
An Efficient Mesh Simplification Method with Feature Detection
for Unstructured Meshes and Web Graphics

Bing-Yu Chen
The University of Tokyo
robin@is.s.u-tokyo.ac.jp

 Tomoyuki Nishita
The University of Tokyo
nis@is.s.u-tokyo.ac.jp

Abstract

This paper presents an efficient method of mesh sim-
plification for geometric 3D models. The transmission of
3D models on the Internet is an important task. The data
size of a 3D model is usually large to enable more detail
to be represented. Hence, it is necessary to represent the
3D model while keeping the data size small and preserv-
ing its features, even if the meshes that constitute the
model are unstructured. Although there are many meth-
ods for simplifying the meshes, most of them are time-
consuming. Our approach is to obtain an adequate sim-
plified model in a short amount of time. Therefore, the
model provider can check the simplified result interac-
tively before uploading to the server. After transmitting
the simplified model, if the user at the client needs to get
more details, by transmitting some necessary information,
the progressively increasing model detail and the original
model without losses could be reconstructed.

1. Introduction

Obviously, there are more and more users that would
like 3D graphics supports on the Web as the machine per-
formance and network bandwidth improve over time. For
Web Graphics (a new platform based on the Web), geo-
metric 3D models are widely used. Therefore, how to
transmit the mesh data, which constitutes the model, effi-
ciently through the Internet, has become an important task,
since the data size is usually large. If a user wants to use a
geometric 3D model on a Web page, retrieving the data
set is time-consuming. Unfortunately, the user on the
Internet usually does not need to use such a detailed
model in most cases. Hence, to offer a simplified model
which has easily recognizable shapes and features of the
original model is necessary. Moreover, if the user then
decides that more model details are needed, then the sub-
sequent download needs to be quick and with no retrans-
mission of information.

Although there are many methods for simplifying
geometric 3D models [7] [11] [20], most of them are gen-

erally time-consuming due to model optimization. These
time-consuming methods are generally expected to be
used directly if the model provider wishes to check the
simplified model by changing some of the parameters
interactively. Moreover, the simplified models created by
some previous methods can not be easily recognized nor
used to reconstruct the original model. We also presented
a method for simplifying geometric 3D models and trans-
mitting them with a QoS-like (Quality of Service) control-
ling method as described in [3]. However, the data size of
the simplified model is still too large or the simplified
model is hardly recognizable if it contains only a few
faces.

The basic idea of our method is to segment the un-
structured meshes of a geometric 3D model into several
parts first by using feature detection methods, and then
simplifying each part of the meshes iteratively. Therefore,
our approach can preserve the shape and features of the
original model after simplification. Furthermore, since the
methods used for detecting the features of the model are
simple, the performance of our approach is also better
than other previous methods. Hence, when a 3D model
provider wishes to upload a geometric 3D model onto a
Web server using our approach, the provider could first
use our system to check what resolution of simplified
model is to be used by the users, and could change some
of the parameters to obtain interactively a better simplified
model. On the client site, the user first receives the simpli-
fied model from the Web server. Then, if the user needs to
use the model with more details, the server will then
transmit the additional necessary information, which is
capsulated as some patches, to the client so that the client
program can show increasing model detail progressively.
Finally, if the user really needs the original model, after
receiving all of the patches, the system is then able to re-
construct the original 3D model with no losses and no
retransmission of information.

Moreover, to make our approach widely used in the
Web world, we have developed all of the algorithms using

exclusively the Java1 programming language for its hard-
ware-neutral features and wide availability on many
hardware platforms. Additionally, the 3D graphics render-
ing is done by jGL, which is a 3D graphics library for
Java with an OpenGL-like API (Application Program-
ming Interface) provided by Chen and Nishita [2].

2. Previous work

Many researches have been carried out on simplifying
the meshes of geometric 3D models. Some of them pro-
vide almost optimized meshes which can represent fine
shapes and preserve the features of the original model
with a small data size [4] [10]. Others simplify the meshes
iteratively and store the removed information which can
then be used to progressively reconstruct the lossless
original model. Since our motivation is to transmit the
geometric 3D model through the Internet, it is necessary
to reconstruct the original model with a small amount of
data transmission. Therefore, our approach belongs to the
latter category. However, to allow it to be used for Web
Graphics, where the run-time performance is more impor-
tant than providing an almost perfect model, a more effi-
cient method is needed. In this section, some related
methods are introduced briefly.

PM (Progressive Meshes) is a famous method for 3D
mesh simplification and is based on the edge collapse or
edge contraction operation provided by Hoppe [12] [13]
and Hoppe et al. [15]. Although this method could result
in an almost optimized simplified model, it is well known
to be time-consuming. A derived method, QEM (Quadric
Error Metrics), has been provided by Hoppe [14], Garland
and Heckbert [8] [9] to make the calculation faster. The
heuristic function used by QEM is geometry-based, since
it calculates the geometric distance between the newly
generated vertex and the faces which are deformed before
generating it. Although QEM could enhance the run-time
performance of the simplification process, the simplified
model is sometimes hardly recognizable due to the over-
simplification. An image-based heuristic function is pre-
sented by Lindstrom and Turk [19]. It captures 20 images
in every simplifying step and is obviously time-
consuming. Chen and Nishita also proposed a simple
method for mesh simplification based on the edge col-
lapse operation [3]. However, without feature detection,
the shape of the simplified model may hardly be recogniz-
able.

Other algorithms are based on the vertex decimation
operation, which are provided by Alliez et al. [1], Turk
[22], and Schroeder et al. [21]. This algorithm is different
from the previous ones; it could simplify a 3D model fast,

but the shape of the simplified model maybe be changed
and is hardly recognizable.

1 http://java.sun.com/

Therefore, an efficient mesh simplification method
with feature detection for making the simplified model
remain recognizable is necessary.

3. Feature edge detection

In our algorithm, to simplify a geometric 3D model ef-
ficiently and at the same time preserve its features, it is
necessary to find out the feature edges of the model so
that the model may be simplified by removing the non-
feature edges while preserving its features.

There are two kinds of feature edges in our approach.
One is the sharp edge due to the sharpness of the geomet-
ric differences, and also the edges of adjacent faces con-
taining different material properties. The other is the base
edge detected from the unstructured meshes if there is no
sharp edge contained in the meshes. Before describing the
two kinds of feature edges, the notation used in this paper
is first introduced.

3.1 Notation

The notation used in this paper is shown in as
[3]. A geometric 3D model M is represented as a formula
containing 4 components: V is the set of vertex v , i

[]mi ,1∈ , where is the number of vertices, and defining
the shape of the meshes in ℜ .

m
3 F is the vertex connec-

tivity of the meshes. is the set of discrete attributes ,
like the material property, associated with the face , and

 is the set of scalar attributes s , like the normal

vector, associated with the wedge .

D fd
f

S (fvi ,

v=
)

()fi ,w

Figure 1

Figure 1. The representation of a 3D model.

()SDFVM ,,,=
{ } 1 , ℜ∈= = i

m
ii vvV 3

{ }{ }Vvv lkjvlkjfF ∈== ,,|,,

,
mℜ⊂F

{ }FfdD f ∈= |

(){ }fisS fvi

∈= |,

3.2 Sharp edge definition

If a geometric 3D model is constructed with several
different material properties as shown in Figure 2 (b) or
contains some pre-defined sharp edges as shown in
 (a), the sharp edges of the model could be detected eas-

ily. An edge { }ji,e = is called a boundary edge if there is

Figure
2

only one face with . An edge { kjif ,,= } fe⊂ { }ji,e =
is called a sharp edge if either (1) it is a boundary edge, (2)
its two adjacent faces and have different discrete
attributes, i.e. d , or (3) its adjacent wedges have

different scalar attributes, i.e. s or

.

lf

rl ff d≠

)

rf

()li fv s, ≠ ()ri fv ,

() (rjlj fvfv ss ,, ≠

{ }ji,=
e

f a =

}k

()

ba ff n⋅

}k

n

{ lif b ,,=

()

}j

()
{ jif ,,=

ik vv −×ij vv −kij vv −×−f v=n

(a) (b)
Figure 2. The examples of sharp edges.

3.3 Base edge detection

If there is no sharp edge or there are some features
hidden in the meshes, the detection of base edges from the
unstructured meshes is necessary. To detect the base
edges, we use the ESOD (Extended Second Order Differ-
ence) operator as [16]. In this section, an operator called
SOD (Second Order Difference) and the ESOD operator
are described first.

 e
viv

(a) (b)
Figure 3. The (a) SOD and (b) ESOD operators.

Figure 3

ew n

The SOD operator is the simplest method for detecting
the features from unstructured meshes. It assigns a weight
to every edge e defined by the normal vectors of
its adjacent faces as w . For example, in

 (a), where and are the
adjacent faces of the edge e , and the normal vector for
face is defined as:

() =
{ ji ,,

.

The ESOD operator extends the SOD operator. Instead
of using the normal vectors of the adjacent faces of edge

, e it uses the average normal vectors computed from the
faces on the 1-ring of the vertices kv and lv as shown in
Figure 3 (b). So the weight of edge { }jie ,= is defined as
()

lk vv n , where the normal vector for vertex v is ⋅=

defined as:
() ()∑∑

∈∈

⋅=
fvfv

fv fareafarea nn ,

where ()farea means the area of face . f
Therefore, to define a proper threshold []1,1−=ε , it is

possible to determine the features from
me

 unstructured
or to segshes. To use the SOD or ESOD operat ment

the unstructured meshes is also a time-consuming task as
[17]. Instead of using the SOD or ESOD operator to ex-
tract the features, we use the ESOD operator to find out
the virtual feature edge. As shown by the dotted line in
Figure 4, the edge { }jie ,= is called the virtual edge of

{ }l if the edge does not exist, and there exists two
faces { } Fk ⊂ and li ,, { } Flkj ⊂,, . Furthermore, a virtual
edge i virtual feature edge if its weight calcu-
lated by the ESOD operator satisfies:

s called a

() ε<⋅=
lk vvew nn .

In this case, the edge { }

edge k,

lk, is called a base edge. No-
tice that, although we use the same name as in [3], the
definition of the base edge is

4. Mesh simplification and reconstruction

 is
listed in Figure 5. The first step is to search for sharp
edg

rp
edges. The weight of the edge is assigned the weight of its

 different since we did not
consider the detection of features in [3].

Figure 4. Base edge detection.

jviv

kv

lv

kvn

lvn

j

kv

lv
e

afn

bf
n

jviv

lv

kv

The procedure for our mesh simplification method

es. Since the sharp edges are the edges with pre-
specified features, they are used to segment the meshes
into several parts. Each part of the meshes is simplified
independently, and the simplification for the geometric
3D model with sharp edges is described in Section 4.1.

Then, the normal vector of each vertex is calculated,
along with the weight of each edge besides the sha()iv

virtual edge using the ESOD operator, so that by using a
threshold []1,1−=ε , it is possible to detect the base edges
of the meshes. As is shown in the example in Figure 4, if
the edge { }ji, ted line) is a virtual feature edge,
the faces above the dotted line and the faces opposite the
line could not be merged during the simplification process.
Therefore endpoints of the base edges, edge

 (the

, the

dot

{ }lk, in
Figure 4 for instance, are specified as un-removable verti-
ces. Otherwise, the vertices and the edges used to connect
them are removable. These removable edges are pushed

riority queue with their weights being candidate
edges.

Find sharp edges
Ca

into a p

lculate normal vector for each vertex
 Calculate the weight of each edge
 Detect base edges
 Select candidate edge
 Test selected edge
 Remove removable edge
Figure 5. The procedure of our method.

oving the current remoAfter rem s, the
weigh been
changed due to the simplification process should be re-
cal

To simplify a geometric 3D model with pre-defined
model is gener-

ated, while preserving its features, we first search for the
pre

tex which belongs to two sharp edges, the two
sha

After pushing all of the removable edges into a prior-
eue are candi-

dates for removal. Before removing the edges, it is neces-
sar

ring of the endpoints of the edge are deformed. This ac-

or two of its adjacent faces
are removed. This action may cause the vertex connection

 is neces-
sary to test which vertex could be removed if we used the

ge collapse operation will be operated as de-
scribed in the following section.

The half edge collapse operation, as shown in Figure 6,
is a special case of the edge collapse operation. If a vertex

vable edge
ts of the edges which the connectivities have

culated, and also need to be checked to see if they be-
come base edges or not. Then, attempts are made again to
remove the removable edges, as described above, until
there are no removable edges.

4.1 Simplification with sharp edge

sharp edges, which are specified when the

-defined sharp edges due to sharp geometric differ-
ences and also for the edges which are adjacent to faces
which contain different material properties. Then, the
endpoints of the sharp edges are marked as un-removable
vertices. Therefore, the 3D model is segmented into sev-
eral parts due to the sharp edges. To simplify each part
independently does not make the pre-defined features
disappear.

If a vertex belongs to two sharp edges, the vertex is set
to be removable with one of the two sharp edges. To re-
move a ver

rp edges are made into one. Furthermore, to preserve
the pre-defined features of the 3D model, when removing
the vertex between two sharp edges, we still calculate the
weight of these two sharp edges, as described in the pre-
vious section. Therefore, only the sharp edges which are
not significant are removed.

4.2 Selected removable edge testing

ity queue, all of the edges in the priority qu

y to do some tests to check if the removing process
passes the following tests.

4.2.1 Preserving mesh inversion. To remove an edge
from meshes implies that the neighboring faces on the 1-

tion may cause the faces to fold over on each other. To
avoid this type of mesh inversion, it is necessary to test
the edge before removing it. When we get one removable
edge from the priority queue, we compare the normal vec-
tor of each of the neighboring faces before and after re-
moving. If the normal vector flips, this edge removing is
not performed.

4.2.2 Preserving topology. To remove an edge from the
meshes also implies that one

of the neighboring faces of the removing edge to change.
Since our algorithm is working for 2-manifolds with
boundary, it is necessary to test if this edge removing
changed the topology of the meshes or not. When we get
one removable edge, we check the neighborhood relation-
ship of the neighboring faces of the removing faces before
and after the edge removing. If it causes the topology to
change, then this edge removing is not allowed.

4.2.3 Preserving model shape. Once the edge obtained
from the priority queue passes the above tests, it

half edge collapse operation to remove the edge, as will
be described in Section 4.3. Hence, it is necessary to test
which endpoint is the better one to remove when remov-
ing one edge. If one of the endpoints is un-removable, i.e.
it is also the endpoint of a sharp edge or a base edge, we
remove the other one. If both of the endpoints of the edge
are removable, we compare the deviation of the neighbor-
ing faces� normal vectors which are on the 1-ring of the
endpoints, and then we remove the vertex which is located
on the faces that are flatter than the ones located by the
other one.

If the removable edge has passed all of the tests, then
the half ed

4.3 Half edge collapse

removed with a particular re-triangulation of the remain-
ing hole when using the vertex decimation operation, the
res

significantly affects the net-
wo

significantly affects the net-
wo

ulting mesh is also the same as the one after d
half edge collapse operation.

The information used for reconstructing the original
model is stored as a patch. To minimize the data size of
the patch which will be sent to the client side to recon-
struct the original model and

 after d
half edge collapse operation.

The information used for reconstructing the original
model is stored as a patch. To minimize the data size of
the patch which will be sent to the client side to recon-
struct the original model and

oing theoing the

 struct {
 short vlr_rot:6; // encoding to find another vertex

rk transmission, we use the half edge collapse opera-
tion instead of using the edge collapse operation. Using
the half edge collapse operation reduces the size of the
patch compared to the edge collapse operation. This is
because, when using the half edge collapse operation,
there is only one vertex removed. No vertex is added into
the meshes but the edge collapse operation removes two
vertices and adds one vertex.

rk transmission, we use the half edge collapse opera-
tion instead of using the edge collapse operation. Using
the half edge collapse operation reduces the size of the
patch compared to the edge collapse operation. This is
because, when using the half edge collapse operation,
there is only one vertex removed. No vertex is added into
the meshes but the edge collapse operation removes two
vertices and adds one vertex.

half edge
collaps

Figure 6. Half edge collapse and vertex split.

struct patch {

Figure 6. Half edge collapse and vertex split.

struct patch {
 int flclw; ghborhood of the patc

vertex split

// a face in nei h

 short vs_index:2; // index (0..2) within the patch
 } code;
 VertexAttribD vad_l;
 WedgeAttribD wad_l;
};

Figure 7. Patch data structure.

Compared with the vertex split (Vsplit) data structure
described in [13], since we detect the sharp edges before
doing the e of our
patch data structure listed in Figure 7 is only half of the
siz

The simplified mesh and the patches which have been
 simplification process are

uploaded onto the Web server and provided for the users
to

Figures 10 (b) ~ (d) show the simplified models,
nerated with different thresholds

mesh simplification process, the siz

e of the Vsplit data structure, even when we use the
edge collapse operation. This is because by using the half
edge collapse operation, we still could get as good a sim-
plified model as the one generated using the edge collapse
operation. Therefore, in our algorithm, we still use the
half edge collapse operation to minimize the size of the
patch, although the difference in the patch size is only a
few as a result of using the two operations. Since the size
of the patch used in our method is smaller than other simi-
lar data structure used in other ones, the data size trans-
mitted over the Internet is therefore also smaller.

4.4 Mesh reconstruction

stored when doing the mesh

use at the client site. It is named the streaming mesh.
When using the streaming mesh on the Internet, the sim-
plified mesh is sent first. After sending the simplified
mesh, some patches are sent progressively with QoS-like
controlling as described in [3], so that the original 3D
model may be reconstructed without loss of data using the
vertex split operation, as shown in Figure 6.

5. Result

which are ge ε , of the
bunny model shown in Figure 10 (a). Figure 10 (e) shows
the

(bytes) (bytes)
tch

(bytes)
time
(ms)

 simplified model when we ignore the base edge detec-
tion, since there are some boundary edges at the bottom of
the model, which will be detected as sharp edges. The
shape of this part remains recognizable. Without detecting
the base edges of the 3D model, the model may be over-
simplified. As a result, the shape of the simplified model
could not be recognized. This is a common problem of
other previous methods. Figure 11 shows comparisons of
the original models and simplified results of other geo-
metric 3D models. Even for the simplified models, the
shape and features could still be recognized easily. Since
there are several sharp edges contained in the models
shown in Figures 11 (c) and (d), we ignore the base edge
detection during the simplification process. The number
of faces of each model and the thresholds used for simpli-
fication are also shown in Figures 10 and 11.

Table 1. Comparison of file sizes & performances.
model original model simplified m el o pa

e

od

d m

PC with

ne

bunny 75,142 5,746 34.424 1,141

ny mod

he testi

dragon 65,586 18,137 35.939 961
hand 53,519 91 3,9 35.684 951

cessna 5 1453,685 8,320 30.379 6,219
fandisk 2 1595,092 35,765 29.083 ,102

tiger 3 1547,587 9,099 34.925 ,852

Table 1 l ile sizes rigi d
implified ones of differe et

shown in Figures 10 and 11, respectively. The simplified
bun

ists the f of the o nal mo els and
the s nt geom ric 3D models

el used in Table 1 is the model shown in
Figure 10 (d). The run-time performances required to gen-
erate the simplifie odels and the average patch size are
also shown in Table 1. T ng platform is a notebook

an Intel Mobile Pentium III 850MHz CPU and
256MB memory, the Java environment is Sun Java2 SDK,

SDK, Standard Edition v1.4.1_01. Since we wish to gen-
erate a simplified model with shapes and features that are
easily recognized, the compression rate of the model with
several pre-defined features is worse than for other mod-
els, for example the model shown in Figure 11 (c).

For comparison, we have converted the file format of
the original model to be the same as the simplified mesh
(a gzipped ASCII file). The number of patches for recon-
structing the original model from the simplified one is the
difference of the vertex number of the original model and
the simplified one. All of the patches are also stored as a
gzipped ASCII file. Furthermore, since we use only pure
Java programming language to develop all of the algo-
rithms, it is possible to use our testing program via our
Web site2. Moreover, the 3D graphics engine - jGL3 is
used which is also developed with pure Java.

The model shown in Figure 11 (e) is generated from
the model shown in Figure 12 (a) by applying the

he original model from the simplified one is the
difference of the vertex number of the original model and
the simplified one. All of the patches are also stored as a
gzipped ASCII file. Furthermore, since we use only pure
Java programming language to develop all of the algo-
rithms, it is possible to use our testing program via our
Web site2. Moreover, the 3D graphics engine - jGL3 is
used which is also developed with pure Java.

The model shown in Figure 11 (e) is generated from
the model shown in Figure 12 (a) by applying the 3 -
subdivision algorithm pr y Kobbelt [17] three

es. The model shown in Figure 12 (c) is the model
generated by applyin me subdivision algorithm
only once. If the models reconstructed from the simplified
model shown in Figure 11 (j) have the same number of
faces as the models shown in Figures 12 (a) and (c), the
results shown in Figures 12 (b) and (d) are similar. These
comparisons show that our algorithm could result in a
well-reconstructed model even there re only a few
patches applied to the sim ified model.

poor

ovided b
tim

g the sa

 a
pl

(a)

(b)

Figure 8. Similarity of geometric approximation.

r comparin econstruc

number of faces 161 2915
p

Fo g the models r ted from the sim-
p
model shown in Figure 10 (d), which is generated by our
me

lified model with the original one, we use the simplified

ompare

thod with 2.0−=ε , and its original model is shown in
Figure 10 (a). The results are as the curves (a) shown in
Figures 8 and 9. In order to compare with other previous
methods, we d the QEM method to simplify the

del shown in Figure 10 (a), and made the same

comparisons as those of our approach. The results are as
the curves (b) shown in Figures 8 and 9.

Figure 8 shows the similarity of the geometrical
approximation of each reconstructed model and the
original one. To emphasize the differe

also use

bunny mo

nce of the two
models in each comparison, the measurement used in
Figure 8 is based on the 2L norm: the average squared
distance from the vertices of the original model to the
surface of the reconstructed one used to c the
difference between the two models. Figure 9 shows the
comparisons for similarity in appearance of each of the
reconstructed models and the original models. To
compare the sim in appearance, we compute the
differences between the rendered images of the original
model and the reconstructed ones by setting the camera at
6 different positions as in [19].

poor

ilarity

at contains less faces (number of faces is

(a)

(b)

number of faces 2915

Figure 9. Similarity of appearance.

ing the QE e could g simplified
model th 161 in
this case) than our approach, but the qualities of the mod-
els

In this paper, a new, simple, and efficient mesh simpli-
red meshes and Web Graph-

ics is presented. Although our approach is not able to gen-
era

p
161

erfect

si
m

ila
ri

ty
 o

f a
pp

ea
ra

nc
e

Us M method, w et a

erfect

si
m

ila
ri

ty
 o

f g
eo

m
et

ry

 reconstructed from the simplified one are almost the
same. However, to generate the simplified model using
the QEM method is much more time-consuming than us-
ing our method. For example, simplifying the bunny
model shown in Figure 10 (a) took more than 4.5 seconds,
but took less than 1.2 seconds using our approach, as
shown in Table 1. Moreover, the data size of the patch
used for reconstructing the original model in our method
is much smaller than other previous methods.

6. Conclusions

fication method for unstructu

te an almost optimized simplified model, to make the
shape and features of the simplified model still recogniz-
able is the main purpose of our method. However, a sim-
plified model generated by some previous methods some-
times becomes only a polyhedron. This is useless in prac-2 http://nis-lab.is.s.u-tokyo.ac.jp/~robin/jMS/

3 http://nis-lab.is.s.u-tokyo.ac.jp/~robin/jGL/

tice. Since our method could provide the simplified model
of fewer than 20KB on average, this kind of small size
could be transmitted efficiently through the Internet.

Moreover, the size of the patch used for reconstructing
the original model is less than that used in other previous
methods. For example, when using the data structu

[7] M. Garland. �Multiresolution Modeling: Survey & Future
Opportunities�, Eurographics 99 State of the Art Report,
1999.

[8] M. Garland and P. S. Heckbert, �Surface Simplification
Using Quadric Error Metrics�, ACM SIGGRAPH 97 Con-
ference Proceedings, 1997, pp. 209-216. re as

the

th the appropriate data size so
tha

The authors would like to thank Yutaka Ono, who pre-
is paper.

8.

[1] P. Alliez and M. Desbrun, �Progressive Compression for
ission of Triangle Meshes�, ACM SIG-

GRAPH 2001 Conference Proceedings, 2001, pp. 195-202.

nce Proceedings, 2002, pp. 35-

[4]

s�, ACM SIGGRAPH 96 Conference Proceedings, 1996,

[5]

M SIGGRAPH 95 Conference Proceedings,

[6]

PM method, the data size is twice as large as our patch
size, if both of them are stored as binary files. Therefore,
the client site could receive more mesh data from the
server by using our approach compared to other methods.
In practice, by using our previous QoS-like transmission
method, the user using our system could get a better
model than with other systems, since he or she could re-
ceive more mesh data if the transmission time is the same.
Finally, if the user at the client site really needs the origi-
nal 3D model, after receiving all of the patches, he or she
could still get the lossless original model without any re-
dundant data transmission.

Additionally, since our method is efficient, the model
provider can change the threshold interactively to get a
proper simplified model wi

[9] M. Garland and P. S. Heckbert, �Simplifying Surfaces with
Color and Texture Using Quadric Error Metrics�, IEEE
Visualization 98 Conference Proceedings, 1998, pp. 263-
269.

[10] M. Garland, A. Willmott, and P. S. Heckbert, �Hierarchical
Face Clustering on Polygonal Surfaces�, ACM Interactive
3D Graphics 2001 Conference Proceedings, 2001, pp. 49-
58.

[11] P. S. Heckbert and M. Garland, �Survey of Polygonal Sur-
face Simplification Algorithms�, Multiresolution Surface
Modeling (ACM SIGGRAPH 97 Course Notes #25), 1997.

[12] H. Hoppe, �Progressive Meshes�, ACM SIGGRAPH 96
Conference Proceedings, 1996, pp. 99-108.

[13] H. Hoppe, �Efficient Implementation of Progressive
Meshes�, Computer & Graphics, Vol. 22, No. 1, 1998, pp.
27-36. t the provider can guarantee what resolution of simpli-

fied model will be transmitted to the users.

7. Acknowledgements

[14] H. Hoppe, �New Quadric Metric for Simplifying Meshes
with Appearance Attributes�, IEEE Visualization 99 Con-
ference Proceedings, 1999, pp. 59-66.

[15] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W.
Stuetzle, �Mesh Optimization�, ACM SIGGRAPH 93 Con-
ference Proceedings, 1993, pp. 19-26. pared several 3D models for th

[16] A. Hubeli and M. Gross, �Multiresolution Feature Extrac-
tion from Unstructured Meshes�, IEEE Visualization 2001
Conference Proceedings, 2001, pp. 287-294.

References

[17] L. Kobbelt, � 3 -subdivision�, ACM SIGGRAPH 2000
Conference Proceedings, 2000, pp. 103-112. Lossless Transm

[18] B. Lévy, S. Petitjean, N. Ray, and J. Maillot, �Least
Squares Conformal Maps for Automatic Texture Atlas Gen-
eration�, ACM Transactions on Graphics (SIGGRAPH
2002 Conference Proceedings), Vol. 21, No. 3, 2002, pp.
362-371.

[2] B.-Y. Chen and T. Nishita, �jGL and Its Applications as a
Web3D Platform�, ACM Web3D 2001 Conference Pro-
ceedings, 2001, pp. 85-91.

[3] B.-Y. Chen and T. Nishita, �Multiresolution Streaming
Mesh with Shape Preserving and QoS-like Controlling�,
ACM Web3D 2002 Confere [19] P. Lindstrom and G. Turk, �Image-driven Simplification�,

ACM Transactions on Graphics, Vol. 19, No. 3, 2000, pp.
204-241. 42.

J. Cohen, A. Varshney, D. Manocha, G. Turk, H. Weber, P.
Agarwal, F. Brooks, and W. Wright, �Simplification Enve-
lope

[20] D. P. Luebke, �A Developer�s Survey of Polygonal Simpli-
fication Algorithms�, IEEE Computer Graphics and Appli-
cations, Vol. 21, No. 3, 2001, pp. 24-35. pp. 119-128.

M. Eck, T. DeRose, T. Duchamp, H. Hoppe, M. Lounsbery,
and W. Stuetzle, �Multiresolution Analysis of Arbitrary
Meshes�, AC

[21] W. J. Schroeder, J. A. Zarge, and W. E. Lorensen, �Deci-
mation of Triangle Meshes�, ACM Computer Graphics
(SIGGRAPH 92 Conference Proceedings), Vol. 26, No. 2,
1992, pp. 65-70. 1995, pp. 173-182.

H. Edelsbrunner. Geometry and Topology for Mesh Gen-
eration. Cambridge University Press, 2001.

[22] G. Turk, �Re-tiling Polygonal Surfaces�, ACM Computer
Graphics (SIGGRAPH 92 Conference Proceedings), Vol.
26, No. 2, 1992, pp. 55-64.

#f = 2915
(a)

original model

ε = 0.8: #f = 1145
(b)

ε = 0.5: #f = 487
(c)

ε = -0.2: #f = 185
(d)

#f = 103
(e)

no base edge
Figure 10: Comparisons of (a) original bunny model, (b) ~ (d) simplified models
with different thresholds, and (e) simplified model without base edge detection.

#f = 2730
(a)

#f = 2130
(b)

#f = 13546
(c)

#f = 12946
(d)

#f = 13608
(e)

ε = -0.3: #f = 892
(f)

dragon

ε = -0.9: #f = 182
(g)

hand

#f = 3838
(h)

cessna - with
materials

#f = 772
(i)

fandisk - with
sharp edges

ε = 0.7: #f = 376
(j)

tiger

Figure 11. Comparisons of (a) ~ (e) original models, and (f) ~ (j) simplified results.

#f = 504
 (a)

original model

#f = 504
(b)

 #f = 1512
 (c)

subdivided from (a)

#f = 1512
(d)

Figure 12. Comparisons of (a) original model, (c) subdivided model from (a),
and (b) (d) reconstructed models from Figure 11 (j).

