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Categories and Subject Descriptors

H.5.2 [User Interfaces|: Graphical user interfaces (GUI);
1.2.10 [Vision and Scene Understanding]: Video analy-
sis; 1.3.5 [Computational Geometry and Object Mod-
eling]: Geometric algorithms, languages, and systems; H.3.2
[Information Storage]: File organization

1. INTRODUCTION

The popularity of digital cameras and video recorders put
the power of media creation at the hands of millions of peo-
ple. On the one hand, we can now record our surroundings
and share them almost instantly through the Internet. On
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the other hand, with the sheer amount of the contents we
are exposed to nowadays, we now face an increasing burden
to categorize, browse, or look at our own personal video and
photo collections.

To reduce the effort of managing the ever-growing media col-
lections, many commercial applications started to incorpo-
rate search interfaces to retrieve pre-tagged media files. Key-
word tags, locations, or face identities are popular methods
particularly for Internet applications such as Flickr where
people wish to have their uploaded media files noticed and
discovered [2]. However, the majority of personal media files
remain untagged, and they can become forgotten in the pres-
ence of those that are heavily tagged. What we find lacking,
therefore, is a new breed of image browser that allows us
to quickly rediscover what we already have within our own
piles of untagged media store.

There have been various prior research that are useful for
our purposes. For example, image collage research such
as [19] allow us to generate compact and aesthetically pleas-
ing views of image collections. Image retargeting techniques
such as seam carving [20] focus on reducing the size of im-
ages without throwing away important contents. Similarly,
video summarization methods focus on producing the gist
of videos by either reducing their length or by summarizing
each of them into one, or a collection, of images [4, 22].

Our goals are related to the research stated above, with sev-
eral important distinctions. First, ours goal is to create a
tool that allows a user to simultaneously display several me-
dia files at the same time. As such, the tool should not dic-
tate what is be displayed where. Instead, it ought to respond
to user requests such as insertion, deletion, and rearrange-
ment while using the screen real-estate effectively. Second,
we wish to reduce the effort and time for a user to browse
through video collections, and therefore we are not limited
to a specific category of video summarization techniques —
we can choose to break up a single video into multiple im-
ages or even video segments, and they can all be displayed
on the same screen canvas simultaneously. Figure 1 shows a
few sample results generated by our system.

2. RELATED WORK



Figure 1: Example assemblages generated by our
system, including a set of cartoon movie trailers (up-
per) and photos on cats (lower). These are gener-
ated automatically and can be interactively manip-
ulated by the users.

Automatic Image Collage. An image collage refers to
an image created from an assemblage of a collection of im-
ages. A variety of automatic image collage techniques have
been developed both for research and commercial purposes.
Google’s Picasal, for example, incorporates a feature that
generates collages of complete input images. It also provides
different composition styles to the users. Atkins [3] proposed
an efficient method of organizing images in a page. Wang
et al. [24] presented picture collage, which optimizes the lay-
out of rectangular images to maximize the portion of salient
regions in the result. Battiato et al. [5] improved the re-
sult of picture collage by exploiting semantic information to
compute the saliency. Rother et al. [19] presented Auto-
Collage, a method for constructing a seamless collage from
input images.

Video Summarization. Truong and Venkatesh [22] pro-
vided an excellent review of video summarization techniques,
which are divided into two classes, namely video skims and
still image summaries. Video skims generate a shorter sum-
mary video to summarize the whole video, while still image
summaries extract a number of keyframes from a video to
pack the summary image. For video skims, Christel et al. [7]
presented studies that measure effectiveness of video skim
techniques. Divakaran et al. [9] devised a method to adjust
video framerates by analyzing temporal motion activity, and
speed up parts of the video with less activity. Peker and Di-

"http://picasa.google.com/

vakaran [18] used motion activity as well as various semantic
cues such as face, skin color, or speech to control the video
playback rate.

The second class of techniques, image summaries, is related
to image collage and similar to our applications in several
respects. Zhu et al. [27] proposed the video booklet sys-
tem, which extracts a number of thumbnails from a video,
and then reshaped by a set of predefined shape templates.
Wang et al. [25] presented video collage, which blends the
selected images to produce seamless video summary. Yang
et al. [26] and Mei et al. [17] both extended the seamless
blending to generate arbitrary shape collages. Correa and
Ma, [8] presented a method to interactively generate seam-
less video summaries. Barnes et al. [4] proposed a method to
automatically generate video tapestries that allow for con-
tinuous panning. Chiu et al. [6] generated non-triangular
layout to effectively summarize the salient regions. Kang
et al. [13] proposed the space-time video montage.

Our Contributions. Our goals are similar to automatic
image collage in that we wish to preserve salient regions on
the canvas. Additionally, we have to incorporate both im-
ages and videos in our input, and automatically generate
a collage that we can efficiently edit and manipulate after-
wards. This means we have to forgo some of the more time-
consuming techniques such as graph-cut, Poisson blending
and Markov chain optimizations used by several image col-
lage research. In the end, ours is an incremental algorithm
that iteratively computes locally optimal collage configura-
tions. We also choose to play the videos as-is without skim-
ming, and we do not consider this a drawback because we
can readily transform our input videos with any suitable
skimming techniques. Specifically, our contributions are as
follows.

e We propose a novel method for analyzing temporal-
spatial salient regions of a video,

e a method for extracting the temporal-spatial salient
regions while removing apparent camera or object mo-
tions,

e an efficient, greedy technique for packing a collection
of irregularly-shaped visual media, and

e a scheme to iteratively optimize the packing when it is
disturbed.

3. ALGORITHM

We design our media assemblage techniques based on a few
visual guidelines. First, we wish to reduce visual complex-
ities while navigating these media. This means the non-
essential parts of a video can be covered up or eliminated
in the assemblage. We also plan to support interactive op-
erations such as addition, deletion, and rearrangement, and
while the assemblage would change during these operations,
its layout should stabilize and stay static soon after these op-
erations are complete so as to minimize disturbances while
playing individual videos within the assemblage. For this
purpose, the essential, or salient, region of a video needs to
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Figure 2: The overview of our assemblage system. (a) The media collections with shots are detected. (b)
The saliency analysis is performed on every frame. (c) The salient volumes are extracted in every shot. (d)
These media are packed into the canvas. (e) The final assemblage is generated.

have a static outline throughout its timeline. To ensure effi-
cient extraction of the salient regions, we need to be aware
of the camera motions for videos where the subject matters
are moving.

Starting with a set of videos and photos M, our system
computes a configuration X = {p;, Ri}ll;/lll, where p; is the
position and R; is the high salient region of the i-th element
of M. Our goal is to find the optimal configuration X*
subject to a packing energy F,

X* = argn;énE(X). (1)

Figure 2 illustrates the steps of our algorithm. We treat pho-
tos as static videos, and perform the process in two stages,
namely media analysis (Figure 2(a~c)) and media packing
(Figure 2(d-e)). The media analysis stage is a preprocess-
ing step designed to discover informative regions within each
individual videos. Given an input video, we use color his-
togram to split it into a number of video shots. Then, for
each individual shot i, we compute temporal-spatial saliency
of its frames (Figure 2(b)) and extract the region of inter-
est R, by considering the saliency distribution within the
shot (Figure 2(c)). The media packing stage combines all
the input media and efficiently packs them together. We
first compute an initial packing by greedily minimizing the
blank region on the canvas, followed by an iterative process
that adjusts the packing configuration X according to the
packing energy F (Figure 2(d)). Finally, the system decides
what regions are visible for every media and generates a final
assemblage (Figure 2(e)). In the rest of this section, each
step of the algorithm will be described in more details.

3.1 Video Shot Detection

As stated before, we would like the salient boundaries of
each individual element in the final assemblage to stay fixed
while playing back videos. For this purpose, we want each
element in M to be as coherent as possible, and ideally each
element should consist of only one single shot. After ex-
perimenting with several possible methods, we found the
method by Lienhart [14] to be effective for our application.
This technique measures color histogram differences between
two adjacent frames and declares a shot boundary when a
large color discontinuity occurs.

3.2 Saliency Analysis
Psychological studies show that visual signals contrast such
as motion and color are likely to attract people’s visual at-

(a) (b) () (d)

Figure 3: The examples of saliency analysis on the
video frame. (a) The input video frame i. (b) The
input video frame i+1. (c) The original motion mag-
nitude of frame i. (d) The motion contrast magni-
tude of frame i.

tentions [21]. We adopt similar visual attention formulation
by Liu et al. [15] to compute a saliency map per frame per
video, and emphasize the salient regions in the final assem-
blage in order to utilize the 2D canvas more efficiently. In
this method, the saliency of each pixel p is calculated as
a weighted sum of the motion contrast saliency (Sar), the
image saliency (S7) and the face saliency (Sr), as follows

S(p) = wm Su (p) + wiSi(p) + wrSr(p). (2)

We use wy = wy = wr = 1/3 in our implementation. Our
method differs in that we use a simple panning motion model
to preserve the styles of the original shot, and we adopt a
different image saliency measure. An example of this process
is shown in Figure 4.

Motion Contrast Saliency. Moving objects should be
assigned higher saliency values because humans are partic-
ularly good at perceiving them. This behavior is encoded
as motion contrast saliency as shown in Figure 3. First, we
use Lucas-Kanade method [16] to analyze the relative mo-
tion between two adjacent frames, and then approximate a
global camera motion by using a voting scheme where the
motion vectors are used to vote both on a consensus mo-
tion direction and magnitude. The motion contrast is then
obtained by subtracting the original motion vector with the
global camera motion and normalized to 0 ~ 1 into motion
contrast saliency.

Image Saliency. There exist various methods to measure
image saliency based on low-level feature contrast [12, 11,
1, 10]. We choose the approach by Achanta et al. [1] which
calculates the saliency of each pixel based on its color and
luminance differences with respect to its neighbors. Fig-
ure 4(c) shows the image saliency results.
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Figure 4: Examples of our saliency analysis process. (a) The input video frames. (b) The motion contrast
saliency Sy . (c¢) The image saliency S;. (d) The face saliency Sr. (e) The combined saliency S.

Face Saliency. To emphasize the importance of human
faces, we detect the presence of faces with the methods pro-
posed by Viola [23]. The face saliency value is then cal-
culated by applying a Gaussian attenuation function sur-
rounding the area of the detected faces. Figure 4(d) shows
the image saliency results.

3.3 Salient Volume Extraction
Given the saliency map of each individual frame, our next
goal is to extract volumes of the video for the following pack-
ing stages. For a video shot where a single salient object
moves at a constant speed, we may compute the cumulated
saliency S. along a temporal skew (z,y),

Sc(i,j)ZZSf(i+f:E,j+fy), (3)
f

where Sy (4, j) is the saliency value of the f-th frame at pixel
index (4, 7). An optimal direction (x,y) is where the cumu-
lated saliency values are concentrated in a region as small
as possible. To determine this direction, for each frame we
iteratively select the pixels with highest saliency values until
the sum of these values exceeds half of the total saliency val-
ues within this frame, and construct a bounding box using
the selected pixels. Then, we fit a least-square line over the
centers of the bounding boxes over time, and use the line
direction as the optimal direction to align the video volume,
accumulate the saliency values, and determine the region
that should be preserved in the final assemblage.

To calculate this region, we again select those pixels with
highest cumulated saliency value until the sum of these val-
ues reaches a predefined threshold of say, in our case, 50%
of the sum of cumulated saliency from all the pixels. We
then construct this I-Region R; from the convex hull of the
selected pixels. The region outside the I-Region is defined as
the external region E-Region, whose pixels can be discarded
when a tighter packing is desirable.

3.4 Packing

After extracting the salient volumes, we pack the media set
M by following a few criteria. First, we wish to use the
canvas space efficiently. Second, salient regions of the media
should never be occluded. Third, the canvas should observe
the aspect ratios of the display devices. With these goals in
mind, our objective is to find an optimal configuration X*
without occluding each of the I-Regions in M. This packing

Figure 5: An initial packing example.

problem, unfortunately, is a NP-complete problem, and we
propose to approximate the optimal solution by a two-stage
heuristic. First, we use a greedy algorithm to initialize a
layout configuration. Then, this configuration is iteratively
optimized to reach a local minimum.

3.4.1 Packing Initialization

As shown in Figure 5, the packing initialization process is as
follows. The first I-Region is first placed at the center of the
canvas. Then, we place each remaining I-Region R; radially
around the canvas center while ensuring no overlap between
R; and all other I-Regions already on the canvas. We pick
an optimal direction that minimizes the empty space while
respecting the aspect ration of the canvas. Figure 6 shows
two examples of the packing initialization under two differ-
ent pre-selected aspect ratios of 4:3 and 3:1, respectively.

3.4.2 Packing Optimization

After initialization, we iteratively optimize for the configu-
ration X* by randomly selecting an I-Region and moving it
toward a unit direction that reduces the packing energy E by
the greatest amount. Each step of this process is guaranteed
to reduce the packing energy, and we repeat the process until
it stabilize to a local minima. Based on the packing criteria
described before, we design our energy function based on a
combination of penalty measures on empty space, I-Region
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Figure 6: The results of packing initialization with
different preferred aspect ratio: (a) 4:3; (b) 3:1.

occlusion, and aspect ratio deviation, as follows
E = EZ 4+ kEocc (4)

where the occlusion weight k is set to 1 x 10° in our imple-
mentation to ensure that the I-Regions never get occluded.
We now describe each of the energy terms (Fes, o, and Eocc)
in the following paragraphs.

Empty Space Penalty. We define the empty spaces on
the canvas as regions that are not covered by any I-Region.
This energy term represents the percentage of empty spaces
on the canvas, as follows

__ Area(Rp — U; R;)

Bes = Area(Rp) ’ (%)

where Rp is the bounding box formed by all I-Regions R;.

I-Region Occlusion Penalty. This energy term penalizes
coverage of salient video regions, and is simply defined as
the total areas of covered I-Regions,

Eoce = Z Area(R;) — Area(U; R;). (6)

Aspect Ratio Deviation Penalty. The optimal packing
should respect an aspect ratio specified by the user. This
can be described by the following term

1

T e w)te @
where ¢. is the aspect ratio of the bounding box Rg, gp is the
desired aspect ratio, and we use a small number ¢ = 107
to set an upper bound for «. Since the magnitude of the
empty space penalty E.s is always less than 1, the first term
in Equation 4 becomes very small once we approach the
desired aspect ratio.

3.5 Media Assemblage

Now that we have a layout configuration of the media set,
we may begin generating an assemblage on the canvas. The
choice of rendering styles is a rather artistic one. For exam-
ple, AutoCollage adopts a seamless blending style between
adjacent images [19]. For our purposes, we need to clearly
distinct media boundaries for playback and interaction pur-
poses. Simply rendering all I-Regions may suffice, but we

(a) (b)

Figure 7: Comparison of assemblage methods. The
red polygons are I-Regions. (a) A straightforward
Voronoi segmentation. Notice some I-Regions are
eroded in this example. (b) Our approximated
region-based Voronoi approach.

(a) (b) (c)

Figure 8: Interacting with the assemblage. The user
drags the blue region (a), causing several salient re-
gions to become occluded (b). Owur system itera-
tively refines the assemblage and resolves the prob-
lem in just a few iterations (c).

would like to fill up as much empty spaces as possible by
rendering non-essential E-Regions.

A straightforward approach is to segment the canvas using
complete I-Regions as Voronoi sites. As this method proved
to be too slow to run at interactive rate, we approximate
this algorithm by sampling a number of Voronoi sites along
the bounaries of the I-Regions. This approach, in addition
to its speed advantages, has an additional benefit where we
can control the smoothness of Voronoi region boundaries by
changing the sampling rate of the sites. Figure 7 shows the
assemblage using our approach (b) compared to a simple
Voronoi segmentation (a). Notice that the sites are sam-
pled a short distance away from the I-Region boundaries to
prevent nearby regions from eroding into each other.

4. RESULTS

Figure 9: An assemblage of animal videos.
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Figure 10: Assembly of a collection of movie trailers, including (a) one frame from a movie trailers, (b) its
saliency map, and (c) the extracted volume and the I-Region (red polygon). (d) shows the final assemblage

of the collection.

Figure 11: Summarization of a movie trailer. Re-
gions of videos in this assemblage are different video
shots come from the same trailer.

In this section we present our results as well as several appli-
cations. Figure 10 shows the intermediate results of summa-
rizing a collection of movie trailers, including saliency maps
(b), I-Region (c), and final media assemblage (d). Our sys-
tem creates interactive assemblages that users can interact
with via insertion, deletion, and dragging operations, and
our system automatically adjust the layout to the next opti-
mal configuration after these operations. Figure 8 shows an
example of dragging and dropping of a media file, and our
system’s response to refine the configuration.

In addition to these manipulation operations, our system can
be used for a variety of applications such as video collection
summarization, single video summarization, personal media
folder visualization, and interactive video board. We now
discuss a few of the possibilities as follows.

Media Collection Presentation Our system can provide
a presentation of a set of video collections and dynamically
play these videos. A user can preview all these videos si-
multaneously on a single screen and then modify the pre-
sentation as she sees fit. Figure 10(d) and Figure 9 are a
few example of video collection summarization.

Single Video Summarization. Our system can summa-
rize a single video by assembling each individual shot onto
a canvas. Unlike traditional video summarizations, which
select some key frames and summarize them with still im-
age collage, our approach can play all shots simultaneously,
or sequentially with time overlaps, and the users can get a
quick temporal review through this dynamic summarization.
Figure 11 shows an example of summarizing a video.

(a) (b)

Figure 12: A media file browser application. (a)
Preview of a folder with travel photos and videos.
After clicking on the bridge photo, the system brings
up an assemblage of media files related to the trip
to New York (b).

Personal Media File Browser. Figure 12 shows an exam-
ple of visualizing a collection of media related to traveling.
As a user browses through this collection in the root folder,
she can choose to preview representative photos and videos
from different trips (a). She can click on one of the interest
region on the assemblage which brings up media files from
the sub-folder, presented as another assemblage (b).

4.1 Comparisons

Here we present a qualitative comparison between AutoCol-
lage [19] and our approach. AutoCollage operates on im-
ages, and we generate both of the results using the same
photo sets. Figure 13 shows the comparisons on two differ-
ent photo sets. The most obvious difference is an aesthetic
choice where AutoCollage generates seamless collages while
ours have clear boundaries around the photos. Both Auto-
Collage and our system are completely automatic. However,
users can interactively adjust and refine the assemblage gen-
erated by our system, and this is not possible with AutoCol-
lage.

4.2 Video Results

Readers are strongly recommended to watch our video re-
sults via the following anonymous link:
http://www.youtube.com/watch?v=9tzazErlLCE

S. CONCLUSION AND FUTURE WORK

In this paper, we have presented a dynamic media assem-
blage method for summarizing and presenting visual media
interactively. We analyze the temporal-spatial salient re-
gions within each shot for more efficient packing. Our en-
ergy function and iterative optimization process guarantees
occlusion-free packing of salient media regions while ensur-
ing appropriate canvas aspect ratio. We also showed that
our method can be applied to many applications, such as
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Figure 13: Compare media compilation to AutoCol-
lage. Top row: Central Park. Bottom row: New
Year’s Eve 2011. Column (a): our results. Column
(b): AutoCollage.

image and video collection presentation, single video sum-
marization, and hierarchical media browser.

In our current implementation, the packing algorithm does
not respect any user-specified order, and we are working on
packing algorithms that take the order into consideration.
Furthermore, our algorithm, while being fairly interactive,
may get stuck on local minima, and we would like to see a
better re-initialization scheme when this happens. Finally,
unlike a traditional file browser, a media assemblage is in-
herently limited by the size of its canvas, and therefore we
plan to introduce methods that allow panning and scrolling
as well as smart hierarchical layout within the assemblage.
With this, it becomes possible to jump seamlessly from file
browsers, media previewer and media assemblage browsers,
and thus endowing users with more choices of managing their
ever-growing media collections.
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