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ABSTRACT
In this paper, an interactive background scene generation
and editing system is proposed based on improved motion
graph. By analyzing the motion of an input animation with
limited length, our system could synthesize large amount
of various motions to yield a composting scene animation
with unlimited length by connecting the input motion pieces
through smooth transitions based on a motion graph layer,
which is generated by using independent component analy-
sis (ICA). The smooth connected motions are obtained by
searching the best path according to specified circumstances.
And finally, the result is optimized by repeatedly substitut-
ing animation subsequences. To construct an ideal scene,
user can interactively specify some physical constraints of
the environment on keyframes, such as wind direction or
velocity of flow, even one simple path for a character to
follow, and the system would automatically generate con-
tinuous and natural motion in accordance with them.

Categories and Subject Descriptors
I.3.7 [Computer Graphics]: Three-Dimensional Graphics
and Realism—Animation; H.5.2 [Information Interfaces
and Presentation (e.g., HCI)]: User Interfaces—Graph-
ical user interfaces (GUI);

1. INTRODUCTION
Making complicated animations is a tedious work. Even
though techniques such as motion capture help a lot for gen-
erating realistic character motions, a scene of general anima-
tion however consists of more background details. We define
the background scene as a set which include all objects ex-
cept the leading roles, it contains not only secondary roles
but also environment parameters, such as a huge amount of
flags or forest.

Because of the characteristic of large quantity of objects, the
physical conditions express much stronger on background

than on few of main roles. For example, the wind direction
and velocity of the scene may be observed much easily from
a grassland or a forest than from one lion walking through
the field. Therefore, the problem of making a natural and
smooth background motion is considerable in animation pro-
duction. While making a background scene, we always want
similar background objects act according to the same phys-
ical conditions, but behave variously at the same time. For
instance, we may use duplications of trees to make a forest,
and manipulate those copies to perform different motions at
the same time. One approach is to make a loop animation
and let each duplication play it at different starting frames.
However, we should notice that a simple loop may still re-
veal the monotonous of animation, and it is difficult to set
constraints for these models.

Current 3D modeling software, such as Maya, lets user im-
porting static models and alternating them frame by frame
to generate an smooth animation. This method has several
drawbacks: First of all, it is hard to master great amount
of objects elaborately at one time. Even if by the help of
scripts, it would also be a challenge to control all objects in
an environment with varying physical conditions. Second, it
is inconvenient to reuse or merge existing motion clips into
a new animation production.

To increase the reusability of accomplished animations, mo-
tion graph [10] provides a suitable technique for motion syn-
thesis. It finds transitions between pieces of original motions
as edges to construct a directed graph and easily generates
new animations by building walks on the graph. Compared
with other motion synthesis methods, motion graph has a
higher potential to handle high level constraints. Since we
take the graph walk extraction as an optimization problem,
we could simply add or modify certain constraints to gener-
ate new motions corresponding to the new path. This data-
driven method is also appropriate for most background scene
which composed of excessive mesh objects.

In this paper, we present an improved motion graph algo-
rithm to generate asynchronous transitions for each object,
therefore effectively solve the main problem of motion graph
which producing weak results when source data is insuffi-
cient. We also use a hill-climbing optimization to smooth
the synthesized animation when the constraints are modi-
fied. Furthermore, we provide a high level keyframe-based
editing tool for user to quickly and easily specify the global
constraints of the scene and control large amount of objects



in an easy way.

2. RELATED WORK
Our approach for scene animation generation is related to
the data-driven animation techniques of motion synthesis.

Motion synthesis has been widely discussed and many dif-
ferent approaches have also been presented. Li et al. [12]
constructed a two-level statistical model to represent char-
acter motion. It uses linear dynamic system (LDS) to model
local dynamics and the distribution of LDS to model global
dynamics. Chai and Hodgins [6] used a continuous control
state to control the dynamics instead of using discrete hid-
den state such like LDS. However, statistical model is not
really suitable for our target meshes such like flags or plants
because of their stochastic motions.

Motion graph [10] is one of data-driven techniques of mo-
tion synthesis. The similar idea is implemented on 2D videos
which called video textures [20], while later comes with many
interesting researches concerning video control [19], panorama
composition [1] or other video applications. There are many
methods applying motion graph for character animation [2],
or to invent new motion structures [5, 11]. Our work tries
to take the idea of motion graph for generating background
mesh animations.

Some methods are also proposed for constrained motion syn-
thesis [6, 18, 22]. Arikan etal’s method [3] searches the
motion database to find suitable frames to synthesis mo-
tions that match annotations. It requires users to anno-
tate the database before synthesis and there are many la-
bels for human actions. Even though our system also re-
quires users to annotate motion features, the background
object is relatively simple compared to human character and
the annotation task is also much easier. Oshita [13] devel-
oped a system to synthesize new motions by automatically
selecting different methods to connect pieces of motions,
whereas we use asynchronous transitions to reduce tran-
sition errors. James and Fatahalian’s method [8] precom-
putes the state space dynamics to build parameterizations
of deformed shapes and interactively synthesize deformable
scenes. There are also some methods focused on the anal-
ysis and evaluation of motion transitions [23, 16]. Most of
motion synthesis methods put their attentions on the mo-
tion capture data, while we attempt to make use of these
methods to generate a big background scene.

There are some approaches discussing about large outdoor
scenes. Perbet and Cani [14] used mesh primitive to animate
large scale prairies in real-time. Beaudoin and Keyser [4]
discussed how to improve simulation times by configuring
level of details (LODs). Zhang et al. [24] also provided a
similar method to ours but only consider tree models. In
this paper, we propose a method to generate large amount
of objects and use motion graph to raise variances between
duplicated objects, which is effective for large scene genera-
tion.

Our strategy to take advantage of motion group layer to in-
crease the usability of short source motions is similar to [9],
which proposed an algorithm to make asynchronous tran-
sitions. The main difference is that we present a method

to segment models automatically and provide an interactive
scheme for user to control the whole environment.

3. SYSTEM OVERVIEW

Figure 1: The system flow chart.

3.1 Problem definition
The input for our system is NS short object motions S =
{s1, s2, ..., sNS

}. Each motion si ∈ S originally has L(si)
frames. During pre-processing, we define the feature Ci and
construct a motion graph layer Gi for si. Based on Gi,
we want to generate a new motion ŝi according to NĈ con-

straints Ĉ, which are given by user. And finally we use these
new motions to composite a rich background scene anima-
tion A with user-specified length L(A).

3.2 System flow
The key idea behind our approach is that the technique of
reusing existing motions such like motion graph is especially
suitable for background scene animation. The important
observation is that one background scene always requires
lots of similar or duplicated objects to reduce the cost of
sketching new objects. While at the same time, we must be
aware to handle duplications carefully to avoid making our
results monotonous.

Our system involves automatic analysis, synthesis and inter-
active design. As shown in Figure 1, we divide the overall
procedure into three major stages from input motions to
motion database and finally desired animation:

• Motion Analysis: At this stage, we get the source
data si, construct the motion graph layer Gi, and as-
sign the feature set Ci.

• Scene Design: We import models to the scene from
database, set animation preference such like L(A), spec-

ify the control conditions Ĉ, and design the appearance
of the scene.

• Animation Output: Here we obtain the final anima-
tion A by a two-pass motion synthesis procedure and
repeatedly optimizations.



4. MOTION ANALYSIS
The first phase of our production pipeline is motion analysis.
In this section, the system requires the user to import source
motions and annotate the physical characteristics, e.g. wind
velocity, for further analysis. We divide this stage into three
components: model segmentation, feature annotation, and
motion graph construction.

4.1 Model segmentation
In order to increase the usability of source motions and raise
the quality of generated result, we use independent compo-
nent analysis (ICA) to first segment the input model. For
an input motion si, we define a matrix Vi consists of the
positions of all vertices of si. The number of rows is the
amount of vertices and the number of columns shows how
many frames si has. We also form the velocity matrix V̂i

which has the same dimension with Vi by calculating the
velocity (e.g. the position deviation) of each vertex.

The element of V̂i is defined as:

(v̂i)s,t =

n−1∑

k=−n

‖(vi)s,t+k+1 − (vi)s,t+k‖
2,

where n determines the window size. Generally, we just set
n = 1. Here we introduce the basic form of the ICA model:

X = AW ,

where X is the observed data, and A and W represent the
mixing matrix and independent components, respectively.
We now substitute V̂i for X and perform ICA to get cor-
responding A and W . Finally we use k-means clustering
to separate A into NRi clusters, where NRi is determined
according to the type of input data.

Since each row of A maps to one vertex of si, after segmen-
tation, each vertex would be assigned to one of NRi groups,
The processed result is shown in Figure 2. By running ICA,
we automatically separate the model into several parts ac-
cording to their movement and could cluster the vertices
which have similar variation during the whole motion se-
quence. This helps us to construct the motion graph for
each cluster later.

4.2 Feature annotation
In our system, we use an arrow to indicate the velocity and
direction of force. For static objects like plants and flags,
the arrow represents the flow effect such as wind, and for
dynamic models like animals or humans, it stands for their
moving speed and facing direction. We define the charac-
teristics annotated by arrows as the features of that motion.
Each frame p of motion si has feature

cip = (τip, φip, θip),

which is a vector of Cartesian spherical coordinate system.
τip is determined by the length of arrow, and φip and θip are

Figure 2: After performing ICA and k-means clus-
tering, we have a segmented model. The flag and
the bird are both separated into two groups. Ver-
tices belong to the red cluster have more intense
movement.

set according to the arrow’s direction. The maximum length
of arrow is fixed, and we normalize τip so that 0 ≤ τip ≤ 1
to prevent from ambiguities between different motions and
make further computation easier.

The system let user specify the features for a few of frames
and then simply get others by interpolation. Every motion
is required to be annotated when it is first loaded into the
system.

4.3 Motion graph construction
Once we have a segmented motion si with NRi groups and
annotated features Ci, we could define the transition cost of
every pair of frames to generate the motion graph layer Gi.
Since the features are roughly set by user, the cost function
does not take them into consideration (We will discuss how
we handle the features in later sections). The system cal-
culates the transition cost only on the basis of pure source
data.

If the input motion si is composed of L(si) frames, e.g., si =
{f1, f2, ..., fL(si)}, the transition cost between two frames fp

and fq is defined as:

D(fp, fq) = α

n∑

k=−n

Dv(fp+k, fq+k)+β

n∑

k=−n

Dv̂(fp+k, fq+k),

Dv(fp, fq) =
∑

‖VSi(colp) − VSi(colq)‖
2,

Dv̂(fp, fq) =
∑

‖V̂Si(colp) − V̂Si(colq)‖
2,

where Dv represents the sum of position difference of all
vertices between two frame sequences. That is, to preserve
dynamics of motion, we compare two subsequences instead
of directly comparing two frames [20]. Dv̂ stands for velocity
difference calculated by the same strategy.

We prune the transitions by selecting only local minimum
and specifying a threshold. Moreover, we examine ‖p − q‖2

to drop some useless transitions. Limiting the frames to not
jump to their near neighbor would bring us more reliable
and continuous result.



Figure 3: We construct motion graph for each group
and thus form a motion graph layer. Notice that the
graph patterns are obviously different, which means
it is reasonable for the segmentation.

We also compute the average playing costs before and after
the transition, which denoted by Dpre(fp, fq) and Dpost(fp, fq).
These two matrices are calculated almost the same as we
described in Section 4.1, the difference is that Dpre(fp, fq)
only concerns about frames from p−n to p, and Dpost(fp, fq)
relatively computes from q to q+n. By comparing the differ-
ences between Dpre(fp, fq), Dpost(fp, fq), and D(fp, fq), we
can determine the number of blending frames of transition
t(p, q).

All above calculations are performed for each group rik ∈ Ri.
Therefore, we would have a motion graph gik corresponding
to each group rik after these processes and thus composite
the motion graph layer Gi.

5. SCENE DESIGN
After the pre-computation is completed, we can now think
about the issues of environment control and settings. In this
section, we determine the structure of whole background
scene, for instance, how many models should be placed,
where should we put them, and what constraints would oc-
cur at specific time. We separate the design procedure into
two parts and discuss each below.

5.1 Background scene design
Because our goal is to generate a big background scene, it
would be very possible that we demand for large quantity
of models, and there comes the problem of choosing models,
making duplications and locating them. Each input mo-
tion is stored in the motion template bank when we load it,
and every motion imported to the scene from template bank
becomes an independent duplication. It can be translated,
rotated and scaled at will.

To simplify the laborious work of putting all objects one af-
ter another, our system let the user to first draw an enclosed
plane, and then choose the items from motion template bank
and set amounts of them, afterwards, the system simply
uses uniform sampling to place each motion. In order to
prevent penetration artifacts between motions, we calculate
the bounding box of motions and avoid their overlapping at
initial position. The system would automatically produce
an arrow to represent the initial environment constraint if
we have not specify any one.

After we finish placing the models and specifying the length
of output animation, the system would synthesis NA-frame
animation as an initial output. We will discuss this part in
details in Section 6.1.

Figure 4: User selects models from template bank
and assigns the amount, and then the motions would
be placed in the specified area (The cyan plane).
The system has automatically generated an initial
arrow for the scene.

5.2 Constraints specification
The second part of scene design is to set the constraints of
whole environment. These constraints instruct the motions
to find the best synthesis paths on their graph layers. Like
the features annotation we have described in Section 4.2, we
use arrows to specify overall constraints of the scene.

There are two types of constraints for use. The first one is
physical force constraint. The user can draw arrows at any
point of view to form a flow field to control the motion of
static object. The second type is self-movement constraint,
which denotes a moving style on the ground for character
motion. The length and direction of arrow determine the
moving speed and orientation, respectively.

The major difference between features and constraints is
that every motion template has only one fixed arrow to rep-
resent its feature, no matter the model is static or dynamic.
When we design the scene, every self-movement constraint
would adhere to a moving object. Comparatively, the phys-
ical force constraint arrows are free for translation, and the
distance between arrow and model would affect the strength
of constraint.

Suppose there are NW physical force arrows in the environ-
ment, let’s denote the distance between model si and arrow
wj as dij , and the strength weight of arrow wk for si would
be:
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Figure 5: We can add control arrows or modify them
at any time we want.

6. ANIMATION OUTPUT
In above sections we have done all pre-computations and set-
tings of the scene. We now describe how the system generate
the final result in this last stage.

6.1 Motion synthesis
The first pass of motion synthesis is executed when we im-
port motions to the scene. At this time, an initial output Â

is generated temporarily as we mentioned in Section 5.1. At
first we scan the frames of motion and specify a range that
relatively meet the constraint, and then randomly choose
one frame as initial frame. Next, for each group rik be-
longs to si, we detect several edges of gik to yield a path
connecting pieces of motion, and then combine the groups
to output ŝi with L(ŝi) ≥ L(A). After that, the user can
specify new constraints or modify existing ones. Once the
constraints have been specified or changed, the next step
is to reproduce a revised animation which corresponds to
those constraints. We use a repeated subsequence replacing
method similar to [19] to generate new motions. The error
function of each synthesized motion ŝi is defined as:

Ei = CT + αCC + βNTi
,

CT =
∑

Dfp,fq,

CC =
∑

(ck − ĉk),

where CT denotes transition cost and CC is constraint cost,
α determines the relative weight between motion smooth-
ness and constraint effectiveness, and β is used to control the
number of transitions. Too many transitions would slightly

decrease the continuity but lack of transitions may result in
a monotonous animation. To find the best path, we contin-
uously select a segment of motions and calculate Ei. If the
error exceeds a threshold, we then attempt to replace it by
switching transitions.

6.2 Optimization
The final task is to optimize our result. So far, we only
do processing on the single motion, however, some global
optimization could enhance the quality of result animation.
We examine the neighboring duplications to check if there
are pieces of motions that have too many frames overlapped,
and replace the subsequences of those motions to make more
natural motions.

7. RESULTS
We present results in Fig.6 and Fig.7. Fig.6 shows three
sequences of motions generated by different methods. The
upper one is original source motion. The middle one is re-
sulting motion synthesized by our method, and the nether
one is generated by traditional motion graph. We can see
apparent discontinuities both in upper and nether sequences
between 300th frame and 301th frame. Fig.7 shows a scene
with numerous flags. We could see the reactions of flags to
the flow constraint. The directions gradually changed from
upper left to bottom right. The red arrow indicates its key-
frame status.

8. CONCLUSIONS AND FUTURE WORK
Our contribution could be mainly explained from two as-
pects. For motion graph algorithms, we introduce ICA to
enhance its flexibility by separating motions into several
groups. This method overcomes the bothersome problem
of insufficient source for data-driven motion synthesis tech-
niques. Furthermore, we innovate a scene design interface
to take the advantage of motion graph’s convenience of high
level control, the tool lets the user quickly generate a big
scene with large amount of objects, and could easily dom-
inate the environment by setting some parameters simply
through pen drawing.

There are several limitations and future works for this sys-
tem. In the segmentation part, we now manually set the
numbers of clusters and independent components (IC). The
numbers of clusters and ICs affect the result directly and
intensely. It is possible to do some analysis to determine
these parameters.

Besides, since we do not take skeleton motion into consid-
eration, we could not benefit from the convenience of con-
trolling skeleton based models. However, there are many
researches that focus on character motion synthesis using
motion graph, There is a potential to merge the character
animation with our background scene animation to perform
a complete big scene.
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Figure 7: The flag scene is composed of two types of flags, each consist of only 300 frames.


