
An Efficient Representation of Complex Materials for
Real-Time Rendering

Wan-Chun Ma1 Sung-Hsiang Chao1 Bing-Yu Chen1 Chun-Fa Chang2

Ming Ouhyoung1 Tomoyuki Nishita3

1National Taiwan University, Taipei, Taiwan
2National Tsing Hua University, Hsin-Chu, Taiwan

3The University of Tokyo, Tokyo, Japan

ABSTRACT
To make the computer generated imagery (CGI) vivid, ana-
lyzing the appearance of materials becomes the first priority.
Real world materials usually exhibit complex appearance
and cannot be faithfully represented simply by analytical or
parametric reflectance functions, such as the combination
of bump, glossy, specular and diffuse maps which is widely
used in current real-time rendering programs.

In this paper, we propose an appearance representation for
general complex materials which can be applied in real-time
rendering framework. By combining a single parametric
shading function (such as the Phong model) and the pro-
posed spatial-varying residual function (SRF), this repre-
sentation can recover the appearance of complex materials
without much loss of visual fidelity. The difference between
the real data and the parametric shading is directly fitted
by a specific function for easy reconstruction. It is sim-
ple, flexible and easy to be implemented on programmable
graphics hardware. We capture real photographs of differ-
ent materials with a homemade lighting platform and use
them to obtain the the data of SRF representation. Experi-
ments show that the mean square error (MSE) between the
reconstructed appearance and real photographs is less than
5%.

1. INTRODUCTION
”If it looks like computer graphics, it is not good computer
graphics” quoted from Jeremy Birn’s book [2], and which
touches every computer graphics scientist who is pursuing
photorealistic rendering of CGI. Indeed, photorealistic ren-
dering is always an important issue in computer graphics.
Applications such as special visual effects in films, training-
oriented simulations, or computer games all rely on this tech-
nology.

When mentioned about today’s real-time rendering appli-
cations, computer (video) games probably are good candi-
dates. By surveying the computer games one may acknowl-
edge that, although great improvement have been done in
only few years, it is still hard to say that the visual qual-
ity is almost photorealistic (although not every computer
game needs this characteristic). Fortunately, the realization
of programmable graphics hardware and high-level shading
language [16] demonstrates the possibility of cinematic real-
time rendering. The latest generation of graphics processing
units (GPUs), such as NVIDIA GeForce FX or ATI Radeon
series, support following similar functionalities:

1. More texture units: up to 16 textures per rendering
pass.

2. Longer shader programs with flow control: up to 65,536
instructions per vertex shader, and 1,024 texture and
color instructions per pixel shader. ATI even intro-
duces F-buffer technology [17] to virtually increase the
program length.

3. Higher floating point precision: the support of the 32-
bit floating point format brings true 128-bit color as
the same level of precision used in the film industry
today.

By taking these benefits, the developers gain much control
and flexibility in shading programming. More and more
real-time rendering methods, even those that are usually
software-based techniques such as ray tracing [23], are pro-
posed.

To make the CGI vivid, analyzing the appearance of mate-
rials becomes the first priority. Real world materials usually
exhibit complex appearance and cannot be accurately rep-
resented simply by ordinary methods, such as basic shad-
ing functions or the combination of bump, glossy, specular
and diffuse maps. Homogenous materials may demonstrate
simple appearance, where plastics and metals are the most
typical examples. However, real world materials, even we
may regard them homogenous semantically, are complexes
and can exhibit complicated appearance. To render this
kind of materials in real-time,we need a method that is not
just the present well known methods, such as combination of

Figure 1: Overview of the framework. First we use a parametric shading function to fit the captured read
data, and then the difference (residual) between the real data and the parametric shading is directly fitted
by a specific function. Given viewing and lighting directions, the appearance can be synthesized with the
shading function and the reconstructed residual. The value of the residual function is shifted so that it can
be displayed.

bump, glossy, specular and diffuse maps. Before describing
our ideas, we need to define what a complex material would
be. The appearance of a complex material should include
the following three main properties:

1. Inhomogeneity: local variations caused by contami-
nants, irregular interior structure, such as mineral crys-
tallization or mix of different materials.

2. Geometry: local variations caused by surface meso-
structures, such as self-shadowing, inter-reflection.

3. Transparency: the transparent effect of materials which
is captured should also be considered.

Under this definition, materials such as minerals, skins and
clothes all belong to complex materials.

The parametric shading function approximately represents
the appearance of an object. The rendering of shading func-
tion may look alike, but missing many details if we compare
it to the photographs of a material. Hence, it is intuitive
that the key of what makes people feel the material looks
realistic should exist in the difference between the real data
and its approximation based on a parametric shading func-
tion.

Following the above proposition, in this paper we propose
an appearance representation for general complex materials
which can be applied in present real-time rendering frame-
work. By combining a single parametric shading function
(the Phong model) and the proposed spatial-varying resid-
ual function (SRF), this representation can recover the ap-
pearance of complex materials without much loss of visual
fidelity. The SRF, which is retrieved by subtracting the real
data to the parametric shading, is directly fitted by a spe-
cific function. By using the restored SRF, we may render the

complex materials under different lighting and viewing con-
ditions faithfully. The representation itself is simple, flexi-
ble and easy to be implemented on programmable graphics
hardware. We capture real photographs of different mate-
rials with a homemade lighting platform, and use them to
obtain the the data of SRF representation for each materi-
als. Several bi-directional texture functions (BTFs) are also
used to generate SRFs. Experiments show that the average
error between the reconstruction appearance and real pho-
tographs is less than 5%. Figure 1 helps to introduce the
overall framework.

2. RELATED WORK
Many successful studies have been done in order to render
virtual objects in high quality. By comprehending these
algorithms, there are mainly two representations for photo-
realistic rendering: image-based and parametric-based.

2.1 Image-based methods
Image-based methods create vivid imagery without explicit
knowledge of geometry or reflectance properties. Classic
image-based rendering (IBR) [3, 26] uses a large amount of
2D images of different views to generate the illusion of 3D
scenes (object movies or panoramas). One may traverse the
scenes by directly changing, interpolating, or warping [24]
between these images. Most of the early stage object movies
are based on fixed lighting, which means it is impossible to
change lighting conditions. In contrast to object movies,
many attempts have been made, such as [6, 15]. Although
they may produce rendering under varying lighting condi-
tion, the viewpoint remains fixed. It is possible, though ex-
hausting, to acquire an object movie under various lighting
conditions. However, the accompanying tremendous storage
need and management problems make it impractical.

In the last decade, more and more representations are pro-
posed for improvement of IBR. The surface light field (SLF)

Figure 2: Our data acquisition platform.

[29, 4] is a function that outputs appearance color to each
viewing direction from a specific surface location. The SLF
can well represent the object appearance under complex
(but fixed) lighting conditions. The polynomial texture map
(PTM) [15] is a special case of image-based representation.
A PTM approximates the sequence of input images which
are captured under varying lighting condition using biquadratic
polynomials, so only the fitted polynomial parameters are
stored in PTM.

The BTF which is proposed by Dana et al. [5] is a pioneer-
ing work in representing complex surface appearance under
various lighting conditions and viewpoints in a manner sim-
ilar to traditional texture map. A BTF is defined as a 6D
reflectance function, which has two additional dimensions
for the surface position compared to the bi-directional re-
flectance distribution functions (BRDFs). Due to its high
dimensionality, the BTF requires huge memory space for
storage. Therefore, how to efficiently manipulate BTFs be-
comes an issue. Similar to all the image-based approaches,
data compression is always a critical issue. Methods such
as principle component analysis (PCA) [21], factorization
[25] or vector quantization [27, 14] are frequently adopted
to preprocess the data for better run-time efficiency.

2.2 Parametric-based methods
In contrast to image-based, parametric-based methods em-
phasize the use of physically-based parametric reflectance
models, which are effective abstraction for describing how
the light is reflected from a surface. By statistically fit-
ting the measured data (by either dense or sparse sampling),
these models generally provide fair approximations of sur-
face appearance of arbitrary homogeneous materials. From
another point of view, fitted models compress the measured
data to an extremely small size (only a few of parameters for
each color channel). Nowadays, many parametric reflectance
models are explored and widely adopted. These parametric
BRDFs can be either physically-based, or empirical.

However, a single parametric model cannot handle appear-
ance contributed by complicated surface properties such as
transparency or inhomogeneity. Thus, different methods
such as bi-directional surface scattering distribution func-
tions (BSSRDFs) [9] or spatially-varying BRDFs (SBRDF)
[13, 20, 19] are proposed to solve these problems. Recently,

photometric stereo is adopted by parametric-based meth-
ods for surface reflectance recovering [8]. These methods
can handle SBRDFs and allow for rendering under differ-
ent viewing and lighting conditions. Impressive synthesis
images were shown in their results. Compared to image-
based approaches, which needed up to hundreds of images,
parametric-based methods require much less (mainly for the
fitting process).

We propose a method by combining the advantages of above
two approaches: using a reflectance model to represent the
approximated appearance of an arbitrary material and a
residual function analogous to image-based methods.

3. DATA SOURCES
In this section, we describe two data sources that are used
for analyzing the appearance of materials under different
viewing and lighting conditions: the first one is acquired
by our homemade platform, and the second one is obtained
directly from a BTF database.

3.1 Self Acquisition
To analyze the appearance, we need to take photographs
under varying lighting conditions. A small-scale homemade
platform is built to measure the reflectance of materials un-
der varying lighting conditions. It consists of a rotation arm
which orbits the measured target horizontally and a light
source mounted on it. Figure 2 shows the data acquisition
platform. The light source here is an array of light emitting
diode (LED). The color temperature of the LED we use is
6500K. There are several reasons why we choose the LED:

1. The LED is a small light source which concentrates its
emission in a narrow range (about only 15 degrees).
Its behavior is similar to a spotlight. By arranging
several LEDs into a square array, a directional light
source may be approximated within a short distance.

2. The LED is inexpensive, and it dissipates only small
amount of heat, does not need warm-up, and can be
driven by low voltage.

The system requires spherical material samples as measure-
ment targets. The radius of the spheres are 5cm in average.
For capturing soft materials (such as clothes), we spread
them on the spherical surface. The camera we use is Konica
Minolta DiMAGE 7i and the resolution of camera we set
is 2560 × 1920. The camera is initially white-balanced and
geometrically calibrated [30] for color and lens distortion
correction. Then we station the camera, which is zoomed in
high magnification (7x), at a distance away from the sam-
ple sphere to simulate orthogonal view (the focal length is
set at 1.1m). For each lighting direction, we capture 5 pho-
tographs with exposure time ranges from 1/30 to 2 seconds
to increase the dynamic range.

The light source rotation arm is manually adjusted to change
lighting directions. Several indicative marks are carved on
the platform to facilitate this operation. We assume that
the direction from the target object to the camera is zero
azimuthal angle, then we measure lighting directions from

azimuthal angle -60 to 60 degrees with a increase of 10 de-
grees. The direction of zero azimuthal angle is avoided be-
cause the light source blocks the view of the target object.
However, because the rotation arm moves only horizontally,
the appearance of materials cannot be sampled under verti-
cal lighting conditions.

The acquired photographs are then transformed into re-
flectance maps [28], which is frequently used to solve shape
from shading problems. A reflectance map R(p, q) is a func-
tion of reflectivity in terms of orientations of a parametric
surface S(x, y, z) = (x, y, f(x, y)) in gradient space:

p =
∂f

∂x
, q =

∂f

∂y
.

Since we assume that the captured images are orthogonally-
projected, the transformation is simply in the following form:

R(p, q) = I(r × p

‖n‖ + cx, r × q

‖n‖ + cy) (1)

where n = (p, q, −1) is the surface normal. I(s, t) is the
acquired image, r and (cx, cy) are the radius and center of
the projected sphere. The boundary of the reflectance map
is manually chosen (here, both the ranges of p and q are
between [−1, 1]). The resolution of reflectance map is set at
256 × 256.

3.2 BTF Database
In order to get accurate results, we also use BTFs of different
materials as the input. The BTF database is provided by
University of Bonn1. For each material, 6561 images are
taken (81 lighting and 81 viewing directions) to sample the
appearance variation.

4. DATA REPRESENTATION
BTF is a fundamental representation of complex appearance
under varying lighting and viewing directions. We try to de-
compose the BTF into the following two terms, a parametric
reflectance function fr and a residual function δ:

fBTF (P, V, L) = fr(V, L) + δ(P, V, L), (2)

where P indicates a position on the surface, V and L are
viewing and lighting direction respectively.

4.1 Reflectance Model Fitting
We choose the Phong model with Blinn’s specular highlight
[2] as the parametric reflectance function fr in Equation 2:

fPhong(V, L) = κd × (N · L) + κs × cosn(N · H), (3)

where V is the viewing direction, L is the lighting direction,
N is the surface normal, H is the halfway vector defined as
(L + V)/ ‖L + V ‖, and n is the shininess parameter. The
model itself is isotropic and only has three parameters: κd,
κs and n. The view-independent terms, such as the ambient,
are combined with the diffuse. Although there exist many
BRDF models which are much plausible, the main reason
why we adopt the Phong model is that it is simple and can
be quickly evaluated. (the Phong model is a major lighting
model that is used in real time rendering, especially after
the advent of programmable pipelines):

1http://btf.cs.uni-bonn.de/

Similar to [18], each pixel in the input reflectance maps is
treated as a reflectance measurement with different viewing
and lighting directions. A non-linear optimization is used
to fit the reflectance model to the data. As many previous
studies [13, 12], we take the Levenberg-Marguardt algorithm
as the optimization method. For each reflectance map of a
specific lighting direction, a set of Phong parameters can
be retrieved. Finally, we average all the sets to get a single
Phong parameter set. For the appearance data from a BTF,
we first calculate its BRDF by averaging the intensity of each
BTF images, then the same fitting process is applied to get
the Phong parameters.

4.2 Spatial-Varying Residual Function
From the Equation 2, we can get the δ function as

δ(P, V, L) = fBTF (P, V, L) − fr(V, L). (4)

We name the δ function as the spatial-varying residual func-
tion (SRF). In the implementation, the SRF is obtained by
subtracting the original reflectance maps (or BTF images)
from the reconstructed Phong shading.

4.3 Residual Fitting
Here, we use the δ∗ function which is similar to the Blinn’s
specular component to fit SRF:

δ∗(P, V, L) = s(P) · H. (5)

However, you may apply any kind of δ∗ function to fit the
residual data. The only purpose of δ∗ function is to approx-
imate δ function. Again, H is the halfway vector. To solve
the unknown s, for each position P on the reflectance map,
the following linear system is formed:

⎡
⎢⎢⎢⎣

H1x H1y H1z

H2x H2y H2z

...
...

...
Hnx Hny Hnz

⎤
⎥⎥⎥⎦

⎡
⎣

s(P)x

s(P)y

s(P)z

⎤
⎦ =

⎡
⎢⎢⎢⎣

δ(P, V1,L1)
δ(P, V2,L2)

...
δ(P, Vn,Ln)

⎤
⎥⎥⎥⎦ .

Then we can get the s by a least square operation. For each
SRFs in three different color channels the same process is
performed. Hence, we may retrieve sr, sg and sb for each P
respectively.

The meaning of s is related to normal perturbation in a
bump map but differs with following aspects:

1. One may imagine that s is a bump-like map which con-
tains both normal perturbation and color variations.
Bump map only stores normal perturbation of the sur-
face meso-structure.

2. However, s is a fitted result from real data and is only
used to reconstruct the SRF. It has no definite and
strong physical meaning. The SRF may contains infor-
mation about translucency, self-shadowing and inter-
reflection (since all the data are captured from real
scenes). If reconstructed well, it could exhibit better
appearance than the bump maps could do.

4.4 Postprocessing

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3: Demonstration of self-shadowing (a)(b)(c)(d) and shading variation (e)(f)(g)(h) effects.

The s(P) vectors are transformed into tangent space first
so that we may later use them at the rendering stage2.
To deal with it, we need the tangent t(P) and binormal
b(P) of the object surface. Fortunately, as the target ob-
ject is a sphere, we can directly evaluate the two vectors
by parametric forms. For each position P = (p, q), its
normal n(P) = (p, q, −1)/ ‖(p, q, −1)‖, then we can get
the polar angle φ = arcsin(n(P)y) and azimuthal angle
θ = arccos(n(P)x)/ cos(φ). As a result, the tangent and
binormal of a position P are t(P) = (− sin(θ), 0, − cos(θ))
and b(P) = (− sin(φ) × cos(θ), cos(φ), sin(φ) × sin(θ)) re-
spectively. Finally, each of the s(P) vectors are rotated into
tangent space by following equation:

⎡
⎣

s′(P)x

s′(P)y

s′(P)z

⎤
⎦ =

⎡
⎣

t(P)x t(P)y t(P)z

b(P)x b(P)y b(P)z

n(P)x n(P)y n(P)z

⎤
⎦

⎡
⎣

s(P)x

s(P)y

s(P)z

⎤
⎦ .

The three SRF components s′r, s′g and s′b are saved into a
single texture file in order for use in the rendering process
(if the size of SRF map is m×n, then the size of the texture
should be 3m × n).

5. RENDERING
The rendering method is similar to ordinary bump mapping
techniques [11]. We assume that the input mesh is param-
eterized, or in other words, each vertex of the mesh has a
2Please notice that for s(P) which is extracted from a BTF,
the postprocessing procedure is ignored.

texture coordinate. Then we can calculate the surface par-
tial derivatives, which are tangent and binormal, for each
vertex by using these texture coordinates (the method is
described in [7]). In our OpenGL implementation, we use
glColor function to pass the tangent vector as color data to
the vertex shader. Thus, we do not need to create an addi-
tional tangent map and pass it to pixel shader as a texture.
However, one may still use an additional texture map to
obtain tangent vectors.

The reconstruction of appearance via SRF is simple. For
each position P on the surface, we need to transform the
lighting and viewing directions into tangent space. Finally,
the color of a pixel is calculated as

f∗
BTF (P, V, L) = fPhong(V, L) + δ∗(P, V, L). (6)

6. RESULTS
The data manipulation process is implemented in MATLAB
and the rendering process is implemented in OpenGL with
NVIDIA Cg shading language [16]. The platform of the
rendering process is a desktop PC with an Intel Pentium
4 2.4GHz CPU, 512MB memory and a NVIDIA GeForce
FX5600 GPU with 128MB video memory. Both of the ver-
tex and pixel shaders are complied in OpenGL NV30 pro-
files. Real-time rendering results of different materials are
shown in Figures 4, 5, and 6. The window size of the ren-
dering system is 600 × 600 and the refresh rate is averagely
more than 20 frames per second (FPS). However, due to

the algorithm is fill-limited, the run-time performance still
varies with the pixel number that the projected image takes.

6.1 Visual Effects
The SRF representation effective captures appearance such
as self-shadowing and shading variation, which are shown in
Figure 3. The major deficiency is that the use of s(P) ·H as
the δ∗ function may brings blurring effect, which is visible
at the shading discontinuity, such as the shadow bound-
aries. Despite of this problem, the SRF representation pre-
serves the low-frequency shading variation well and reveals
the feel of 3D texture successfully, especially that it is done
by an inexpensive method. Notice in Figures 4 (b) and (f),
which demonstrate a sphere made by polished translucent
stone. The images reveal the shading variation of the ver-
tical crystal cracks inside the sphere object. These kinds of
appearance changes cannot be modeled by traditional bump
mapping techniques, which only encodes surface normal per-
turbation.

6.2 Reconstruction Error Analysis
In order to estimate the reconstruction error, we use a sphere
model and render it with the SRF mapped on it. It can
be regarded as a reconstruction of the captured spherical
objects. For a point (pixel) on the sphere model, we get
the gradient space coordinate from its normal and use it to
sample the SRF (The normal vector is defined as (p, q, −1)
if p and q are in the gradient space, so if the normal vector
n = (nx, ny, nz) in object space, it is easily to get p =
−nx/nz and q = −ny/nz. Then we may use p and q to
sample the SRF). A simulation in MATLAB shows that the
reconstruction MSEs of the above four materials are less
than 5% in average.

6.3 Comparison
This method is an extension of PTM and bump mapping.
It is quite different from the eigen-based approaches. It also
differs from the SBRDF representation (e.g. diffuse + spec-
ular + glossy maps [2]) which does not encode self-occurred
shading effects (e.g. occlusion and shadowing). SBRDF rep-
resentation needs bump mapping techniques to enhance the
rendering quality. The proposed technique integrate multi-
ple shading effects, and can be applied to most of the present
graphics hardware.

Kautz et al. recently also propose a simple but effective
method to render realistic appearance [10]. Unfortunately,
their method may result in shading inconsistency. They use
the images (shading maps) captured under vertical lighting
conditions. So the shadows may vary under these conditions
too. However, the same shading map is still used in an arbi-
trary lighting condition during rendering. The shading of an
isotropic material may be correct, but the shadow direction
would be incorrect. With our technique, the problem could
be solved.

7. CONCLUSIONS AND FUTURE WORK
An inexpensive but effective representation for general com-
plex materials and how to apply it in real-time rendering
framework is described in this paper. Comparing to the
method that directly fits a function to the real data, the

use of the residual function may further reduce the recon-
struction errors. The SRF representation is analogous to an
algorithm called residually-excited linear prediction (RELP)
which is widely used in speech coding. RELP is a variation
of the famous linear predictive coding (LPC). LPC fits each
input signal to a polynomial, then transmits only the poly-
nomial parameters to the decoder in order to reconstruct
the speech. RELP imporves the LPC by quantizing the
residual signals and add them into the synthesis waveform
to increase the quality of restored speech. The concept of
the SRF representation and RELP is close: by means of the
residual reconstruction to enhance the synthesized result.

The planned future improvements are included but not lim-
ited to the following items:

1. How to synthesize SRF on arbitrary mesh surfaces
should be the first priority task in the future.

2. Due to the limitation that our current platform can
only sample material appearance under horizontal light-
ing directions, we need to develop a new one to satisfy
all lighting directions. The PTM device [15] draws our
attention and is a good reference for the new design.

3. Currently the shape of the material that we measured
must be limited to a sphere. By introducing photo-
metric stereo techniques, we hope that in the end we
may capture the appearance of objects with arbitrary
shapes.

4. Try to make further analysis to find another δ∗ func-
tion for better reconstruction.

5. Extend the specular reflectance model to an anisotropic
one so that we can model the appearance of hairs, furs,
CD-ROM disks, etc.

An ambitious goal is to synthesize SRF in a procedural man-
ner. Perlin noise [22] has been widely adopted to create re-
alistic procedural textures, such as woods, marbles, clouds
and so on. With the experience of Pixar RenderMan sur-
face shader development, especially the procedural ones, we
acknowledge that it is hard to design a shader and adjust
its numerous parameters to conform to a specific material
appearance. Most of the general purpose surface shader
takes dozens of parameters, and shader programmers may
found that they are struggling in tuning these parameters.
for example, the noise frequency of turbulence or fractional
Brownian motion (fBm) functions.

8. ACKNOWLEDGMENTS
We would like to thank the Digimax Studio [1] provides valu-
able comments on Pixar RenderMan shader development.
This work was partially supported by grants from National
Science Council, Taiwan, R.O.C. under NSC91-2213-E-002-
066 and Silicon Integrated Systems (SiS) Education Foun-
dation.

9. REFERENCES
[1] Digimax studio. http://www.digimax.com.tw.

[2] T. Akenine-Moller and E. Haines. Real-Time
Rendering, 2nd Ed. A. K. Peters, 2002.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4: Rendering results of different materials: (a) jade, (b) stone, (c) 3M Scotch-Brite cloth, and (d)
jeans, where (e)(f)(g)(h) are the same scenes lit with different lighting direction.

[3] S. E. Chen. Quicktime vr: An image-based approach
to virtual environment navigation. In Proc.
SIGGRAPH 1995, pages 29–38, 1995.

[4] W.-C. Chen, J.-Y. Bouguet, M. H. Chu, and
R. Grzeszczuk. Light field mapping: Efficient
representation and hardware rendering of surface light
fields. ACM Transactions on Graphics, 21(3):447–456,
2002. (Proc. SIGGRAPH 2002).

[5] K. J. Dana, B. van Ginneken, S. K. Nayar, and J. J.
Koenderink. Reflectance and texture of real-world
surfaces. ACM Transactions on Graphics, 18(1):1–34,
1999.

[6] P. Debevec, T. Hawkins, C. Tchou, H.-P. Duiker,
W. Sarokin, and M. Sagar. Acquiring the reflectance
field of a human face. In Proc. SIGGRAPH 2000,
pages 145–156, 2000.

[7] R. Fernando and M. J. Kilgard. The Cg Tutorial: The
Definitive Guide to Programmable Real-Time
Graphics. Addison-Wesley, 2003.

[8] A. Hertzmann and S. M. Seitz. Shape and materials
by example: A photometric stereo approach. In Proc.
IEEE CVPR 2003, volume 1, pages 533–540, 2003.

[9] H. W. Jensen, S. R. Marschner, M. Levoy, and
P. Hanrahan. A practical model for subsurface light

transport. In Proc. SIGGRAPH 2001, pages 511–518,
2001.

[10] J. Kautz, M. Sattler, R. Sarlette, R. Klein, and H.-P.
Seidel. Decoupling brdfs from surface mesostructures.
Proc. GI 2004, pages –, 2004.

[11] M. J. Kilgard. A practical and robust bump-mapping
technique for todays gpus. In Proc. GDC 2000, 2000.

[12] E. P. Lafortune, S.-C. Foo, K. E. Torrance, , and D. P.
Greenberg. Non-linear approximation of reflectance
functions. In Proc. SIGGRAPH 1997, pages 117–126,
1997.

[13] H. P. A. Lensch, J. Kautz, M. Goesele, W. Heidrich,
and H.-P. Seidel. Image-based reconstruction of
spatial appearance and geometric detail. ACM
Transactions on Graphics, 22(2):234–257, 2003.

[14] T. Leung and J. Malik. Representing and recognizing
the visual appearance of materials using 3d textons.
International Journal of Computer Vision,
43(1):29–44, 2001.

[15] T. Malzbender, D. Gelb, and H. Wolters. Polynomial
texture maps. In Proc. SIGGRAPH 2001, pages
519–528, 2001.

(a) (b)

(c) (d)

Figure 5: Rendering results of different materials: (a) granite stone, (b) wool, (c) upholstery, and (d)
corduroy. The original data is from BTFs.

[16] W. R. Mark, R. S. Glanville, K. Akeley, and M. J.
Kilgard. Cg: A system for programming graphics
hardware in a c-like language. ACM Transactions on
Graphics, 22(3):896–907, 2003. (Proc. SIGGRAPH
2003).

[17] W. R. Mark and K. Proudfoot. The f-buffer: A
rasterization-order fifo buffer for multi-pass rendering.
In Proc. Graphics Hardware 2001, pages 57–64, 2001.

[18] W. Matusik, H. Pfister, M. Brand, and L. McMillan.
A data-driven reflectance model. ACM Transactions
on Graphics, 22(3):759–120, 2003. (Proc. SIGGRAPH
2003).

[19] D. K. McAllister. A generalized surface appearance
representation for computer graphics. Ph.D.
Dissertation, 2002.

[20] D. K. McAllister, A. Lastra, and W. Heidrich.
Efficient rendering of spatial bi-directional reflectance
distribution functions. Proc. Graphics Hardware 2002,
2002.

[21] G. Muller, J. Meseth, and R. Klein. Compression and
real-time rendering of measured btfs using local pca.
In Proc. Vision, Modeling and Visualisation 2003,
pages 271–280, 2003.

[22] K. Perlin. Improving noise. ACM Transactions on
Graphics, 21(3):681–682, 2002. (Proc. SIGGRAPH
2002).

[23] T. J. Purcell, I. Buck, W. R. Mark, and P. Hanrahan.
Ray tracing on programmable graphics hardware.
ACM Transactions on Graphics, 21(3):703–712, 2002.
(Proc. SIGGRAPH 2002).

[24] S. M. Seitz and C. R. Dyer. View morphing. In Proc.
SIGGRAPH 1996, pages 21–30, 1996.

[25] F. Suykens, K. vom Berge, A. Lagae, and P. Dutre.
Interactive rendering with bidirectional texture
functions. Computer Graphics Forum, 22(3):463–472,
2003. (Proc. EG 2003).

[26] R. Szeliski and H.-Y. Shum. Creating full view
panoramic image mosaics and environment maps. In
Proc. SIGGRAPH 1997, pages 251–258, 1997.

(a) (b) (c)

(d) (e) (f)

Figure 6: Rendering results of Venus in different lighting conditions. Because we have not applied texture
synthesis on surface to create corresponding SRF map, one may notice that discontinuity may appear across
texture patches. Venus consists of 84,668 triangles.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

