
Toward Gesture-Based Behavior Authoring

Edward Yu-Te Shen∗ Bing-Yu Chen†

National Taiwan University

ABSTRACT

Creating lifelike, autonomous, and interactive virtual behaviors
is important in generating character animation, such as animal
crowds, pedestrians, battle scenes, etc. Unfortunately, such task
has long been limited to skilled users, since the authoring tools, in-
cluding script languages and other commercial programs, mostly
require lengthy prelearning process or are difficult to use. A novel
approach, gesture-based behavior authoring, is proposed to open
the interesting experience of creating autonomous animated char-
acters to novice users. The technique enables users to efficiently
prototype behaviors of a character, with the potential for further re-
finements. With several testees, our gesture-based authoring man-
ner has been verified to be beneficial to the addressed problem , and,
grounded on the HCI (Human-Computer Interaction) literature, the
authoring process is direct, easy, and enjoyable.

CR Categories: I.3.6 [Computer Graphics]: Methodology and
Techniques—Interaction techniques; I.3.7 [Computer Graphics]:
Three-Dimensional Graphics and Realism—Animation; H.5.2 [In-
formation Interfaces and Presentation]: User Interfaces—Graphical
user interfaces (GUI), Interaction styles, Prototyping

Keywords: behavior authoring, mouse gesture, end user program-
ming, sketch interface, autonomous characters, crowd animation

1 INTRODUCTION

Modeling the behaviors for virtual characters has played an im-
portant role in the production pipelines of modern graphics-related
industries: from crowd scenes in animated films to individual AI
warriors in computer games. Unfortunately, behavior modeling
has long been a difficult and cumbersome task. To enable non-
programmers to create such ”behavioral animation” [3, 27, 32]
more easily, a large amount of work have been proposed in the re-
search community [14, 25], as well as in the commercial domain1.
These techniques, although attempted to be user-friendly and pow-
erful, still ask for ”literate users” who are familiar with finite state
machines. Some of them even require lengthy tutorial processes.
Novice users, including artists, storytellers, and others with poten-
tial for building such behavioral animation, are still kept from the
developing processes.

To enable more users to participate such a task, we propose a
gesture-based authoring technique for creating virtual characters’
behaviors. The authoring process functions as users draw series of
gestures directly on the characters in the simulation window, as if
they were uttering sentences to the characters by combining vocab-
ularies. Because of the sequential way of using the gestures and
their high flexibility in shape, mouse gesture is an expressive input

∗e-mail: edwards@cmlab.csie.ntu.edu.tw
†e-mail:robin@ntu.edu.tw

1Massive Software - http://www.massivesoftware.com/

means. As a result, the proposed approach is capable of express-
ing conditional properties (in respect of the relationships between
actions and perceptions) as well as the characters’ inner, outer, and
mutual characteristics, which have been major challenges for build-
ing a graphical behavior authoring tool.

Our design philosophy follows the ideas of easy, rapid construc-
tion of approximate models as proposed in Teddy [16]. Basically,
our technique is for prototyping fairly acceptable behaviors as op-
posed to careful, precise specification. We regard it worthwhile to
sacrifice a small degree of users’ control over the characters for the
strong accessibility the sketch-based interface brings. Furthermore,
to ensure the potential of the prototyped behaviors, our system is
capable of automatically rendering the results into XML or other
formats, as shown in Figure 5, for further refinements by skilled
users or programmers.

The main contribution of this paper is the gesture-based author-
ing approach that allows users to manipulate behaviors directly on
virtual characters without requiring any additional behavioral repre-
sentations (e.g. script code, graphs, etc.). We name this approach as
”What You Do Is What You Get” (WYDIWYG), and its groundings
include Csikszentmihalyi’s ”flow” [2, 9] and Shneiderman’s ”direct
manipulation” [28]. Our approach alleviates users from the diffi-
culties of converting between those representations and the charac-
ters’ actions, as well as the need for comprehending the computa-
tional logic. The elimination of inter-window navigation also con-
centrates users on the virtual characters, and the tedious authoring
task has become an easy, immersive, and interactive experience. To
evaluate our method, a usability test is also included in this paper.

2 RELATED WORK

A notable investigation of generating behavioral animation is
Reynolds’ superb work [27], in which flocking behaviors of birds
and fishes is simulated with a graceful approach. Following
Reynolds, many works were proposed on crowd animation or the
navigating behaviors [30, 24]. Works focus-ing on locomotion have
also been presented, including the animation of worms’ and snakes’
motion [23], birds’ flight [6], general articulated 3D virtual crea-
tures [29], and fishes [32]. Brooks [4], Meyer [22], Bryson and
Stein [5], and other researchers have made great effort on behav-
ioral structure design too. As for tools that help creating behavioral
animation, they are mostly languages and scripts, such as Improv
[25], Cognitive Modeling Language (CML) [14], and many oth-
ers [1, 17]. Basically, all these divisions benefit programmers with
ways of designing systems. In contrast, our goal is to empower
end-users to modify the behaviors easily.

Incorporating graphical representation for finite state machines
is also a popular solution, and can be found in [13, 29]. These sys-
tems have made the interface more user-friendly by visualizing the
edited behaviors with linked graphs. However, they still require
users’ comprehension of logical programming, which is an impor-
tant reason that they are still difficult to many people, even though
they were meant to benefit non-programmers.

Machine learning is another way to simplify the task of gener-
ating behavioral animation. Through reinforcement learning, the
virtual dog in [3] gradually learns to perform new behaviors. Many
other works also proposed similar ways to animate virtual charac-



ters [12, 32, 6]. Despite reducing users’ loads of detailed speci-
fications, meanwhile these systems have eliminated users’ control
over the behaviors. Our approach, in contrast, reserves both users’
capabilities of authoring the behaviors and the ease of use.

With respect to the interface, mouse gestures, or sketches, have
been applied to various areas because of their expressiveness and
user-friendliness, including web navigation2, editing operations
[18], math calculation [19], shaping, modeling, animating in 2D
[15, 31], and in 3D [7, 11, 16]. We also take advantage of this supe-
rior interface, while the major difference of our approach is that we
take gestures as a set of narrating tool. That is, complex meanings
are depicted by gestures with temporal orders.

A great deal of effort has been made toward opening the interest-
ing experience of creating behavioral animation to novice users by
researchers in the end-user-programming area. Graphical Rewrite
Rules (GRR) is one of the methodologies adopted by this field
[10, 26]. Although GRR enables users to edit the ”before state”
and the ”after state” for each conditional statement in a fully graph-
ical environment, the lack of well-designed computational struc-
tures prevents one from inputting complete, sequential behaviors,
even though ”it is generally easier to describe the desired behav-
ior in terms of sequences of events” [5]. The unacceptability of
generalized rules also made users input similar rules repeatedly.
Our method shares a common goal with the end-user-programming
area, while avoiding the above shortcomings through applying se-
quential gestures and an AI behavioral model.

Other systems such as Alice [8] bridge across different cate-
gories and deliver multiple benefits. Particularly, Alice developers
tried to achieve the simplicity of use without losing the functional
complexity by letting users to create textual programs in a drag-n-
drop fashion. Although Alice has been considered as a practice of
”direct manipulation,” unfortunately, its intrinsic nature, a scripting
language, still asks the users to indirectly code the behaviors in their
minds during the creation of the animation, rather than to manip-
ulate the characters directly. Additionally, Alice is used to create
procedural animation, which differs from our goal of behavior au-
thoring.

3 AUTHORING BEHAVIORS WITH MOUSE GESTURES

Figure 1 shows the authoring and simulating environment for vir-
tual characters’ behaviors. The authoring process begins when the
users draw gestures on a certain type of character, and lasts until it
is completed or interrupted by pressing the DELETE key. For each
type of character, animation clips created by animators in advance
are listed on the right for users to select, and the ”behavior icons”,
user-created symbolizations of the behaviors for later access, are
listed on the left.

The authoring and simulating environment is comprised of four
main elements: 1) the mouse gestures, 2) the behavioral structure,
3) the authoring interface, and 4) the simulation engine. Briefly
speaking, the authoring interface manipulates the characters’ be-
havioral structures according to users’ mouse gestures, and the be-
haviors will be simulated by the simulation engine according to
these behavioral structures.

3.1 The Mouse Gestures

We define a mouse gesture as a mouse action which has a predefined
meaning, such as single-clicks, double-clicks, dragging an anima-
tion clip, and drawing a gesture. The designed gestures are listed in
Table 1. The gesture shapes and names are in the first two columns,
and the meanings are in the third one.

2Mozilla - http://www.mozilla.org/

Figure 1: Our gesture-based behavior authoring system.

Gestures are input sequentially. A gesture in a sequence can be
regarded as a word in a sentence in our daily conversation. For
proper interpretation of the gestural sequences, five ”grammars”
are defined, as listed in Figure 2. These grammars depict users’
intentions throughout gesture sequences, including, in a top-down
order, building a new behavior, deleting a behavior, editing an exist-
ing behavior, building a new behavior which is related to a target,
and building a new behavior for each of the grouped character in
terms of interaction. For the ”Build Action” nodes, Figure 3 il-
lustrates the possible combinations of different gestures. All input
sequences must match one of the predefined grammars, otherwise
will be ignored.

Select Subject Build Action
End of

Construction

Select Subject
Select Behavior

of Subject
Delete

Select Subject Build Action
End of

Construction
Select Target

Select Subject Build Action
End of

Construction

Select Behavior

of Subject

Group

Characters
Select Target Build ActionSelect Subject

Select Subject Build Action
End of

Construction
Select Target

Select Subject Build Action
End of

Construction

Select Subject
Select Behavior

of Subject
Delete

Select Subject Build Action
End of

Construction
Select Target

Select Subject Build Action
End of

Construction

Select Behavior

of Subject

Group

Characters
Select Target Build ActionSelect Subject

Select Subject Build Action
End of

Construction
Select Target

Figure 2: The Grammars.

3.2 The Behavioral Structure

Figure 4 illustrates our behavior structure, exampled by a virtual pi-
geon’s forage behavior. Following the ideas suggested by previous
research on behavioral structures [3, 4, 5, 22], our behavior is de-
fined as a process toward the satisfaction of an intention (the solid-
line region). The process consists of several stages (the dashed-line
regions), and each of the stages contains its respective actions, per-
ceptions, and, optionally, influences of the actions (e.g. destruc-
tions of other characters). The perceptions of a stage function as
the preconditions of this stage. A behavior also has its own set of
preconditions, namely, the ”ground perceptions” (the green region),
usually identical with those in the first stage. In most cases, there is
one action in a stage, though this is unnecessary. The virtual pigeon
on the ground may eat feeds in three different directions - front,



Table 1: The Gestures.

Gesture
Trajectory

Gesture
Name

Gesture
Meaning

N/A single click
To select a target if a subject
character is selected.

N/A double click To select a subject character.

N/A
drag

navigating
animation

To specify the animation for a
navigating action.

N/A
drag action
animation

To build an action with this an-
imation.

X To destroy something.

arrow
To indicate a direction toward
or away from something.

check
To finish the construction of
subject character’s new behav-
ior.

circle To group characters.

wandering
sign

To indicate the subject charac-
ter to wander through its world
with no specific destination.

right, and left. Thus, three different actions with their respective
preconditions and animation clips may concurrently exist in this
stage.

The behavioral structure is vital to the gesture-based authoring
approach. This is because, after interpreting the individual as well
as the combined meanings of the input gestures, only according to
this computational structure can the system transform these inter-
pretations into the behavior’s finite state machines.

Details about actions and perceptions in our behavior authoring
fashion are detailed below:

Actions: An action consists of a steering style, an animation
clip, and a means of navigation. The steering styles, originally pro-
posed by Reynolds [27], include wandering (moving aimlessly),
pursuit (chasing some target), fleeing (escape some target), etc.
The steering style of an action is determined according to the input
gestures, and an action without a steering style simply means that
this action is performed without navigation. The animation clip is
the necessary and sufficient condition of the construction of an ac-
tion. All animation clips need to be provided prior to the author-ing

Build Action

Wandering Direction Animation

Animation Animation

Wandering Arrow

Build Action

Wandering Direction Animation

Animation Animation

WanderingWandering ArrowArrow

Figure 3: The possible combinations of different gestures.

Layer 2
Perception:

Feed close enough
Action:
Playing eating animation
Influence:
Food Destroyed

Forage Intention

Layer 2
Eating the feed->
Feed destroyed

Layer 1
Moving towards 

the feed (walking)

Perception of the feed

Figure 4: The Behavioral Structure.

process with their navigation means. The means of navigation in-
cludes flying, walking or running, and swimming.

Perceptions: A perception contains a perception type, a target
type, a radius, an axis angle, and a range angle. Perception types
include 0) none, 1) terrain, and 2) target, which are used to denote
the object this perception is concerned with. Target types indicate
the types of the character, such as a feed, a pigeon, a dog, etc. The
remaining components are used to describe the range of this percep-
tion. The radius means the farthest distance this perception reaches.
The axis angle, which suggests the direction, is defined as the angu-
lar difference between the character’s front direction and the direc-
tion of this percept. The range angle, finally, indicates the angular
range of the fan-shaped area spread from the axis. All components
of a perception are specified while the action in the same stage is
built during the authoring process.

3.3 The Authoring Interface

We incorporated the toolkit built by Boukreev3 in our system as the
gesture recognizer. When the user inputs a mouse gesture, the ges-
ture will be first processed by the recognition system, stored into
a history table, and then applied to modify the character’s behav-
iors. Here we introduce four specific tasks: 1) validating each input
gesture, 2) determining and executing each gesture’s function, 3)
properly displaying the gestures’ trajectories, and 4) rendering the
behaviors into a textual presentation.

First, a new gesture is verified by both its screen location and its
order in the sequence. Each gesture must be close to a character, an
animation, or a behavior icon, and all input sequences must match
one of the five grammars in Figure 2. An invalid gesture would be
discarded.

3http://www.codeproject.com/cpp/gestureapp.asp



Second, the function of a gesture is determined by both its own
meaning and how it is used. For example, drawing an ’x’ sign on
a character destroys the character, while draw-ing it on a behavior
icon means to delete an existing behavior. Whether an arrow sign
is drawn from or toward an item also carries different meanings.

The execution of an identified gesture function includes two
steps. The first one is the immediate visual response. To create
a pigeon’s ”forage” behavior in our video, for example, the pigeon
starts walking toward a target right after the walking animation is
dragged onto an arrow. Such response is used only to clarify the
gestures’ effects interactively, whereas the modification on the be-
havioral structures is not performed until later. The second step,
background modification, is performed when the whole input se-
quence is confirmed as valid. In this case, the ”walking-toward-
feed” action is stored into a history table when the system interac-
tively responds to the user input, but won’t be added into the forage
behavior until the whole sequence has been completed and vali-
dated.

When a gesture suggests the completion of a sequence (e.g. a
check sign for a new behavior’s construction), all missing details
for the edited behavior will be automatically specified with default
values. For a newly-created behavior, the system will ask the user
to input a behavior icon and list it on the left of the screen. The
edited behavior will be applied to all characters of the same type in
the world, which enables users to generate crowd animation easily.

To properly display the trajectories means to map the 2D path
of mouse into 3D so that the trajectories will look properly when
users move the camera. Currently, trajectories, including arrows,
wandering signs, circles, etc, are mapped directly on the ground in
the virtual world.

Finally, Figure 5 is the text representation of a behavior gener-
ated automatically by the system. Currently, we are using our own
tagged format. But for more practical use, it could be converted
into other standardized formats that are used in script for commer-
cial applications.

3.4 The Simulation Engine

For each time step, the simulation engine selects the most suitable
behavior and stage for each of the characters, according to the en-
vironment, their perceptions, and inner properties. Following [3]
and [32], the intentions of all behaviors in our system increase with
time. Whenever the intention exceeds a particular threshold, the
system checks whether the context has met a behavior’s ground pre-
conditions. The forage behavior, for example, is selected only when
a food is perceived by the pigeon. When more than one behavior’s
preconditions are met, the one to be performed will be randomly
selected, with the behaviors’ probabilities proportional to their in-
tention values.

After a behavior is selected, the character will proceed to one
stage after another whenever its respective precondition is satisfied;
and a behavior is completed as the action in the top stage is carried
out. That is, the pigeon will not walk towards the feed until detect-
ing it; it will not eat and destroy the feed until arriving at the feed;
and the forage behavior will be completed when the feed is eaten
and destroyed. If a precondition fails to maintain during the execu-
tion of a behavior, the procedure will trace backwards and resume
from the highest stage where the preconditions are held true. In
other words, if the feed approached by a pigeon is eaten by others
interruptedly, the pigeon will trace back and check if any other feeds
exist. If even the ground perceptions are not met by the context, i.e.
the pigeon can perceive no feed at all the system will re-select the
behaviors to be performed through the randomized algorithm.

The above describes how the behaviors and actions are selected.
As for characters’ navigation, we achieve this task with ease by

<Behavior>
CharacterName Dove
BehaviorName Forage
Intention 90.0
<GroundPercepts>
<Percept>
Radius 20.0
PerceptType 1
TargetType Food

</Percept>
</GroundPercepts>
<BehaviorLayer>
<PrimaryPair>
<Percept>
Radius 20.0
PerceptType 1
TargetType Food

</Percept>
<Action>
AnimationType walking
NavigMeans walk
SteeringStyle pursuit

</Action>
</PrimaryPair>

</BehaviorLayer>
<BehaviorLayer>
<PrimaryPair>
<Percept>
PerceptType 1
TargetType Food
Radius 0.4
AxisAngle 0.0
RangeAngle 40.0

</Percept>
<Action>
AnimationType eating
Influnce Destroy

</Action>
</PrimaryPair>

</BehaviorLayer>
</Behavior>

Figure 5: An example of the generated text representation.

using Reynolds’s OpenSteer library4. Finally, the animation is ren-
dered with OpenGL. Note that the available animation clips only
describe specific actions; thus, at all time, both during the author-
ing and simulating process, the playback module verifies whether to
insert transitions between consecutive actions. For instance, when
a user tries to make a standing puppy sit, he/she may drag the sit-
ting animation onto the puppy, and the transition from standing to
sitting is inserted automatically for efficiency. The consistency be-
tween each animation pair is predefined by the animators.

4 AUTHORING THE BEHAVIORS

In this section, we show how users can author the behaviors with
mouse gestures. Within about 10 minutes, six behaviors (e.g.,
cleaning self, forage) for the pigeons and four for the dogs (e.g.,
chasing) can be created using our authoring system. Together, the
two kinds created a lively crowd scene, as shown in Figure 6.

Here we discuss about the detailed authoring process with two
examples. The first example, building a forage behavior of a pi-

4http://opensteer.sourceforge.net/



Figure 6: The result simulation scene.

geon, is to demonstrate the authoring process of a multi-stage be-
havior. It consists of a ground perception (perceiving a feed), two
stages of actions (walking toward the feed and eating it), and a con-
sequence (destroying the feed). The second example, building a
chasing-fleeing behavior, shows how to create interactions between
two characters, which is an important task in behavior authoring.

4.1 Building a Forage Behavior

The process of building a forage behavior is shown in Figure 7. The
construction begins as we select the subject character (the pigeon)
by double-clicking with the left button, and then select the target
(the feed) with a single-click. The authoring interface thus builds
a ground perception describing the target-type (i.e. feed) and its
relative position, as well as a terrain-type ground perception.

Figure 7: Authoring the forage behavior.

When the pigeon reaches the feed after the walking animation is
dragged onto the arrow, A stage is constructed with a moving action
with a specified animation clip, and a perception concerning about
the target-type and its relative direction (instead of the absolute di-
rection in the world).

Another stage will be created after we drag the eating anima-
tion, and it has a new perception that the target position is relatively
closer, and a new action with the eating animation. Then, the X
sign on the target is to denote the consequence of the eating action
- destruction of the feed, and a left-click is made on the feed before
the X sign to suggest a coming manipulation on the target.

Finally, after drawing a check gesture to finish the construction,
we draw an ”e” as the behavior icon, and the behavior is success-
fully created. Thus, whenever a feed is perceived, the pigeon will
move toward it, eat it, and then the feed will be destroyed. If the
feed is right in front of the pigeon, the pigeon will eat it without
approaching, because it is already close enough.

4.2 Building a Chasing-Fleeing Interaction

The second example builds an interaction between two characters
(Figure 8). After being grouped, the two characters are marked by
blue circles as interacting with one another. Then, we take turns to
reverse the roles of the dog and the pigeon as the subject and the
target. First, the dog is selected as the subject, and the pigeon the
target. While we drag the animation onto the arrow and construct
the running-toward-pigeon action, the dog does not move toward
the pigeon immediately. This is designed for the convenience of
users’ authoring process. Nevertheless, the running animation is
played as if the dog is eager to run toward the pigeon, so the user
can get the feedback that the manipulation works. Then we select
the pigeon as the subject and the dog as the target. We create the
pigeon’s fleeing behavior, triggered by its detection of the dog. Fi-
nally, the behavior icon is drawn once and will be shared by the
two characters, but the meanings are different. The most distin-
guished part of this example from the previous one is that each of
the characters will have a different behavior, and two text files will
be generated.

5 EVALUATION & DISCUSSION

The final part of this paper is the evaluation and discussion. We
first introduce the fundamentals we base on - two major theories
from the Human-Computer-Interaction (HCI) literature - and then
describe about the usability test we made and its discussion. By
combining both qualitative and quantitative evaluations, we claim
that the superiority of the gesture-based behavior authoring manner
is verified.

5.1 Groundings: The HCI Literature

To make behavior authoring truly accessible to the novices, we tried
to stand from users’ points of view by examining the HCI and psy-
chology literature. Based on flow [2, 9] and direct manipulation
[28], we have enabled users to focus solely on the animated char-
acters throughout the authoring process by combining the editing
interface with the simulation window. This ”What You Do Is What
You Get” (WYDIWYG) strategy has become the core value of our
approach.

Flow. Mihaly Csikszentmihalyi used the phrase ”being in the
flow” to picture people’s full engagement in activities when chal-
lenges and skills are balanced [9]. Later, Bederson [2] bridged this
idea to interface design later to highlight that interfaces should tar-
get at keeping users in the flow by avoiding interruption and sup-
porting creativity and enjoyment. Accordingly, we conclude two
important properties for an effortless behavior authoring manner.



Figure 8: Authoring the chasing-fleeing interaction.

First, since users have extremely limited short term memory [2],
asking users to navigate among windows to compose behavioral de-
scriptions may strain users’ memory and interrupt their flow. Unlike
other tools that require inter-window navigation [8, 29], our behav-
ior authoring tool keeps users focus on the characters and eliminates
interruptions. This is done by combining the editing interface with
the simulation window. Second, immediate feedback allows users
to be clear about the consequences of their actions, as oppose to
leaving them uncertain until the ”play” button is pressed at the end
(e.g., [8, 29]). More importantly, immediate feedback reinforces
users to engage in the authoring processes, keeping them enlight-
ened interested throughout the activity.

Direct Manipulation. Ben Shneiderman proposed to bring users
comprehensible, predictable, and controllable interfaces with visual
representation of object and action of interests, physical actions in-
stead of complex syntax, and rapid reversible operations [28]. His
assertion, ”The closeness of the task domain to the interface domain
reduces operator problem-solving load and stress,” has provided a
strong foundation for our WYDIWYG strategy. Explicitly, because
the characters are simultaneously authored and simulated, the users
need neither to transform the behaviors into an abstract representa-
tion (e.g. code or graphical state machines) nor to convert the code
back to the behaviors in minds while reviewing the algorithms.

5.2 Usability Test

To verify that the proposed idea is favorable for behavioral ani-
mation creation, our system was tested with 14 users, including 13
males and 1 female. Most of these users are undergraduate students.
None of these testees had written programs related to agents’ behav-
iors, however all of them were made clear about the aim of this tool.

The users first read a 2-page instruction describing introduction of
the test, behavior authoring, the gesture table, and statements con-
cerning the test policy and privacy issues. The test goes on with
a 10-minute oral explanation, example demonstration and question
answering, followed by a 20-minute usage of the system and the
completion of a questionnaire.

The questionnaire consists of 15 questions (in Mandarin Chi-
nese), and is based on the Computer System Usability Question-
naire5. From the following summarization of the result, one can get
some idea about how the gesture-based authoring idea contributes
to the research area:

• 92.8% of the people found the authoring process interesting
or very interesting.

• 92.8% of the people agreed or very much agreed that the sys-
tem’s interface is pleasant to them.

• 85.7% of the people needed less than 30 seconds to choose
the next gesture to use, in which 57% required less than 10
seconds.

• 85.7% found this tool easy to learn or very easy to learn.

• 78.5% liked or very much liked the system’s interface.

• 71.4% of the people felt satisfied or very satisfied about how
easy it is to use the system.

• 57.1% believed that himself/herself can become a skilled user
very soon.

Nevertheless, the usability test also suggested us directions for
improvements as well as users’ main concerns during the author-
ing process. For example, almost half of the users disagreed with
that he/she could efficiently edit the desired behaviors, even though
from the above data we can see that, generally speaking, 1) the ges-
tures to be utilized in each step can be selected shortly, and 2) the
tool is quite easy to learn. As we investigated the reason of this
dissatisfaction through asking the testees, the most frequent answer
received was about the inadequacy of our recognition engine. That
is, from time to time they needed to draw a gesture several times to
make the intended input.

We think that this is problem exists mainly because traditional
recognition algorithms, including the library we used, were not
affine-transform-invariant, which unfortunately is something fatal
to our system’s performance. To clarify, let us take the arrow sign
as an instance. When a user draws an arrow sign from a pigeon to
one of the feeds on the ground, all possible arrows may be differ-
ent in direction, size, and even length ratio between the arrow’s two
segments. To recognize a 2D gesture as a function depiction in a
3D virtual world, truly it may be difficult if the recognizer is not
robust against such variations. In our implementation, an ”arrow
sign” was actually the union of a set of arrows with different direc-
tions, and all input gestures are auto-scaled before the recognition
process. From this usability test, we are now aware the crucial role
this recognition phase plays, and a more desirable engine will be an
important future direction.

Another thing that needs to be addressed is the amount of gesture
types. Some users felt that the provided gestures were not enough
to use, as we expected. (After all, the mere gestures can no way
be general nor adequate.) Nevertheless, an additional piece of in-
formation we wished to gain from this test is exactly how to design
the proper gesture set. From the test, 85.7% of the people thought
that the most proper amount of gesture types is under 15, in which
71.4% of the people feel less than 10 types of gestures would be

5http://www.acm.org/∼perlman/question.cgi



easier to use. A question thus arises. Since memorizing the ges-
tures takes efforts and may even eliminate the benefits brought by
gestures’ direct characteristics, should we turn to some other inter-
face primitives such as buttons, scroll bars, etc.? If we do, then only
functions that need gestures’ various superiorities will be formed
as gestures, whereas others can be achieved with conventional in-
terface primitives (e.g., it is actually fine to replace a check sign
with a button-click). However, searching for the button is poten-
tially harmful to the authoring flow because of long searching time,
and the advantages of WYDIWYG strategy may also be traded off
because some functions may not be performed directly on the char-
acters any more. The best way to design the gesture set remains a
puzzle, but here we introduce the major concerns in this topic, and
we hope to invite more researchers to join the research field and to
explore more about this enticing authoring manner.

6 CONCLUSION AND FUTURE WORK

A novel gesture-based behavior authoring technique is proposed for
prototyping behavioral without using code or graphical state ma-
chines. With this technique, users can edit the behaviors directly on
the simulated characters. The authoring process is user-friendly and
efficient, and the resulting behaviors can be automatically rendered
into a text file for further refinements by skilled users or program-
mers. A usability test was done with 14 university students, and
the result showed that the proposed technique has turned behavior
authoring into an interesting, easy-to-learn, and pleasant interaction
process.

Our first step toward gesture-based behavior authoring approach
is promising. However, the gesture-based approach is still in its
infancy. First, a recognition engine particularly designed for this
purpose is called for. Second, we are searching for a more com-
plete while compact set of gestures, that is, although not necessarily
100% complete, but applicable for a fair amount of cases. We also
attempt to allow users to edit the created behaviors while they are
simulated (i.e. on-the-fly programming), which, as we believe, will
make debugging much easier. We hope to stay with the gesture-
based approach and its advantages, as we continue to work on other
new features. And, based on this work, we are also looking forward
to that a more general, efficient, effective, and user-friendly tool for
behavior authoring can be evolved.

7 ACKNOWLEDGEMENT

We greatly appreciate James Davis, Erika Chuang, Yung-Yu
Chuang, Jane Yung-Jen Hsu, Ming Ouhyoung, and Chao-Ming
(James) Teng for their insightful suggestions to this paper.

REFERENCES

[1] Yasmine Arafa, Kaveh Kamyab, and Ebrahim Mamdani. Character

animation scripting languages: a comparison. In Proc. AAMAS 2003,

pages 920–921, 2003.

[2] Benjamin B. Bederson. Interfaces for staying in the flow. ACM Ubiq-

uity, 5(27), 2004.

[3] Bruce Blumberg, Marc Downie, Yuri Ivanov, Matt Berlin,

Michael Patrick Johnson, and Bill Tomlinson. Integrated learning

for interactive synthetic characters. ACM Transactions on Graphics,

21(3):417–426, 2002. (Proc. SIGGRAPH 2002).

[4] Rodney A. Brooks. A robust layered control system for a mobile ro-

bot. IEEE Journal of Robotics and Automation, 2(1):14–23, 1986.

[5] Joanna J. Bryson and Lynn A. Stein. Modularity and design in reactive

intelligence. In Proc. IJCAI 2001, pages 1115–1120, 2001.

[6] Jia chi Wu and Zoran Popović. Realistic modeling of bird flight anima-

tions. ACM Transactions on Graphics, 22(3):888–895, 2003. (Proc.

SIGGRAPH 2003).

[7] Jonathan M. Cohen, Lee Markosian, Robert C. Zeleznik, John F.

Hughes, and Ronen Barzel. An interface for sketching 3D curves.

In Proc. I3D 1999, pages 17–21, 1999.

[8] Matthew J. Conway. Alice: Easy-to-Learn 3D Scripting for Novices.

PhD thesis, University of Virginia, 1997.

[9] Mihaly Csikszentmihalyi. Flow: The Psychology of Optimal Experi-

ence. Perennial, 1991.

[10] Allen Cypher and David Canfield Smith. KidSim: end user program-

ming of simulations. In Proc. CHI 1995, pages 35–36, 1995.

[11] James Davis, Maneesh Agrawala, Erika Chuang, Zoran Popović;, and

David Salesin. A sketching interface for articulated figure animation.

In Proc. SCA 2003, pages 320–328, 2003.

[12] Jonathan Dinerstein, Parris K. Egbert, Hugo de Garis, and Nelson Din-

erstein. Fast and learnable behavioral and cognitive modeling for vir-

tual character animation. Computer Animation and Virtual Worlds,

15(2):95–108, 2004.

[13] Daniel Fu, Ryan Houlette, and Oscar Bascara. An authoring toolkit

for simulation entities. 2001.

[14] John Funge, Xiaoyuan Tu, and Demetri Terzopoulos. Cognitive mod-

eling: Knowledge, reasoning and planning for intelligent characters.

In Proc. SIGGRAPH 1999, pages 29–38, 1999.

[15] Takeo Igarashi, Sachiko Kawachiya, Hidehiko Tanaka, and Satoshi

Matsuoka. Pegasus: a drawing system for rapid geometric design. In

Proc. CHI 1998, pages 24–25, 1998.

[16] Takeo Igarashi, Satoshi Matsuoka, and Hidehiko Tanaka. Teddy: A

sketching interface for 3D freeform design. In Proc. SIGGRAPH

1999, pages 409–416, 1999.

[17] Sumedha Kshirsagar, Nadia Magnenat-Thalmann, Anthony Guye-

Vuillème, Daniel Thalmann, Kaveh Kamyab, and Ebrahim Mamdani.

Avatar markup language. In Proc. EGVE 2002, pages 169–177, 2002.

[18] James A. Landay and Brad A. Myers. Interactive sketching for the

early stages of user interface design. In Proc. CHI 1995, pages 43–50,

1995.

[19] Joseph J. LaViola, Jr. and Robert C. Zeleznik. MathPad2: a system for

the creation and exploration of mathematical sketches. ACM Transac-

tions on Graphics, 23(3):432–440, 2004. (Proc. SIGGRAPH 2004).

[20] James R. Lewis. IBM computer usability satisfaction questionnaires:

psychometric evaluation and instructions for use. International Jour-

nal of Human-Computer Interaction, 7(1):57–78, 1995.

[21] Henry Lieberman. Your Wish Is My Command: Programming by Ex-

ample. Morgan Kaufmann, 2001.

[22] Jean-Arcady Meyer. The animat approach : Simulation of adaptive

behavior in animals and robots. In Proc. NPI 1998, pages 1–21, 1998.

[23] Gavin S. P. Miller. The motion dynamics of snakes and worms. ACM

Computer Graphics, 22(4):169–178, 1988. (Proc. SIGGRAPH 1988).

[24] Soraia Raupp Musse and Daniel Thalmann. Hierarchical model for

real time simulation of virtual human crowds. IEEE Transactions on

Visualization and Computer Graphics, 7(2):152–164, 2001.

[25] Ken Perlin and Athomas Goldberg. Improv: A system for scripting

interactive actors in virtual worlds. In Proc. SIGGRAPH 1996, pages

205–216, 1996.

[26] Alexander Repenning and Corrina Perrone. Programming by exam-

ple: programming by analogous examples. Communications of the

ACM, 43(3):90–97, 2000.

[27] Craig W. Reynolds. Flocks, herds, and schools: A distributed be-

havioral model. volume 21, pages 25–34, 1987. (Proc. SIGGRAPH

1987).

[28] Ben Shneiderman. Direct manipulation: A step beyond programming

languages. IEEE Transactions on Computers, 16(8):57–69, 1983.

[29] Karl Sims. Evolving virtual creatures. In Proc. SIGGRAPH 1994,

pages 15–22, 1994.

[30] Mankyu Sung, Michael Gleicher, and Stephen Chenney. Scalable be-

haviors for crowd simulation. Computer Graphics Forum, 23(3):519–

528, 2004. (Proc. EG 2004).

[31] Matthew Thorne, David Burke, and Michiel van de Panne. Motion

doodles: an interface for sketching character motion. ACM Transac-

tions on Graphics, 23(3):424–431, 2004. (Proc. SIGGRAPH 2004).

[32] Xiaoyuan Tu and Demetri Terzopoulos. Artificial fishes: Physics, lo-

comotion, perception, behavior. In Proc. SIGGRAPH 1994, pages

43–50, 1994.


