentioned system of linear equa-
tions

(I − Λ)

⎛
⎜⎜⎝

w0

w1

. . .
wn−1

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
∑N−1

i=n λ0,iwi∑N−1
i=n λ1,iwi

. . .∑N−1
i=n λn−1,iwi

⎞
⎟⎟⎠ (4)

The matrix (I − Λ) has full rank and, thus, there is exactly
one solution. Tutte70 has shown that this solution is a valid
embedding of the mesh.

Note, that the shape of the mesh has no effect on the place-
ment of vertices in the plane. All information for the embed-
ding comes from K and it is clear that the embedding cannot
reflect geometric properties contained in V of the mesh. In
the following we try to incorporate information about the
original shape.

3.1.2. Shape preserving parameterization

In the barycentric mapping the weights λ contain only topo-
logical information. Floater16 determines weights that reflect

submitted to COMPUTER GRAPHICS Forum (9/2002).

4 Marc Alexa / Recent Advances in Mesh Morphing

the local shape of the mesh. More precisely, the λ are so cho-
sen that the angles and lengths of edges around a vertex are
taken into account.

To compute the weights for a particular vertex vi this ver-
tex is placed in the origin and incident edges are laid out in
the plane using the original edge lengths and angles propor-
tional to the original angles. This is assumed to be the ideal
parameterization w′

i of the mesh with respect to vi.

The weights are computed in way that would result in
placing wi in the origin if the neighbors w′

j were fixed and
the system of equations had to be solved. Thus, we have

wi =

(
0
0

)
=

∑
j∈N (i)

λi,jw
′
j (5)

and

1 =
∑

j∈N (i)

λi,j . (6)

If vi has only three neighbors this exactly determines the
positive weights, for more than three neighbors a positive
solution has to be chosen from the space of possibles solu-
tions. Note that positivity results in convex combinations,
which are necessary to assure a valid embedding. Floater
presents a method to compute reasonable weights, which
are guaranteed to be positive: Take the cyclically ordered set
of neighbors jk ∈ N (i), k ∈ Z|N (i)|. Determine sets of
weights λi,j(k) with respect to three subsequent neighbors
jk, jk+1, jk+2. This yields non-negative λi,j(k) for each k.
These weights are averaged to yield the final weights:

λi,j =
1

|N (i)|
∑

k

λi,j(k) (7)

The positions wi are computed by solving (4). Recently,
Floater18, 17 has proven a generalization of Tutte’s theorem,
which shows that it is sufficient that each vertex is a convex
combination of its neighbors.

3.1.3. Discrete harmonic mappings

Harmonic mappings are a concept found in several fields in
mathematics using differentials. Harmonic maps are often
described as the function u among all functions mapping to
a given domain Ω that minimize the Direchlet energy

ED(u) =
1

2

∫
Ω

|∇u|2. (8)

Pinkall and Polthier53 show how to discretize this problem
for triangles, so that weights are derived per vertex and
neighbor leading to a system of linear equations of the form
of Eq. (4). A somewhat clearer derivation can be found in a
more recent work of Polthier54. There, it is shown that the

discrete Dirchlet energy is

ED(u) =
1

4

∑
i,j|{i,j}∈K

(cot αi,j + cot βi,j)|vi − vj |2,

αi,j = ∠(i, k0, j), βi,j = ∠(i, k1, j), {i, j, kc} ∈ K (9)

and that the minimizer solves

0 =
1

2

∑
j∈N (i)

(cot αi,j + cot βi,j)(vi − vj) (10)

at each vertex i. This leads to weights

λi,j =

{ cot αi,j+cot βi,j∑
j∈N(i)(cot αi,j+cot βi,j)

{i, j} ∈ K

0 {i, j} �∈ K
(11)

which are used to obtain an embedding by solving Eq. (4).

Another formulation, which is probably better known in
the graphics community, is given by Eck et al.13.

3.1.4. Area preserving Divide&Conquer mapping

Gregory et al.25, 26 describe a recursive algorithm that aims
at preserving the area of triangles in the mapping. The idea
is to induce the mapping be recursively dividing the patch
into two pieces, which are then mapped independently. The
dissections are so chosen that the ratio of areas in the original
mesh and the embedding are approximately the same.

In particular, two diamterical vertices on the boundary of
a patch are chosen. A shortest path is computed using Di-
jkstra’s algorithm. This path is mapped to the segment con-
necting the two vertices. Then the path is altered to minimize
the difference of the ratio of areas in the embedding and on
the triangulated surface. The segment divides the patch into
two halves, which are treated in the same way, until all ver-
tices are mapped.

3.1.5. Comparison and Conclusion

We have embedded parts of a mesh using the four ap-
proaches presented above. Note that the solution of ma-
trix equation (4) could be performed using hierarchical
techniques44, 31, which is equivalent to using multigrid meth-
ods. However, the matrix has sparse structure and we have
found it sufficient to use iterative solvers exploiting the
sparseness.

Some of the results of the comparison are shown in Fig-
ure 1. It is apparent that the general structure of larger and
smaller triangles is very similar in all embeddings generated
using linear optimization techiques. This suggests that con-
nectivity is the major factor in these type of embeddings.
Changing the weights used to compute the embedding only
changes the local behavior of the embedding. They share the
problem of area compression: Inner triangles have much less
area than outer triangles. The area preserving scheme elimi-
nates this problem at the cost of distorted triangle shapes.

In fact, all these parameterizations might be unusable due

submitted to COMPUTER GRAPHICS Forum (9/2002).

Marc Alexa / Recent Advances in Mesh Morphing 5

Figure 1: A part of a mesh parameterized on the unit disk using different mapping techniques. The original geometry is high-
lighted in red. A barycentric mapping (see Section 3.1.1) does not reflect the geometry of the mesh. The shape preserving
embedding tries to capture the local shape of the mesh by locally approximating conformal maps (see Section 3.1.2). Dis-
cretized harmonic embeddings minimize metric distortion (see Section 3.1.3). The area preserving embedding is a recursive
process, which aims at approximating the original area of triangles (see Section 3.1.4).

to the high ratio of either areas or anlges and the limited
precision of floating point numbers. It has been observed that
the base domain should have enough “skin” to allow for a
reasonable parametrization of the mesh.

The small differences in local shape do not seem to
have much influence on the resulting correspondence of the
shapes. This is even more true when local features of the
shapes are aligned by reparameterization (see Section 3.4).

3.2. Parameterizing topological spheres

Unbounded simply-connected 2-manifolds are called topo-
logical spheres because they are homeomorphic to spheres.
A natural parameter domain for such shapes is, therefore, a
unit sphere.

3.2.1. Star shapes

Kent et al.37, 38 were the first to present techniques to map
certain classes of genus 0 meshes to a sphere. A particu-
larly simple class of objects are convex shapes. A convex
shape has the property that a straight line connecting any
two boundary points of the shape lies completely inside the
model. Thus, all points are visible from any interior point of
the shape and a projection through an interior point onto an
enclosing sphere is necessarily bijective.

A generalization of this idea extends the class of shapes
to star shapes. Such shapes have at least one interior point so
that straight lines connecting this interior point with bound-
ary points lie completely inside the shape. Interior points
with this property are called star points. Obviously, project-
ing the boundary points of a shape through a star point onto
an enclosing sphere is a bijective mapping. Specifically, if
point O is visible from all vertices of the mesh then translate
all points so that O coincides with the origin. Then normal-
ize all vertex coordinates. These vertex coordinates are the
parameterization of the mesh vertices on a unit sphere. An
illustration is given in Figure 2.

Figure 2: A polygonal star shape and its projection to a cir-
cle. The kernel of a star shape is the intersection of all open
half spaces over the edges (faces in case of a polyhedron).
Every point in the kernel induces a bijective mapping to the
circle by projection.

The only problem is to determine whether a shape is star
shaped and if so to find a star point. For piecewise linear
shapes (meshes) this can be done by intersecting halfspaces
induced by the face elements of the mesh. The intersection
of all halfspaces is called kernel. If the kernel is non-empty
the mesh is star shaped and every point inside the (convex)
kernel is a suitable star point. The kernel of a mesh in 3D can
be computed in O(n log n) using standard techniques 56.

3.2.2. Simplification

Shapiro and Tal62 seem to be the first to present a reliable
scheme that turns arbitrary genus 0 polyhedra into convex
shapes. They first simplify the shape using vertex removal
until the simplified shape is a tetrahedron. Only vertices with
valence 3,4, and 5 are removed. Since the mesh is triangular
such vertices always exist: It follows easily from the Euler-
Poincare formulas that the average degree in any triangular
(surface) mesh is less than 6. Thus, at least one vertex with
degree strictly less than 6 has to exist.

Once the shape is simplified to a tetrahedron, vertices

submitted to COMPUTER GRAPHICS Forum (9/2002).

6 Marc Alexa / Recent Advances in Mesh Morphing

0 iterations 10 iterations 100 itarations 1000 iterations 10000 iterations

Figure 3: Embeding a polyhedral object on a sphere using relaxation. Initially, the vertices are projected through an interior
point of the model onto a unit sphere. The relaxation is finished when all faces are oriented correctly. Incorrectly oriented faces
are surrounded by red edges.

are reattach making sure that the shape stays convex. More
specifically, it is shown how to attach vertices with degree
3, 4 and 5 to a convex shape so that the shape stays convex.
More specifically, if a vertex {i} has to be added to a face f ,
its position has to be outside the convex hull of the current
mesh but inside the kernel of faces adjacent to f .

3.2.3. Spring embedding

Alexa1 introduced a variation of the methods presented for
planar embeddings to embed polyhedra on the unit sphere.
The basic idea is the same as in barycentric mappings: Place
each vertex in the centroid of its neighbors. On the sphere,
however, two conditions of the planar case are violated.
First, convex combinations of the neighbors’ positions are
not part of the domain (the sphere) and, second, no periph-
eral cycle is given to support the embedding.

The approach is to use a relaxation algorithm to compute
the solution to the barycentric constraints. The starting con-
figuration is generated by computing an interior point of the
solid model represented by the mesh and then projecting all
vertices to a sphere, which is centered at the interior point.
The relaxation algorithm repeatedly places each vertex at the
centroid of its neighbors. Since the centroid is not on the
sphere the coordinate is normalized:

wl+1
i =

∑
j∈N (i) w

l
j∥∥∥∑j∈N (i) w
l
j

∥∥∥ (12)

The main problem of this approach is the missing of fixed
vertices. In the planar case the fixed vertices avoid that all
vertices collapse to one point, which is the trivial solution
to (12). On the sphere, a local minimum exists such that the
points are distributed over the sphere, however, the naive re-
laxation algorithm tends to find the global minimum, i.e. all
vertices coincide.

Gumhold27 has reported an elegant and simple solution to
this problem: The sphere is recentered after each relaxation

Figure 4: Sphere embeddings of the models of a giraffe, a
hammerhead shark, and a swordfish.

round, i.e.

wl+1
i =

1

n

(∑
j∈K

wl
j

)
− wl

i (13)

If we want to guarantee the topological correctness of the
embedding, an epsilon bound of any kind is inadequate as
the only termination criterion. Instead, the process is finished
only when a valid embedding is found. The embedding is
valid, if and only if all faces are oriented the same.

We can check this condition by testing the orientation of
three consecutive vertices along the boundary of each face.
Here, orientation refers to whether the three vertices make
a clockwise turn on the surface of the sphere. This can be
computed by evaluating sgn ((v0 × v1) · v2).

A relaxation process for the polyhedral model of a horse
is depicted in Figure 3 and resulting embeddings for several
models are shown in Figure 4.

submitted to COMPUTER GRAPHICS Forum (9/2002).

Marc Alexa / Recent Advances in Mesh Morphing 7

3.2.4. Comparison and Conclusion

None of the techniques discussed above makes a particular
attempt to preserve the properties of the original mesh. Addi-
tional constraints (as discussed in Section 3.4) are necessary
to make these embeddings usefull. The central projection is
obviously limited to a small class of objects. We find that
the two techniques for general genus 0 meshes have some-
what complementary features/problems: The simplification
approach is more robust (in terms of geometric computations
and sensitivity to topolgical defects in the mesh) while the
relaxation generates smooth embeddings. Both techniques
suffer from the area compression problem mentioned earlier.

3.3. Isomorphic dissection

The more general approach to establish correspondence be-
tween meshes is to dissect them into pieces. Each piece is a
topological disk and can be mapped to the plane using one
of the techniques discussed in Section 3.1. Of course, the
shapes have to be split in such a way that the graphs repre-
senting the dissections have equivalent topologies.

This approach is not limited to a particular topology of
the shapes, since the dissection results in a set of topologi-
cal disks. However, the shapes need to be homeomorphic so
that their dissections could be topologically equivalent. With
extra conditions it is possible to deal also with topologically
different shapes.

3.3.1. Automatic dissection of shapes

Ideally, the dissection process would not require the user
to assist. However, the fully automatic dissection of two
meshes into ismorphic structures seems to be a hard prob-
lem. The approach of Kanai et al.33, 34 uses a single patch
and, thus, automatically decomposes into isomorphic struc-
tures. However, the approach is limited to genus 0 meshes
and suffers from the already mentioned area compression
problems in the embedding.

Several techniques exist for the dissection of a single
mesh. In the context of multi resolution models several ap-
proaches require the mesh to be broken into patches. This
problem is know as mesh partioning and naturally related
to graph theory. Some algorithms try to balance the size of
patches (e.g., Eck et al.13, Karypis & Kumar36).

In many multi resolution methods, however, the base
domain (the structure of large patches) is found by sim-
plifying the mesh using vertex removal59, 58, 39, 41 or edge
collapse29, 21, 47.

These techniques might help in deriving a single base do-
main for two meshes. Lee et al.43 use two independently
established base domain to generate one base domain for
both meshes. They employ their MAPS scheme44 to build
independent parameterizations over different base domains.
These base domains are merged (see Section 4) so that the

resulting merged base domain contains both independent
base domains as subgraphs. Note, that in general the cor-
respondence problem had to be solved for the geometry of
the base domains. Lee et al. assume that the geometry of the
base domains is so similar that this problem could be solved
with simple heuristics (e.g. projecting in normal direction).

3.3.2. User specification of isomorphic dissections

The underlying idea of all works in this section is that the
user specifies the topology/connectivity of the base domain
and the location of the base domain vertices on the original
meshes. Tracing the edges of the base domain on the mesh
is more or less done automatically.

DeCarlo and Gallier12 do not assist the user specifying the
edges. While this way of defining the dissection gives a lot
of freedom to the user it is very time consuming.

Gregory et al.25, 26 assist the user in defining the edges (see
Figure 5). The base domain is developed while intersecting
the surfaces. The user defines a pair of vertices on a mesh
and the system finds a shortest path of mesh vertices con-
necting the defined vertices. Subsequently, feature vertices
can be connected to existing feature vertices using shortest
paths along the mesh. By picking corresponding vertices in
the input meshes the system will construct the same graph in
the input meshes. A problem could arise from the fact that
only mesh vertices are used to find shortest path.

Figure 5: User guided decompsition of meshes. Here, the
user constructs closed loops and segments to dissect two
meshes into isomorphic patch networks. Reprinted from Gre-
gory et al.25, 26.

The works of Bao and Peng6 and Zöckler et al.73 are sim-
ilar in spirit. However, it seems that they allow to use more
points to define the boundary of a patch. Points are con-
nected with the shortest paths in the vertex-edge graph as
in in the work of Gregory et al.25, 26

In the approach of Kanai et al.35 the user first defines a

submitted to COMPUTER GRAPHICS Forum (9/2002).

8 Marc Alexa / Recent Advances in Mesh Morphing

set of corresponding feature vertices. Aware of the problems
resulting from using a shortest path consisting of mesh ver-
tices the authors compute the shortest path on the piecewise
linear surface connecting the feature vertices. This path may
or may not coincide with vertices and edges. Figure 6 shows
the resulting dissectin for two cars. Since computing exact
shortest path on polyhedral surfaces is difficult and time con-
suming they employ an approximate method that refines the
original mesh and uses Dijkstra’s algorithm32.

Figure 6: In the approach of Kanai et al.35 the user selects
only corresponding vertices and which have to be connected.
The mesh is the dissected using shortest path connecting the
vertices. Reprinted from Kanai et al.35.

However, even using the exact shortest path can lead to
problems. Praun et al.55 illustrate the problem and propose
better solutions: If a shortest path would cross an already
established edge of the base domain, the shortest possible
connection avoiding the intersection is computed using a
wavefront algorithm. However, also the order of vertices be-
ing connected is important, because several edges might en-
close an unconnected vertex. This problem can be avoided
by traversing the vertices along a spanning tree.

In our view, the underlying problem is that on non-convex
and unbounded shapes more than one geodesic between to
points exists on the surface. We believe that a set of these
geodesics is sufficient to trace out the given connectivity of
the base domain. To implement this, first all geodesics be-
tween connected vertices of the base domain would be com-
puted. Then, these edges would be inspected for possible in-
tersection. The intersection-free subset yields the decompo-
sition of the original mesh.

3.4. Feature alignment

The necessity for aligning prominent features becomes ev-
ident even in very simple examples. Figure 7 shows two
morphs between models of a young pig and an adult pig. In
the upper sequence, no features were aligned and the result-
ing morph is unacceptable. The lower sequence of Figure
7 shows a morph produced with some features (ears, eyes,
hoofs, and the tail) aligned. The result is obviously more

pleasing. Surprisingly, the need of user guidance becomes
more obvious when the shapes are similar. This is because
we can envision a transformation, i.e. we expect common
features of the models (head, legs, etc.) to be preserved. But
this does not happen, of course, due to the different mesh
connectivity of the models (in this example, the different
mesh connectivities are obvious from the different vertex
counts of the models).

3.4.1. User-selected vs. shape features

A difficult task is to identify common features in several
shapes. It seems impossible to automatically find such com-
mon features as they are mostly defined in a semantic and
not necessarily in a geometric way. The user can identify
these features and provide information about their location
and correspondence (for instance as vertex-vertex corre-
spondence of a few vertices). The algorithm should exploit
this information as much as possible.

All dissection type methods explained above offer this
way of user-control. Since the user explicitly chooses corre-
sponding patches (and, therefore, corresponding edges and
vertices) they can specify which parts of the meshes cor-
respond. However, the user is also involved in other tasks,
which can make the process complicated and lengthy.

The shapes’ geometry also contain information useful to
exploit. Several functions over the parameter domain of the
meshes seem to be worth looking at. It is important that these
functions are independent of the paramterization, i.e. are in-
trinsic to the shape and do not change if the description of the
shape is changed. Such functions are especially considered
in differential geometry, which could be seen as exploring
a shape on the shape, i.e. without a distant view. The most
prominent assets for describng shapes in differential geome-
try are

• normals, which are independent of translation and scaling
but sensitive to rotation and

• curvature (principal curvatures, mean or gaussian curva-
ture), which is independet of translation and rotation but
sensitive to scaling.

The parameterization of the shape’s boundary allows to rep-
resent these quantities as a function in two variables, i.e. the
normal n : R

2 → S2 or the gaussian curvature c : R
2 → R.

It is clear that this information about the meshes does not
lead to point to point correspondeces such as user selected
features. Instead the quality of the match of two shapes is
quantified as a function of the distance of the shape descrip-
tors. For example, Surazhsky and Elber66 use the integral
over the inner products of normals:

R =

∫
D

〈n1, n2〉 dD (14)

Here, the inner product between normals and the integra-
tion over the surface represent particular choices. One might

submitted to COMPUTER GRAPHICS Forum (9/2002).

Marc Alexa / Recent Advances in Mesh Morphing 9

Figure 7: Morphs between the models of a young pig and a grown-up pig. In the upper row, no feature alignment is used, which
leads to unpleasant effects (e.g., eight legs in the intermediate models). In the lower row, the eyes, ears, hoofs, and the tail are
aligned (a total of 17 vertex-vertex correspondences), yielding a smooth transformation.

choose another metric for the difference of normals as well
as another method to take into account the set of differences
(e.g. the maximum of the angles between normals). In order
to match shapes based on such criteria the paramterization
is changed so that the functional is mimized. Note that no
point has an apriori optimum placement making this prob-
lem much harder to solve than aligning specified point to
point correspondences.

3.4.2. Transforming to align features

As a first step in an alignment procedure the parameter
domains should be transformed using affine transform to
roughly align the fatures. Note that this is not possible for
paramterizations resulting from dissection as the orientation
of each patch is determined by neighboring patches.

Alexa1 aligns a set of point to point correspondences by
rotating the spherical embeddings of the mesh. The objec-
tive function to be minized is the squared distance of corre-
sponding points. The minimization problem can be solved
using the techniques explained in Section 5.2.

3.4.3. Warping parameterizations to align features

In general, one could generate any parameterization of the
meshes as a first step to establish correspondence. After this,
the parameterization domain can be used to align user se-
lected features or automatically generated features in terms
of a re-parameterization of one or more of the initial param-
eterizations.

Alexa1 and Zöckler et al73 explicitly allow the user to se-
lect a set of point to point correspondences. Warping tech-

niques similar to those used in image morphing (e.g., see the
overview works of Ruprecht57 or Wolberg71) are used to de-
form the parameterization so that corresponding points coin-
cide. Whether the parameter domain is a disk73 or a sphere1

does not make a difference for the general approach.

In contrast to image warping, it is absolutely necessary
that the warp does not introduce incorrectly oriented faces.
This would be less of a problem if vertices as well as edges
were warped. But since the algorithm later might require
edge-edge intersection tests, warping the edges is imprac-
tical. Instead, edges should be (still) defined as the short-
est path between vertices. That is, we warp the vertices
only. Thus, even injective warping functions might introduce
foldover.

Two solutions have been proposed in the context of mor-
phing: Alexa warps only as much as is possible with the
given triangulation. If the mapping starts to introduce fold-
vover in the triangulation the warp is made more local by
adjusting the radius of incluence. However, the features are
not guaranteed to coincide after this process.

Zöckler et al use the foldover free warping scheme of Fu-
jimura and Makarov20. They also warp in small steps. How-
ever, if foldover occurs they change the mesh connectivity to
assure that the embedding stays valid. In particular, they use
edge flips for this task. This changes the original triangula-
tion of the meshes.

Recent work in texture mapping allows to incorporate
point constraints14, 45. These techniques could be applied for
the problem here.

L‘evy45 formulates the problem of satisfying given point

submitted to COMPUTER GRAPHICS Forum (9/2002).

10 Marc Alexa / Recent Advances in Mesh Morphing

constraints by incporating the squared error of the point cor-
respondences into the energy functional used to generate the
parametrization. Using a scalar to weigh the importance of
the point correspondence allows to trade between the regu-
larization term for the smoothness of the parameterization
and the accuracy of satisfying the constraints. On the other
hand this mixed energy functional does not guarantee a valid
embedding. A possible way would be to start with a valid
emebdding and then increasing importance of the constraints
as long as the embedding stays valid.

Eckstein et al.14 propose a scheme that allows to exactly
satisfy constraints whenever possible. It might be necessary
to introduce additional vertices in the triangulation for this.
The triangulation is first simplified so that it contains only
the constrained vertices. These are placed accordingly and
the mesh is then refined again. During the refinement process
it might be necessary to insert additional vertices because
straight edges connecting vertices could intersect.

3.5. Conclusions

The ideal algorithm for finding a parameterization of a mesh
has not been found. In general, coarse simplifications of the
original meshes are accepted as useful parameter domains.
In the context of morphing they are not ideal for two reasons:

• For seemingly different shapes a common base domain
might be hard to find and the decomposition of the origi-
nal mesh forces the user to interact.

• The alignment of features (e.g. shape features) is re-
stricted to corresponding patches of the base domain.

In view of these limitations the simple solution to embed
topological spheres on a unit sphere has some appeal. How-
ever, embedding complex shapes on a sphere might result in
a distorted parameterization because the local ratio of sur-
face area between sphere and original shape differs.

It seems that finding a common base domain is the method
of choice. For applications, in which one base domain is
needed for more than one shape, techniques should be de-
veloped that include geometric features in the decomposition
process.

We still search for a realiable method that works on ar-
bitrary input, takes any number of user-constraints into ac-
count, optimizes a reasonable resemblance of the shapes,
and is sufficiently fast.

4. Representation mesh

Given two embeddings W0, W1 of meshes
(V0, K0), (V1, K1) on a common domain D we aim
at generating one mesh connectivity K with vertex positions
V (0), V (1) so that the original shapes are reproduced, i.e.

φV (0)(|K|) = φV0(|K0|), φV (1)(|K|) = φV1(|K1|).
(15)

Note that the vertex positions V (0), V (1) are already avail-
able using the barycentric coordinates of each vertex w.r.t.
the base domain. These barycentric coordinates allow to map
each vertex from one mesh to the other. However, the exact
mapping of vertices onto the piecewise linear surface might
lead to bad results. The next subsection discusses better al-
ternatives for the absolute position of vertices.

The main point of this section is to establish the common
connectivity K. The typical approach found in the morph-
ing literature is to generate a supergraph of the connectivities
K0, K1, i.e. one that contains the simplices of both plus ad-
ditional vertices if edges cross. This graph is found by map
overlay. Here, we distinguish two cases:

1. Bounded meshes embedded in a disk.
2. Unbounded meshes, assuming the geometries of several

meshes are sufficiently close.

These cases stem from the parameterization methods pre-
sented in the previous chapter.

Looking at multiresolution techniques for meshes is an
alternative way of generating a common connectivity is
remeshing. In particular, the parameterization is exploited
to map planar coordinates of refinement operators to coordi-
nates on the surface of the shapes. Provided the base domain
accurately represents sharp features of the meshes this ap-
proach has the advantage that it is much easier to scale. The
size can be easily adapted to the desired precision. For the
same reason this approach is easier to extend to more than
two meshes.

4.1. Mapping parameter values to the surface

After the meshes have been paramterized it is easy to find
the posisition of a particular vertex on the surface of a mesh.
Assume we want to find the position of vertex v1i of the first
mesh on the second mesh. We determine the vertices {w2j}
comprising the face in the parameterization in which the pa-
rameter domain position w1i lies. Then, w1i is represented
in barycentric coordinates with respect to {w2j}:

w1i =
∑

bkw2j(k) (16)

The position of v1i in the other mesh is found as

w1i

′ =
∑

bkv2j(k) (17)

This is the exact position on the piecewise linear shape and
the way used in most of the morphing literature.

However, this does not take into account the idea that
piecewise linear shapes are (in most cases) just approxima-
tions of smooth shapes. Particular practical problems occur
when normals have to be rebuild from these new geomet-
ric positions: Vertices inside a face get the face’s normal.
If standard rendering methods are used (vertex normals and
Gouraud shading) this results in detoriated shading.

It would be advantagous to find positions which result in

submitted to COMPUTER GRAPHICS Forum (9/2002).

Marc Alexa / Recent Advances in Mesh Morphing 11

e

Twin(e)

Next(e)

IncidentFace(e)

Origin(e)
Next(Twin(e))

Figure 8: The doubly connected edge list.

a smooth surface. More specifically, we would like to use
the barycentric coordinates to find positions over a triangular
face and not necessarily on the face. This calls for methods
defining a smooth surface from a coarse mesh. An obvious
choice for such a method would be subdivision (e.g., Loop
subdivision48 or Kobbelts

√
3-scheme40).

4.2. Map overlay data structure

We need a data structure to store the meshes, which allows to
add and remove edges, gives quick access to topological in-
formation (e.g., the ordering of edges around a vertex), and is
not to heavy in terms of storage. We choose the doubly con-
nected edge list51 (sometimes called twin-edge data struc-
ture). The basic data type of this data structure is the edge.
Edges are stored as two directed half edges. More specifi-
cally, the following information is stored:

Face The face record contains a poiner to an arbitrary half
edge on its boundary.

Edge Each edge record contains pointers to

• its originating vertex,
• the face it bounds,
• the half edge connecting the same vertices but in the

opposite direction (its twin),
• the next half edge along the boundary of the bounded

face.

Vertex The vertex record contains a pointer to an arbitrary
half edge originating from this vertex as well as location
in space and other attributes (e.g., normal, color, texture
coordinate).

Figure8 illustrates the data structure. Note that it is particular
easy to iterate along the boundaries of faces (next pointers)
or through all edges incident upon a vertex in their ciruclar
order (twin → next). A good description of the doubly con-
nected edge list can be found in Berg et al11.

4.3. Open meshes embedded in a disk

Several algorithms were proposed for the problem of over-
laying planar graphs - see a textbook11. In general, the planar
map overlay has the complexity O(n log n + k), where n is
the number of edges and k is the number of intersections. If

the two subdivisions are connected (as in our case) the planar
overlay can be computed in O(n + k)15.

The general paradigm for planar overlay is plane sweep.
Sweep algorithms process the input with a virtual line mov-
ing along its normal direction. Whenever a vertex intersects
the sweep line the corresponding edge is added (the vertex
is the starting point of this edge) or removed (the vertex is
the endpoint) from the list of active edges. The list of active
edges is tested for intersection with added edges. To further
reduce the number of necessary intersection tests the active
edges are stored in their order along the sweep line. This is
done by inserting edges in the correct position. In addition,
the order has to be updated at intersection points. Using the
ordering, only neighboring edges have to be tested for inter-
section. This processing leads to an algorithm with complex-
ity O(n log n+k). By exploiting that two connected graphs
are intersected the complexity can be reduced to O(n + k).

In the case that meshes are embedded on the disk special
care has to be taken for the boundaries of the meshes. While
we assume that the embedding is surjective (i.e. fills the
disk), the boundary in fact is a polygon leaving small empty
regions between the disk and the polygon. However, it is
clear that the boundaries of the meshes to overlay should be
mapped onto each other. So in order to avoid that the bound-
ary polgons intersect with inner edges of the other mesh the
boundaries have to be merged first. This is done by simply
connecting the vertices of all meshes on the disk along the
linear order given by the disks boundary. After this bound-
ary polygon has been established the planar mesh overlay
procedure can be computed.

4.4. Closed meshes in arbitrary position

There seem to be only a few publications about the overlay
of meshes in general position (i.e. the triangulated surfaces
are close to each other but not e.g. planar). Note that plane
sweep solutions are not applicable in this case. Few publi-
cations deal with overlaying two subdivision of the sphere.
Kent et al.38 give an algorithm for the sphere overlay prob-
lem, which needs O(n+k log k) time. Alexa1 has presented
a solution to this particular problem, which reports the inter-
section of two spherical subdivisions in the optimum time
of O(n + k). Also, both algorithms exploit the topological
properties of both subdivisions, which are used to guarantee
the correct order of intersections. Here, we generalize these
algorithms to work on two arbitrary shaped meshes, which
are assumed to be suffiently close to each other. We also al-
leviate the problem that the published version1 had a worst
case complexity of O(n + k log n) for the construction of
the merged mesh using the already reported intersections.

The algorithm consists of two main parts: First, finding
all intersections, and second, constructing a representation
for the merged model.

submitted to COMPUTER GRAPHICS Forum (9/2002).

12 Marc Alexa / Recent Advances in Mesh Morphing

Figure 9: Edge-edge intersections are determined by follow-
ing an edge (blue in this illustration) over the faces of the
other triangulation (red). After finding an intersection the
face-to-face coherence exploited and only the edges of the
next face are tested.

4.4.1. Finding the intersections

In the algorithm two geometric functions are needed: One to
decide if and where two edges intersect on the sphere, and
a second to decide whether a point lies inside a face. Both
geometric properties can be checked in a projection to the
tangent plane of the surfaces. Since the meshes are supposed
to be close in space their tangent planes should not differ to
much. A suitable way of finding a common tangent plane is
to take the cross product of two edges (i.e. the two edges to
intersect, or two edges of the face to check).

The basic idea is to traverse the graphs breadth first,
keeping information about the face that contains the current
working edge and exploiting face-to-face neighbor informa-
tion. Choose an arbitrary vertex {i} ∈ K0 and search the
2-simplex f = {f1, f2, f3} ∈ K1 that contains it in under
the bijective mapping. Start with an edge e ∈ S(i). Store
e together with f on a stack. In general, the stack will al-
ways contain a directed edge together with the face in the
other mesh containig the origin of this edge. The basic idea
of the traversal is to walk over the faces following an edge
(see Figure 9). Each edge e = {e1, e2} is intersected first
with the three edges {f1, f2}, {f2, f3}, {f3, f1} bounding
f , which contains φW0(e1). When an intersection is found
the working edge e is emanating to the next face, i.e. the one
that shares the intersected edge. This face is set to be f and
is inspected in turn.

The same process is repeated with edges in K1. This is
necessary to find the topological orders of edges in K0 cut-
ting edges in K1. Each edge is tested against three edges plus
two additional intersection tests for each intersection being
found. Thus, the algorithm has constant costs per edge and
per intersection and the complexity is O(n + k).

4.4.2. Generating the data structures

An appropriate data structure for storing the intersections is
needed. Information about an intersection should be accessi-

ble from both intersecting edges at constant costs. We use a
hashtable with edge indices as key values. When edge-edge
intersections are found and stored in the intersection lists a
pointer to the entry in the hashtable is stored. This means,
both edges point to the same data structure containing in-
formation about the intersection (the intersecting edges in
the beginning). The hashtable is only needed to access the
entry when the intersections have already been computed
by processing K0 and need to be found when intersections
from K1 are generated. After reporting all intersections the
hashtable is discarded.

The following two step algorithm contructs the merged
mesh: First, edges in K0 are cutted. We iterate through the
intersection list of an edge and cut the edge at each intersec-
tion point. Thus, a new edge (two half edges) are generated
for each intersection. The new edge represents the part of the
edge that has to be processed. At each intersection the data
structure containing the respective information is updated to
now contain the two parts of the edge incidient upon the in-
tersection point. At this point only the twin pointers of the
half edges are updated. The next pointers are left empty.

Second, edges in K1 are processed. As in the first step
edges are cut into two pieces at each intersection point. How-
ever, this time also the next pointers are updated. This is done
by using the information stored in the intersection data struc-
ture, which now contains both edges of the already cut edge
in K1.

After all intersections are processed in this way we have
a valid vertex and edge lists of the embedding. It remains
to compute the records for the faces. Note that faces created
from intersecting triangles are convex polygons with 3 to 6
sides, which should be triangulated. This is another subtelty,
which is more involved as it may seem: While the polygon
resulting from the intersection is convex it is not clear what
shape it has in other geometric configurations, e.g. those of
the source meshes. In principle one should find a triangula-
tion that is admissible in all source geometries. This might
be difficult and could lead to the need for additional vertices.
The problem is known as compatible triangulation and dis-
cussed in detail in another context in Section 5.5.1.

Note that this appraoch could be extended to bounded
meshes, however, boundaries require special treatment be-
yond the scope of this report.

4.5. Remeshing

A mesh is typically just an approximation of a shape. We
have already seen that the mesh overlay process together
with using coordinates lying exactly on the mesh might in-
troduce artifacts into the source meshes (see Section 4.1).
Thus, even if the original mesh connectivities are available
as subsets of K the reproduction of the original shapes
though exact is not ideal. It seems that the perfect recon-
struction of the source shapes is impossible and we could as

submitted to COMPUTER GRAPHICS Forum (9/2002).

Marc Alexa / Recent Advances in Mesh Morphing 13

Figure 10: A multiresolution mesh representation build
over the same base domain to represent two geometries.
Reprinted from Michikawa et al.50.

well use any mesh connectivity to approximate both given
shapes.

Remeshing techniques have been used to construct semi-
regular meshes from irregular input44. The irregular mesh is
reduced to an irregular base domain. The base domain is re-
fined inserting only regular vertices. The idea is to use refine-
ment operators as known from subdivision surfaces, how-
ever, without using the geometric rules attached to the re-
finement. Instead, geometric positions are found by exploit-
ing the bijection between original surface geometry and the
parameterization. For example, using the 1-4 split the pa-
rameter domain positions of inserted vertices are given as
edge bisectors. This parameter leads to the coordinate on the
surface of the mesh.

This idea has recently been used to construct morphable
meshes by Michikawa et al.50 (see Figure 10). In this con-
text, each parameter value leads to two coordinates. After
several refinement steps a semi-regular mesh connectivity
K is constructed together with coordinates V (0), V (1) as
desired. Because the refined connectivity is defined by the
rules of the refinement used, only the base domain connec-
tivity has to be stored explicitly.

To achieve a desired approximation accuracy, the number
of refinement steps should be adapted to the geometric com-
plexity of the meshes. Note that refinement could be done
adaptively depending on the viewing conditions without nec-
essarily computing and storing all coordinates of the refine-
ment levels.

4.6. Comments

The remeshing approach is appealing because it allows to
scale the size of the representation mesh. Its only limitation
is the accurate representation of sharp features in the original
shapes. In conventional multiresolution models this problem
is alleviated by fitting the base domain to these features. In
the context of morphing the base domain has to represent

the features of several meshes, which do not necessarily co-
incide. This, again, incurs extra burden on the user, because
a more complex base domain has to be induced on the input
meshes. In addition, a more complex base domain limits the
possibilities of automatic feature alignment methods. How-
ever, the flexible and lean representation mesh seems worth
it.

5. Vertex paths

After the computation of one mesh connectivity K and two
mesh geometries represented by vertex coordinates V (0)
and V (1) it remains to compute vertex coordinates for the
blended shapes. For a typical morphing animation, a set of
vertex coordinates V (t), t ∈]0, 1[has to be generated.

A simple choice is linear interpolation35, 38, 25, 73. A
rigid9, 10 or affine1 transform prior to linear vertex interpo-
lation yields better results. More complex behavior during
the transform calls for more elaborate mathods. Such meth-
ods decompose the shape in to linear pieces and treat these
pieces separately.

5.1. Linear interpolation of vertices

The easiest way to produce blends of corresponding shapes
is to interpolate the coordinates of vertices. Given a transi-
tion parameter t the coordinates of an interpolated shape are
computed by

V (t) = (1 − t)V (0) + tV (1) (18)

This type of interpolation produces good results if the shapes
have the same orientation and are somewhat similar. Fig-
ures 11 and 12 show morph sequences obtained by linear
interpolation.

Different orientation could lead to displeasing results.
Imagine two squares that are rotated by 180 degrees against
each other. If simple vertex interpolation is applied in this
configuration, the interpolated shapes will shrink until the
shape is collapsed to one point and then grow again. This is
not the desired result in most applications. It is advisable to
interpolate the orientation separately from the verex coordi-
nates.

5.2. Interpolation of Orientation

Several ways exist to compute a relative orientation of two
shapes. Note that it is difficult to interpolate the orienation
of more than two shapes in 3D so the following discussion
will be restricted to two shapes.

As a first step, the shapes are usually translated so that
their centers of mass coincide with the origin. Then, a
rotation9, 10 or an affine transform1 is computed seprating the
rigid/affine part from the elastic part of the morph. A way
of defining the rigid/affine part is to minimize the squared

submitted to COMPUTER GRAPHICS Forum (9/2002).

14 Marc Alexa / Recent Advances in Mesh Morphing

Figure 11: A morph sequence obtained by linear interpolation using the base domains depcited in Figure 12. Reprinted from
Kanai et al.35.

Figure 12: A morph of objects with genus higher than zero. Reprinted from Lee et al.43.

distances of corresponding vertices using the corresponding
transform. The minimization problem of finding an affine
transform can be solved using the pseudo inverse of the co-
ordinate vector. Let the vertex vectors be arranged as a n×3
matrix

V =

⎛
⎜⎜⎝

v1x v1y v1z

v2x v2y v2z

v3x v3y v3z

. . .

⎞
⎟⎟⎠ .

Then the squared distance of coordinates under an affine
transform A is

(V (0)A − V (1))2 (19)

and has to be minimized. This leads to linear system of eqau-
tions, which can be solved using pseudo inverse V (0)+:

A = V (0)+V (1) =
(
V (0)T V (0)

)−1

V (0)T V (1) (20)

Alternatively, the least squares solution (or, the pseudo in-
verse) could be computed using the SVD, which allows ex-
plicit control over the sensitivity to near rank deficiencies22.

Intermediate shapes V (t) = {v1(t),v2(t), . . .} are de-
scribed as V (t) = A(t)V (0). The question is how to define
A(t) reasonably? The simplest solution would be: A(t) =
(1 − t)I + tA. However, some properties of A(t) seem to
be desirable, calling for a more elaborate approach:

• The transformation should be symmetric.
• The rotational angle(s) and scale should change mono-

tonic.
• The transoform should not reflect.
• The resulting paths should be simple.

The basic idea is to factor A into rotations (orthogonal
matrices) and scale-shear parts with positive scaling compo-
nents. Alexa et al.3 have examined several decompositions.
Through experimentation, they have found a decomposition
into a single rotation and a symmetric matrix (i.e. the polar
decomponsition), to yield the visually-best transformations.
This result is supported by Shoemake63 for mathematical, as
well as psychological, reasons. The decomposition can be

submitted to COMPUTER GRAPHICS Forum (9/2002).

Marc Alexa / Recent Advances in Mesh Morphing 15

a)

b)

c)

d)

Figure 13: Transformations of a single triangle. (a) Linear
vertex interpolation. (b-d) An affine map from the source
to the target triangle is computed and factored into rota-
tional and scale-shear parts. Intermediate triangles are con-
structed by linearly interpolating the angle(s) of rotation, the
scaling factors, and the shear parameter. (b) is generated
using the SVD; (c) shows the results of reducing the over-
all angle of (b) by subtracting 2π from one of the angles;
(d) corresponds to Equation 22 and represents the method
of our choice. The last column in all rows shows plots of the
vertex paths.

deduced from the SVD as follows

A = RαDRβ = Rα(RβRT
β)DRβ =

(RαRβ)(RT
β DRβ) = RγS (21)

however, there are computationally cheaper alternatives63.
Based on the decomposition, A(t) is computed by linearly
interpolating the free parameters in the factorizations in (21)
, i.e.

Aγ(t) = Rtγ((1 − t)I + tS). (22)

Figure 13 illustrates the resulting transformations for a tri-
angle. For comparison, 13(a) shows linear interpolation of
vertex coordinates. The transformation resulting from a sin-
gular value decomposition and linear interpolation Aα,β(t)
is depicted in 13(b). Note that the result is symmetric and
linear in the rotation angle but still unsatisfactory, since a
rotation of more than π is unnecessary. However, if we sub-
tract 2π from one of the angles (depicted in 13(c)) the result
is even more displeasing. We have found that decomposing
A into one rotation and a symmetric matrix and using Aγ(t)
yields the best results (Figure 13(d)). It avoids unnecessary
rotation or shear compared to the SVD and is usually more
symmetric than a QR decomposition-based approach.

5.3. Interpolation of intrinsic boundary representation

Linear interpolation of vertices can lead to undesirable ef-
fects such as shortening of parts of the boundary during the
transition. To avoid such problems, Sederberg et al.60 pro-
pose to interpolate an intrinsic representation of the bound-

ary. For polygons, such an intrinsic representation represen-
tation are edge length an interior angles. Unfortunately, there
is no simple analog in 3D. An attempt was made to extend
the ideas of to polyhedra65 but the methods are computation-
ally expensive and unreliable.

5.4. Smoothing paths among neighboring vertices

If every vertex is interpolated independently the paths of
neighboring vertices are independent. However, one might
expect a coherence among those paths. Ohbuchi et al.52 con-
struct a subdivision surface connecting the two boundary
representations. This is comparable to the variational ap-
proach of Turk and O’Brian69 for implicit shapes. Interme-
diate shapes are defined as cross sections of the subdivision
surface. Since the subdivision surface is smooth in all di-
rections not only the paths of sinlge vertices are smooth but
they are also smooth among local neighborhoods. By intro-
ducing trans-finite constraints on the subdivision surface it
is possible to preserve sharp features of the original meshes.

5.5. Interpolation of the interior of shapes

Shapira and Rappaport61 suggest that a proper morph cannot
be expressed merely as a boundary interpolation, but as a
smooth blend of the interior of the objects. To achieve such
an interior interpolation, they represent the interior of the
2D shapes by compatible skeletons and apply the blend to
the parametric description of the skeletons. An extension of
this approach to meshes - though theoretically possible - has
not been presented so far. The extension of this idea to 3D
has been investigated by Blanding et al.7.

a)

b)

Figure 14: Contour blends of an elephant and a giraffe. In-
terpolation of the boundary (a) vs. a decomposition based
approach (b).

Another way to represent the interior of the shapes is
to decompose the shape into linear pieces or, more specif-
ically, into simplices. The works of Floater, Gotsman, and
Surazhsky19, 24 and Alexa et al.3 use this type of decomposi-
tion mainly for polygons, however, the extension to meshes
has been demonstrated. The main difficulty in extending
these approaches lies in the reliable computation of isomor-
phic dissections of meshes into simplicial complexes.

We will first discuss ways of generating such isomorphic
complexes and then explain the possibilities they open for
computing vertex paths.

submitted to COMPUTER GRAPHICS Forum (9/2002).

16 Marc Alexa / Recent Advances in Mesh Morphing

5.5.1. Isomorphic Simplicial Complexes of Shapes

Simplicial complexes allow the local deformation of the
shapes to be analyzed and controled. Here, we explain how
to construct isomorphic dissections given two shapes with
identical boundary connectivity.

The problem was first discussed by Aronov et al.5 for
polygons. They offer two general approaches: The first ap-
proach is to triangulate the polygons independently and then
use a piecewise linear bijective map to compute a planar
overlay of the triangulations. This is somewhat similar to the
planar embeddings explained in Section 3.1 together with
the overlay procedures in Section 4.3. The second approach
of Aronov et al. is a universal triangulation that fits every n-
sided polygon. This approach is extended by Gotsman and
Surazhsky24 to generate triangulations with few interior ver-
tices. However, it is unclear how to extend the general trian-
gulation to meshes because of the more complex boundary
connectivity. For this reason, we concentrate on the first ap-
proach.

It seems that the mesh-version of compatible triangula-
tions has not been discussed in the literature. However, the
procedure is conceptually the same. The meshes are tetra-
hedralized independently using common techniques8. Then,
a piecewise linear bijective map is computed between the
shapes, typically using a common parameter domain. This
parameter domain is used to compute an overlay of the sim-
plical complexes.

In case the common parameter domain for the meshes is a
sphere, the interior of the sphere could be used as the param-
eter domain for the tetrahedra. If a piecewise linear parame-
ter domain is used it seems more difficult to find a mapping
of the interiors. If the parameter domain is given and then in-
duced onto the meshes one could as well prescribe a simpli-
cial base domain and induce this simplical complex onto the
(independent) simplicial complexes of the original meshes.
The resulting structures are merged using a plane sweep al-
gorithm similar to the line sweep algorithms discussed in
Section 4.3.

The resulting simplicial complex might contain many, ill-
shaped simplices, which cause the following determination
of the vertex paths to detoriate. For that reason, both, Gots-
man and Surhazky as well as Alexa et al. try to improve the
simplicial complex while preserving the isomorphism. Gots-
man and Surazhsky try to minimize the number of result-
ing simplices. Alexa et al. employ an approach motivated by
meshing techniques, however, adapted to the situation that
one connectivity has to work for two shapes.

It seems advantagous to start with Delaunay triangula-
tions because they avoid the generation of skinny simplices,
which would be inherited in the merged complex, and be-
cause the same connectivity is produced for similar regions,
which reduces the number of extra simplices generated by
the overlay. The following smoothing strategy tries to max-

Figure 15: The homeomorphic dissections of the shapes in
the elephant-giraffe example

imize the minimum angle (as the Delaunay triangulation
does) by independently moving interior vertices and concur-
rently flipping edges. This procedure is called compatible
mesh smoothing. If the result needs to be improved further,
the vertex count is increased by means of splitting edges.
The split operation is well-defined in terms of topology, if it
is applied to both triangulations simultaneously, the isomor-
phism remains. The idea is to split long edges to avoid long
skinny triangles. Figure 15 shows a result achieved with this
approach.

5.5.2. Morphing barycentric coordinates

The approach of Gotsman et al.19, 24, 67 requires not only the
interior of the shapes to be decomposed but also the exterior.
The exterior is bounded by a common fixed convex shape.
This fixed convex shape allows to represent each interior ver-
tex with barycentric coordinates:

vi =
∑

j∈N (i)

λi,jvj,
∑

j∈N (i)

λi,j = 1, λi,j > 0 (23)

Thus, each shape is fully described by the matrix of weights
Λ = {λi,j}. The idea of the approach is to linearly in-
terpolate these barycentric coordinates, i.e. Λ(t) = (1 −
t)Λ(0) + tΛ(1). As was shown in Section 3.1.1 a con-
vex boundary together with barycentric coordinates for the
interior vertices results in a valid embedding of the com-
plex (this is obiously not restricted to the two-dimensional
case). A convex combination of the barycentric coordinate
results in another barycentric coordinate so that the result-
ing vertex coordinates along the paths describe only valid
(i.e. non-intersecting) shapes. This is a unique feature of this
approach.

In this general setting several choices allow to influence
the result of the morph. The first choice is with respect to
the barycentric coordinates Λ. If a vertex has more than four
neighbors (three in the planar case) its barycentric coordi-
nate is not unique. A possible way of choosing the coordi-
nate is to minimze the squares if the weights by using the
pseudo inverse (see Section 5.2). Next, the paths do not have

submitted to COMPUTER GRAPHICS Forum (9/2002).

Marc Alexa / Recent Advances in Mesh Morphing 17

to be linear in the space of barycentric coordinates. Since the
linear paths of vertices has some desriable features (e.g. it is
short) one could modify the original barycentric coordinates
Λ towards the original vertex representation (represented by
I) and, thus, the linear morph. Surazhsky and Gotsman67

show that Λm gets closer to the linear morph with increasing
m and that if the linear morph is invalide their is a m′ dev-
iding the family Λm into sets of valid (m ≤ m′) and invalid
(m > m′) morphs.

5.6. Composing local ideal transforms

The general idea of Alexa et al.3 is to find a transformation
which is locally as similar as possible to the optimal transfor-
mation between each pair of corresponding simplices. The
optimal simplex transform is found by factoring the affine
transform defined by the pair of corresponding simplices as
explained in Section 5.2. This defines ideal trajectories for
each simplex.

Now consider the simplicial complex rather than a single
triangle. We define an error functional for a candidate vertex
configuration V (t) = (v1,v2, . . .)

EV (t) =
∑
s∈K

‖As(t) − Bs(t)‖2 , (24)

where As(t) is the desired ideal transform computed for
simplex s, Bs(t) is the affine transform induced from V (0)
to V (t), and ‖ · ‖ is the Frobenius norm.

We define an intermediate shape V (t) as the vertex con-
figuration which minimizes this error between the desired
coordinates for each individual simplex and the space of ad-
missible coordinates.

Note that the coefficients of Bs(t) are linear in V (t) and
that the As(t) are known for a fixed time t Thus, EV (t) is a
positive quadratic form in the elements of V (t). The func-
tional EV (t) can be expressed in matrix form as

EV (t) = vT

(
c GT

G H

)
v, (25)

where c ∈ R represents the constant, G ∈ R
2n×1 the linear,

and H ∈ R
2n×2n the mixed and pure quadratic coefficients

of the quadratic form EV (t). The minimization problem is
solved by setting the gradient ∇EV (t) over the free variables
to zero.

The above definition has the following notable properties:

• For a given t, the solution is unique.
• The solution requires only one matrix inversion for a spe-

cific source and target shape. Every intermediate shape is
found by multiplying the inverted matrix by a vector.

• The vertex path is infinitely smooth, starts exactly in the
source shape, and ends exactly in the target shape. These
are properties typically difficult to achieve in physically-
based simulations.

Figure 16 shows transformations of some simple shapes pro-
duced with the described method.

5.7. Non-uniform interpolation

So far we have always morphed the whole mesh, i.e the tran-
sition has been desribed by a scalar transition parameter t.
Now, we want to locally morph certain features or regions of
interest, i.e. the transition parameters are different for differ-
ent vertices. We will call the set of transition paramters for
vertices the transition state.

An idea to specify non-uniform morphs is to explicitly
define the path of several vertices. Gregory et al.25, 26 allow
the user to define the paths of base mesh vertices, which are
used to modify the linear interpolation of the remaining ver-
tices (see Figure 17). If a multiresolution hierachy is used
paths could be defined on each of the levels and propagated
to higher levels. This is a concept introduced in multireso-
lution mesh modeling13, 49, 74, 42, 28, which has been used for
morphing by Michikawa et al.50.

Figure 17: Specifying non-uniform morph paths. Gregory et
al.25, 26 allow to specify the paths in base domain vertices
explcitely (e.g. using splines).

A major problem when morphing only locally arises from
the fact that corresponding features might not have the same
position in space and, thus, interpolation of absolute coordi-
nates could lead to undesirable effects. This problem is illus-
trated in Figure 18. The shapes in a) and b) are source and
target geometry of one mesh. The idea is to locally change
the geometry of the baby’s face so that the nose takes the
shape of the boy’s. Locally interpolating vertex coordinates
leads to the shape depicted in c), which is clearly not us-
able. Note that the faces are overall aligned in space and that
the misalignment of the noses results from different relative
positions in the faces.

We could ease the problem of misalignment by assigning
an affine transform to a local morph. This can be done in case

submitted to COMPUTER GRAPHICS Forum (9/2002).

18 Marc Alexa / Recent Advances in Mesh Morphing

Figure 16: Transformations of different shapes representing solid objects. Note that parts of the shapes transform rigidly
whenever possible.

the mesh is represented over a base domain. The coordinates
could be represented relative to the base domain. However,
the fixed base domain limits the flexibility and might intro-
duce continuity problems at the base domain edges. More
generally, a shape should be defined by the transition state
of its vertices. In that way, the transition states is representa-
tive for the shape of a morphable object. This could be a very
compact way of representing deforming or animated objects.

The main idea to overcome the limitations is to repre-
sent vertex coordinates with respect to their neighbors in the
mesh (and not with respect to some larger structure). Given
a vertex and its one-neighborhood ring (see Figure 19 a),
the position should be described relative to the positions of
vertices in the neighborhood. Further, the representation of
a vertex should be linear in the absolute coordinates. Non-
linear functions tend to be numerically difficult to handle
and many morphable meshes have sliver triangles, which,
together, leads to unpredictable results.

The relative representation aims at making the shape of
the mesh invariant to translation or, ideally, invariant un-
der affine transforms. If a vertex were represented in the

affine space of its neighbors invariance under affine trans-
forms would trivially follow.

5.7.1. Laplacian Representation

Alexa2 uses a rather simple scheme, which is not invariant
under rotation, scaling, and shearing. Assume we want to
represent the position of vertex {i}. Compute the center of
mass of the neighbors

v̄i =
1

|N (i)|
∑

j∈N (i)

vj (26)

and let the new representation be the difference of this center
of mass to the original position:

ṽi = vi − v̄ (27)

For an illustration see Figure 19. If we write all vertices as a
vector the forward transformation (from absolute to relative
coordinates) can be represented in matrix form. Let A be the
adjacency matrix of the mesh and D be a diagonal matrix
with dii = 1/|N (i)|. The transform is represented by L =
I − DA. Note that L is a Laplacian of the mesh68. This is
an important observation as it generalizes the approach to

submitted to COMPUTER GRAPHICS Forum (9/2002).

Marc Alexa / Recent Advances in Mesh Morphing 19

a) b)

c) d)

Figure 18: Given a mesh with two geometries a) and b) so
that corresponding features (eyes, ears, nose, mouth, etc.)
are represented by the same vertices in both geometries. If
one feature (in this example the nose) is morphed towards
the target geometry in absolute coordinates, different posi-
tions in space lead to undiserable effects shown in c). The
shape in d) shows a more pleasing result achieved by inter-
polating a differential encoding of the vertices.

a) b)

Figure 19: A vertex (black) and its neighborhood ring
(white) in a). In Laplacian coordinates a vertex is repre-
sented by the difference to the centroid of its neighbors (b).

shape representations other than meshes, e.g. parametric or
implicit functions.

The backward transformation (from relative to absolute
coordinates) is, by construction, not unique. It should be
uniquely determined up to a translation. This means, L ∈
R

m×m should have rank m − 1, which is indeed so2.

The main idea of this approach is to morph by linearly in-
terpolating Laplacian coordinates rather than absolute coor-
dinates. This is somewhat similar to interpolating barycen-
tric coordinates (see Section 5.4.2), however, here coordi-
nates cannot be convex sums of neighbors as neighbor rings
are not necessarily a base of R

3. As such, the foldover-free
property of convex combination morphs cannot be estab-
lished here. Since Laplacian coordinates are linear in abso-

lute coordinates morphing the whole shape (i.e. all vertices
have the same transition state) will be the same in absolute
and Laplacian coordinates. Yet, if the desired transitions are
different for subsets of vertices interpolating Laplacian co-
ordinates yields more reasonable results.

Alexa2 gives details on how to generate and represent
transition states and how to solve the resulting linear system.

6. More than two meshes

The conceptual extension of the framework to more shapes
is straightforward. Given meshes Mi = (Vi, Ki) a com-
mon connectivity K together with vertex sets V (ei) is es-
tablished. The vertex sets form a base of a space, which
is reflected by using canonical base vectors ei as indices.
A morphed shape (V (s), K) is represented by a vec-
tor s = (s0, s1, . . .) reflecting the shares of the meshes
M0, M1,

Not all techniques presented in this framework are equally
suited to be extended to more meshes. The correspondence
problem discussed in Section 3 seems to be relatively easy
to extend. All meshes are embedded in the given parame-
ter domain, which leads to barycentric representation of the
original vertices. If each set of original vertices Vi needs to
be mapped to all other meshes Mj , i �= j the complex-
ity would grow quadratically with the number of meshes.
However, this is not necessary if a remeshing strategy is
used to generate a consistent mesh connectivity (see Sec-
tion 4.5). This procedure generates the same set of vertices
over all shapes, thus, the complexity is linear in the number
of meshes times the number of vertices used in the remesh,
which is the best we can expect. Concluding, the best way
to generate the set {(V (ei), K} is to embed all meshes in
a common parameter domain (spherical or piecewise lin-
ear) and then remesh to the desired accuracy. This has been
demonstrated by Michikawa et al.50 (see Figure 20).

The vertex path problem now extends to compute combi-
nations of several vertex vectors. Linear vertex combination
is easily extended:

V (s) =
∑

i

siV (ei) (28)

Surprisingly, any technique involving rotations such as the
ones explained in Sections 5.2 and 5.4 seem to be difficult
to extend. Instead of interpolating the orientation one could
compute the principal components (moments) of the shapes
and align them with the canonical axes of the coordinate
system. To extend the local morph approach explained in
Section 5.5 the linear combination has to be applied to the
Laplacian coordinates.

Applications of such spaces of meshes range from mod-
eling and analysis of shapes to animation. Praun et al. have
termed the synthesis-analysis part digital geometry process-
ing (DGP)55. Modeling could be achieved be combining sev-

submitted to COMPUTER GRAPHICS Forum (9/2002).

20 Marc Alexa / Recent Advances in Mesh Morphing

Figure 20: A space of shapes generate from three input
shapes and linear interpolating their geometry vectors. Cor-
respondence has been established using a coarse base do-
main and a multiresolution mesh. Reprinted from Michikawa
et el.50.

eral shape (features) to yield the desired result. Using tech-
niques such as the principal component analysis, spectral
properties of the mesh family can be explored.

The space of meshes (V (ei), K) allows to represent an-
imations as a curve s(t). A classical key frame anima-
tion with k key frames could be simply models as a k-
dimensional space, where the curve linearly interpolates
subsequent key frames. Alexa and Müller4 use the PCA to-
gether with rigid motion detection to find a more compact
space (see an illustration in Figure 21). In this space the main
part of the animation is stored in the rigid motion of the first
base vector. The additional base vectors are sorted accord-
ing to their energy in the spectrum of the animation. This
allows to progressively store and stream mesh animations,
where the progressiveness is with respect to movements and
not model fidelity. The understanding of certain features of
the animtion as bases of a linear space gives this represen-
tation semantics. It is possible to identify e.g. the smile in a
facial animation with a particular basis and, thus, to modify
only the smile without the need to work on all key frames.

7. Conclusions

Mesh morphing has reached a state where basic problems
are solved, yet, a practical working system is not avail-
able. The correspondence and representation problems can
be seen as the application of several techniques now com-
mon in multiresolution representations and modeling. The
vertex path problem is specific to morphing applications and
leaves room for improvement.

What is still missing is a robust implementation of current
techniques. As with other geometric techniques, many of the
approaches suffer from numerical problems. Many “detail”
problems such as normal and texture coordinate interpola-
tion can cause trouble in practice.

With the extension of mesh morphing to linear spaces of
meshes several interesting avenues for future research arise.
However, one might ask the question whether meshes (with
fixed connectivity) are the right representation for deforming
shapes, anyway.

Additional material

The web site http://www.sfc.keio.ac.jp/k̃anai/GeomMorph/
maintained by Takashi Kanai has links to many other project
web pages on mesh morphing and is a great source of infor-
mation and material.

Acknowledgements

Encouraging and insightful discussions with many
knowledgeable people, namely Daniel Cohen-Or, Jose
Encarnação, Craig Gotsman, David Levin, Wolfgang
Müller, are gratefully acknowledged. Many thanks to
Arthur Lee, Ming Ling, Takashi Kanai, Peter Schröder for
allowing me to re-use their original illustrations and morph
sequences. Thanks to the anonymous referees for their
helpful and detailed reports. This work contains (rephrased)
parts of the author’s prior works.

References

1. M. Alexa. Merging polyhedral shapes with scattered
features. The Visual Computer, 16(1):26–37, 2000.
ISSN 0178-2789.

2. M. Alexa. Local control for mesh morphing. In
B. Werner, editor, Proceedings of the International
Conference on Shape Modeling and Applications (SMI-
01), pages 209–215, Los Alamitos, CA, May 7–11
2001. IEEE Computer Society.

3. M. Alexa, D. Cohen-Or, and D. Levin. As-rigid-
as-possible shape interpolation. Proceedings of SIG-
GRAPH 2000, pages 157–164, July 2000. ISBN 1-
58113-208-5.

4. M. Alexa and W. Müller. Representing animations
by principal components. Computer Graphics Forum,
19(3):411–418, August 2000. ISSN 1067-7055.

5. B. Aronov, R. Seidel, and D. Souvaine. On compati-
ble triangulations of simple polygons. Computational
Geometry: Theory and Applications, 3:27–35, 1993.

6. H. Bao and Q. Peng. Interactive 3d morphing. Com-
puter Graphics Forum, 17(3):23–30, 1998. ISSN 1067-
7055.

submitted to COMPUTER GRAPHICS Forum (9/2002).

Marc Alexa / Recent Advances in Mesh Morphing 21

=

original key frames principal component

bases

importance

factors

animation

representation

Figure 21: The SVD applied to a space of meshes. Here the original space represents a key frame animation, the result allows
to represent the same animation with less geometries containing most of the original animation’s energy.

7. Blanding, Turkiyyah, Storti, and Ganter. Skeleton-
based three-dimensional geometric morphing. CGTA:
Computational Geometry: Theory and Applications,
15, 2000.

8. B. Chazelle and L. Palios. Triangulating a non-convex
polytope. In K. Mehlhorn, editor, Proceedings of the
5th Annual Symposium on Computational Geometry
(SCG ’89), page 393, Saarbrücken, FRG, June 1989.
ACM Press.

9. D. Cohen-Or and E. Carmel. Warp-guided object-space
morphing. The Visual Computer, 13(9-10):465–478,
1998. ISSN 0178-2789.

10. D. Cohen-Or, A. Solomovici, and D. Levin. Three-
dimensional distance field metamorphosis. ACM Trans-
actions on Graphics, 17(2):116–141, April 1998. ISSN
0730-0301.

11. M. de Berg, M. van Kreveld, M. Overmars, and
O. Schwarzkopf. Computational Geometry – Algo-
rithms and Applications. Springer-Verlag, Berlin Hei-
delberg, 1997.

12. D. DeCarlo and J. Gallier. Topological evolution of
surfaces. Graphics Interface ’96, pages 194–203, May
1996. ISBN 0-9695338-5-3.

13. M. Eck, T. DeRose, T. Duchamp, H. Hoppe, M. Louns-
bery, and W. Stuetzle. Multiresolution analysis of ar-
bitrary meshes. Proceedings of SIGGRAPH 95, pages

173–182, August 1995. ISBN 0-201-84776-0. Held in
Los Angeles, California.

14. I. Eckstein, V. Surazhsky, and C. Gotsman. Texture
mapping with hard constraints. Computer Graphics Fo-
rum, 20(3):95–104, 2001. ISSN 1067-7055.

15. U. Finke and A. Hinrichs. Overlaying simply connected
planar subdivisions in linear time. In Proceedings of the
11th Annual Symposium on Computational Geometry,
pages 119–126, New York, NY, USA, June 1995. ACM
Press.

16. M. S. Floater. Parametrization and smooth approxima-
tion of surface triangulations. Computer Aided Geomet-
ric Design, 14(3):231–250, 1997. ISSN 0167-8396.

17. M. S. Floater. Convex combination maps. Algorithms
for Approximation IV, 2001.

18. M. S. Floater. One-to-one piecewise linear mappings
over triangulations. Math. Comp., to appear, 2002.

19. M. S. Floater and C. Gotsman. How to morph tilings in-
jectively. Journal of Computational and Applied Math-
ematics, 101:117–129, 1999.

20. K. Fujimura and M. Makarov. Folder-free image
warping. Graphical Models and Image Processing,
60(2):100–111, March 1998.

21. M. Garland and P. S. Heckbert. Surface simplifica-
tion using quadric error metrics. Proceedings of SIG-

submitted to COMPUTER GRAPHICS Forum (9/2002).

22 Marc Alexa / Recent Advances in Mesh Morphing

GRAPH 97, pages 209–216, August 1997. ISBN 0-
89791-896-7. Held in Los Angeles, California.

22. G. H. Golub and C. F. Van Loan. Matrix Computations,
volume 3 of Johns Hopkins Series in the Mathematical
Sciences. The Johns Hopkins University Press, Balti-
more, MD, USA, second edition, 1989. Second edition.

23. J. Gomes, L. Darsa, B. Costa, and L. Velho. Warping
and Morphing of Graphical Objects. Morgan Kaufman
Publishers, 1999.

24. C. Gotsman and V. Surazhsky. Guaranteed intersection-
free polygon morphing. Computers & Graphics,
25(1):67–75, February 2001. ISSN 0097-8493.

25. A. Gregory, A. State, M. Lin, D. Manocha, and M. Liv-
ingston. Feature-based surface decomposition for cor-
respondence and morphing between polyhedra. Com-
puter Animation ’98, June 1998. Held in Philadelphia,
Pennsylvania, USA.

26. A. Gregory, A. State, M. C. Lin, D. Manocha, and M. A.
Livingston. Interactive surface decomposition for poly-
hedral morphing. The Visual Computer, 15(9):453–
470, 1999. ISSN 0178-2789.

27. S. Gumhold. Personal communication on embedding
meshes, 2000.

28. I. Guskov, W. Sweldens, and P. Schröder. Multireso-
lution signal processing for meshes. Proceedings of
SIGGRAPH 99, pages 325–334, August 1999. ISBN
0-20148-560-5. Held in Los Angeles, California.

29. H. Hoppe. Progressive meshes. Proceedings of SIG-
GRAPH 96, pages 99–108, August 1996. ISBN 0-201-
94800-1. Held in New Orleans, Louisiana.

30. K. Hormann and G. Greiner. Mips: an efficient global
parametrization method. In P. S. P.-J. Laurent and
L. L. Schumaker, editors, Curve and Surface Design:
Saint-Malo 1999, pages 153–162. Vanderbilt Univer-
sity Press, 2000.

31. K. Hormann, G. Greiner, and S. Campagna. Hier-
archical parametrization of triangulated surfaces. In
B. Girod, H. Niemann, and H.-P. Seidel, editors, Vision,
Modeling and Visualization ’99, pages 219–226. infix,
1999.

32. T. Kanai and H. Suzuki. Approximate shortest path on
a polyhedral surface based on selective refinement of
the discrete graph and its applications. Proc. Geometric
Modeling and Processing 2000, pages 241–250, 2000.

33. T. Kanai, H. Suzuki, and F. Kimura. 3d geometric meta-
morphosis based on harmonic map. Pacific Graphics
’97, October 1997. Held in Seoul, Korea.

34. T. Kanai, H. Suzuki, and F. Kimura. Three-dimensional
geometric metamorphosis based on harmonic maps.

The Visual Computer, 14(4):166–176, 1998. ISSN
0178-2789.

35. T. Kanai, H. Suzuki, and F. Kimura. Metamorphosis of
arbitrary triangular meshes. IEEE Computer Graphics
& Applications, 20(2):62–75, March/April 2000. ISSN
0272-1716.

36. G. Karypis and V. Kumar. Multilevel k-way hypergraph
partitioning. Technical Report 98–036, Department of
Computer Science and Engineering, University of Min-
nesota, Minneapolis, MN 55455, 1998.

37. J. Kent, R. Parent, and W. E. Carlson. Establishing cor-
respondences by topological merging: A new approach
to 3-d shape transformation. Graphics Interface ’91,
pages 271–278, June 1991.

38. J. R. Kent, W. E. Carlson, and R. E. Parent. Shape trans-
formation for polyhedral objects. Computer Graph-
ics (Proceedings of SIGGRAPH 92), 26(2):47–54, July
1992. ISBN 0-201-51585-7. Held in Chicago, Illinois.

39. R. Klein. Multiresolution representations for surfaces
meshes based on the vertex decimation method. Com-
puters & Graphics, 22(1):13–26, February 1998. ISSN
0097-8493.

40. L. Kobbelt. sqrt(3) subdivision. Proceedings of SIG-
GRAPH 2000, pages 103–112, July 2000. ISBN 1-
58113-208-5.

41. L. Kobbelt, S. Campagna, and H.-P. Seidel. A general
framework for mesh decimation. Graphics Interface
’98, pages 43–50, June 1998. ISBN 0-9695338-6-1.

42. L. Kobbelt, S. Campagna, J. Vorsatz, and H.-P. Sei-
del. Interactive multi-resolution modeling on arbitrary
meshes. Proceedings of SIGGRAPH 98, pages 105–
114, July 1998. ISBN 0-89791-999-8. Held in Orlando,
Florida.

43. A. Lee, D. Dobkin, W. Sweldens, and P. Schröder.
Multiresolution mesh morphing. Proceedings of SIG-
GRAPH 99, pages 343–350, August 1999. ISBN 0-
20148-560-5. Held in Los Angeles, California.

44. A. W. F. Lee, W. Sweldens, P. Schröder, L. Cowsar, and
D. Dobkin. Maps: Multiresolution adaptive parame-
terization of surfaces. Proceedings of SIGGRAPH 98,
pages 95–104, July 1998. ISBN 0-89791-999-8. Held
in Orlando, Florida.

45. B. Lévy. Constrained texture mapping for polyg-
onal meshes. In Proceedings of ACM SIGGRAPH
2001, Computer Graphics Proceedings, Annual Confer-
ence Series, pages 417–424. ACM Press / ACM SIG-
GRAPH, August 2001. ISBN 1-58113-292-1.

46. B. Lévy and J.-L. Mallet. Non-distorted texture map-
ping for sheared triangulated meshes. Proceedings of
SIGGRAPH 98, pages 343–352, July 1998. ISBN 0-
89791-999-8. Held in Orlando, Florida.

submitted to COMPUTER GRAPHICS Forum (9/2002).

Marc Alexa / Recent Advances in Mesh Morphing 23

47. P. Lindstrom and G. Turk. Fast and memory efficient
polygonal simplification. IEEE Visualization ’98, pages
279–286, October 1998. ISBN 0-8186-9176-X.

48. C. Loop and T. DeRose. Generalized b-spline surfaces
of arbitrary topology. Computer Graphics (Proceed-
ings of SIGGRAPH 90), 24(4):347–356, August 1990.
ISBN 0-201-50933-4. Held in Dallas, Texas.

49. M. Lounsbery, T. D. DeRose, and J. Warren. Mul-
tiresolution analysis for surfaces of arbitrary topologi-
cal type. ACM Transactions on Graphics, 16(1):34–73,
January 1997. ISSN 0730-0301.

50. T. Michikawa, T. Kanai, M. Fujita, and H. Chiyokura.
Multiresolution interpolation meshes. In 9th Pacific
Conference on Computer Graphics and Applications,
pages 60–69. IEEE, October 2001. ISBN 0-7695-1227-
5.

51. D. E. Muller and F. P. Preparata. Finding the intersec-
tion of two convex polyhedra. Theoretical Computer
Science, 7(2):217–236, 1978.

52. R. Ohbuchi, Y. Kokojima, and S. Takahashi. Blend-
ing shapes by using subdivision surfaces. Computers
& Graphics, 25(1):41–58, February 2001. ISSN 0097-
8493.

53. U. Pinkall and K. Polthier. Computing discrete minimal
surfaces and their conjugates. Experimanetal Mathe-
matics, 2(1):15–36, 1993.

54. K. Polthier. Conjugate harmonic maps and mini-
mal surfaces. Technical Report Preprint No. 446, TU
Berlin, SFB 288, 2000.

55. E. Praun, W. Sweldens, and P. Schröder. Consistent
mesh parameterizations. Proceedings of SIGGRAPH
2001, pages 179–184, August 2001. ISBN 1-58113-
292-1.

56. F. P. Preparata and M. I. Shamos. Computational Ge-
ometry: An Introduction. Texts and Monographs in
Computer Science. Springer-Verlag, Berlin, Germany,
1985.

57. D. Ruprecht and H. Muller. Image warping with scat-
tered data interpolation. IEEE Computer Graphics &
Applications, 15(2):37–43, March 1995.

58. W. J. Schroeder. A topology modifying progressive
decimation algorithm. IEEE Visualization ’97, pages
205–212, November 1997. ISBN 0-58113-011-2.

59. W. J. Schroeder, J. A. Zarge, and W. E. Lorensen. Dec-
imation of triangle meshes. Computer Graphics (Pro-
ceedings of SIGGRAPH 92), 26(2):65–70, July 1992.
ISBN 0-201-51585-7. Held in Chicago, Illinois.

60. T. W. Sederberg, P. Gao, G. Wang, and H. Mu. 2d
shape blending: An intrinsic solution to the vertex path

problem. Proceedings of SIGGRAPH 93, pages 15–18,
August 1993. ISBN 0-201-58889-7. Held in Anaheim,
California.

61. M. Shapira and A. Rappoport. Shape blending using the
star-skeleton representation. IEEE Computer Graphics
& Applications, 15(2):44–50, March 1995.

62. A. Shapiro and A. Tal. Polyhedron realization for shape
transformation. The Visual Computer, 14(8-9):429–
444, 1998. ISSN 0178-2789.

63. K. Shoemake and T. Duff. Matrix animation and po-
lar decomposition. Graphics Interface ’92, pages 258–
264, May 1992.

64. E. H. Spanier. Algebraic Topology. McGraw-Hill, New
York, 1966.

65. Y. M. Sun, W. Wang, and F. Y. L. Chin. Interpolat-
ing polyhedral models using intrinsic shape parameters.
The Journal of Visualization and Computer Animation,
8(2):81–96, April-June 1997. ISSN 1049-8907.

66. T. Surazhsky and G. Elber. Matching free form sur-
faces. Computers & Graphics, 26(1):??–??, 2001.
ISSN 0097-8493.

67. V. Surazhsky and C. Gotsman. Controllable morphing
of planar triangulations. ACM Transactions on Graph-
ics, 2(3), August 2001.

68. G. Taubin. A signal processing approach to fair surface
design. Proceedings of SIGGRAPH 95, pages 351–358,
August 1995. ISBN 0-201-84776-0. Held in Los Ange-
les, California.

69. G. Turk and J. O’Brien. Shape transformation using
variational implicit functions. Proceedings of SIG-
GRAPH 99, pages 335–342, August 1999. ISBN 0-
20148-560-5. Held in Los Angeles, California.

70. W. T. Tutte. How to draw a graph. Proc. London Math-
ematical Society, 13:743–768, 1963.

71. G. Wolberg. Image morphing: a survey. The Visual
Computer, 14(8-9):360–372, 1998. ISSN 0178-2789.

72. G. Zigelmann, R. Kimmel, and N. Kiryati. Texture
mapping using surface flattening vie multi-dimensional
scaling. IEEE Transactions on Visualization and Com-
puter Graphics, to appear, 2002.

73. M. Zöckler, D. Stalling, and H.-C. Hege. Fast and in-
tuitive generation of geometric shape transitions. The
Visual Computer, 16(5):241–253, 2000. ISSN 0178-
2789.

74. D. Zorin, P. Schröder, and W. Sweldens. Interactive
multiresolution mesh editing. Proceedings of SIG-
GRAPH 97, pages 259–268, August 1997. ISBN 0-
89791-896-7. Held in Los Angeles, California.

submitted to COMPUTER GRAPHICS Forum (9/2002).

Marc Alexa / Recent Advances in Mesh Morphing 23

submitted to COMPUTER GRAPHICS Forum (9/2002).

