Multi-level Partition of Unity Implicit

SIGGRAPH 2003

Outline

- Introduction
 - Problem
 - Issues

Algorithm

- Partition of Unity
- □ Adaptive Octree Subdivision
- Estimating Local Shape Functions
- Applications
- Performance
- Conclusion

Introduction - Problem

- Goal: Representing implicit solid as a function *f*
- Input: Points with Normals (typical output of range scanners)

f(x,y,z) > 0 inside f(x,y,z) < 0 outside f(x,y,z) = 0approximates points

Signed distance.

Introduction - Problem

Issues
 Local vs. Global

 (N/k of k x k) vs. (N x N)

 Sharp Features
 Error Control

[Turk and O'brien 2002.]

 $f(\mathbf{x}) = \sum w_j \phi(\mathbf{x} - \mathbf{c}_j) + P(\mathbf{x})$

j=1

Weighted average of local approximations

Approach of this paper

 $f(\mathbf{x}) = \sum w_i(\mathbf{x}) Q_i(\mathbf{x}) / \sum w_i(\mathbf{x})$

- Piecewise quadratic local approximations Q_i(x).
- Partition of unity $\left\{ w_i(\mathbf{x}) / \sum w_i(\mathbf{x}) \right\}$
 - Used to blend local approximations
- Octree based multi-level structure
 - Adapted to geometrical complexity
 - Delivers an adaptive approximation of the distance-function
 - Allows a user to specify approximation accuracy

Octree and ball

Balls proportional to cell size, center at c_i

Multi-level Partition of Unity

Adaptive octree subdivision

Algorithm of MPU

- For cell i,
 - \Box Fit Q_i
 - \Box Calculate ε_i
 - \Box If ($\varepsilon_i > \varepsilon_0$) subdivide the cell and re-compute
- Blending (assembling) all leaf Q_i 's using w_i's
 - $\Box f(\mathbf{x}) = \sum w_i(\mathbf{x}) Q_i(\mathbf{x}) / \sum w_i(\mathbf{x})$
- Remaining problem: choices of Q_i and w_i

Weight functions

- For approximation B-spline b(t) $w_i(\mathbf{x}) = b\left(\frac{3|\mathbf{x} - \mathbf{c}_i|}{2R_i}\right)$
- For interpolation

Inverse-distance singular weights

$$w_i(\mathbf{x}) = \left[\frac{\left(R_i - |\mathbf{x} - \mathbf{c}_i|\right)_+}{R_i |\mathbf{x} - \mathbf{c}_i|}\right]^2, \text{ where } (a)_+ = \begin{cases} a & \text{if } a > 0\\ 0 & \text{otherwise} \end{cases}$$

$$\Rightarrow \text{infinity near } \mathbf{c}_i$$

Local Shape Function (Q_i)

- Second-order polynomial approx. by least square fitting
- Approximation type: according to the deviation of normals.

Local Shape Function (Q_i)

Expand balls to include sufficient number of points.

Sharp Features

• Quadrics \rightarrow Impossible to represent sharp features

Sharp Features

Use piecewise smooth local approximations

Sharp Features

- Edge: most deviated n₁, n₂
 Corport bigbly deviated from m
- Corner: highly deviated from $n_3 = n_1 \times n_2$

max/min Boolean -operations → piecewise smooth

local approximations

Clustering Normals \rightarrow Clustring Points

Accuracy Control

For visualization purposes 0.01% accuracy is sufficient.

Original mesh (David head 1mm) Approximation by MPU with 0.01% accuracy

Applications – Geometric operations

Boolean operations

Space transformation

Applications - offsettingIf *f* is a good approx. of signed distance.

Applications - Blending

Applications - Morphing $f(\mathbf{x}) - (1-t) f_1(\mathbf{x}) + t f_1(\mathbf{x})$

 $f_1(\mathbf{x}) = 0$

 $f_2(\mathbf{x}) = 0$

Applications – Filling, Smoothing

No topological restrictions

Performance

Performance

with 0.08% accuracy [Carr et al. SIG01] MPU **RAM: 195 MB** ×100 **RAM: 306MB** Time: 99 sec. →Time: 170 min. (Pentium4 1.6 GHz) (Pentium3 550 MHz) $\times 3$

Reconstruction

Conclusion

- A new implicit representation for 3D scattered point data
 - Easy to implement
 - Fast reconstruction
 - Can handle a very large data
 - □ Can represent sharp features
 - □ Good for function-based modeling