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Figure 1: An overview of image-based BRDF acquisition. (a) An object of arbitrary shape that we will capture the BRDF from. (b) A real
photograph of cloth. (c) A synthetic image of the same cloth, but applied with the BRDF captured from (a). (d) A synthetic image under
another lighting condition.

Abstract

In order to create photorealistic images, we need to know how light
is reflected from different materials. The bidirectional reflectance
distribution functions (BRDF) plays an important role in modeling
the reflectance of materials. This paper presents a framework for
extracting BRDF samples from multiple photographs, which are
taken from the same viewpoint but under different lighting direc-
tions, of an arbitrary object. After collecting samples, we use a
smoothing interpolation to approximate the complete BRDF from
the measured samples.

1 Introduction

It is an important issue to model and measure how light is reflected
from surfaces of an object in computer graphics and computer vi-
sion. Take the movie ”The Matrix Reloaded” as an example, the
special effect team tried to measure true reflectance of certain ma-
terials such as the actors’ costumes. The measured data is then used
in their rendering framework for realistic renderings [Borshukov
2003].

Bidirectional reflectance distribution functions(BRDFs) are
widely-used models for describing how the light is reflected when
it interacts with the surface of a certain material. Generally, a
BRDF is a function which returns the ratio of incoming and
outgoing energy relative to a local orientation at the contact
point. Additionally, the BRDF is wavelength dependent: lights
of different wavelengthes may have different reflectivities. In
practice, we usually represent the wavelength term by using only
three color (red, green, and blue). Thus, for each color channel,
a BRDF can be defined as a four dimensional function, which is
written as µ(ωi,ωo), where ωi is the incoming light direction and
ωo is the outgoing direction. Both of ωi and ωo are defined in a
polar coordinate system. Therefore, a BRDF is defined as the ratio
of the amount of light reflected in direction ωi to the amount of
light illuminate at the surface from direction ωo. In this paper, we

use a subclass of BRDFs called isotropic BRDFs which ignores the
rotations about the surface normal and the dimension of BRDFs is
reduced to three.

1.1 Overview

There are several ways to acquire BRDFs. To simplify the problem,
many methods require that the shape of the target object is known in
advance. Furthermore, many image-based BRDF acquisition meth-
ods can only work for flat or spherical objects. However, in real
world, most objects are not flat or spherical. Hence, it is not rea-
sonable to make these objects into flat or spherical in order to get
their BRDFs. Take human skin as an example, the shape of face is
neither totally flat nor spherical. Furthermore, since it is impossible
to change the shape of the face, we need to develop another method
which allows BRDF acquisition for objects of arbitrary shapes. The
key idea is, once the shape of the object is found (or estimated), we
can straightly solve the reflectance of the material over the object.
Therefore, we can divide this problem into two parts: one is the re-
covery (estimation) of the shape, and the other is the measurement
of reflectance.

This paper is organized as follows. In Section 2, we briefly intro-
duce the related work on modeling and measuring of reflectance.
In Section 3, we describe the acquisition process, which contains
an introduction of the devices we used and how to perform lighting
calibration. In Section 4, we describe how to convert the measured
data into BRDFs in different coordinate systems. In Section 5, in
order to recover the whole BRDF from scattered samples, we de-
scribe an interpolation method which invokes approximate nearest
neighbor (ANN) for fast search. In Section 6, we demonstrate sev-
eral results including objects with single or multiple materials. Fi-
nally, Section 7 summarizes our contributions and states the future
work.



Figure 2: A snapshot of our acquisition system.

2 Related Work

Sometimes we need to obtain direct measurements of given mate-
rials. Traditionally, BRDFs are measured by a gonioreflectometer
which consists of a light source and a detector. A BRDF sample
is measured at each movement of the light source and the detector.
It is very time consuming sometimes impractical to measure dense
data using this device. To improve the efficiency of measurement
device, Ward [1992] measured the BRDF by using a hemisphere
mirror and a fish-eye lens to gather BRDF samples from a flat mate-
rial. Dana [2001] used an off-axis parabolic mirror to obtain BRDF
samples. Currently, image-based BRDF acquisition becomes more
and more popular. Lots of the BRDF samples can be acquired from
a single image. Marschner et al.[1999] directly measured an object
with known shape. For each acquired image, lots of the BRDF sam-
ples are acquired and the efficiency is greatly improved. Matusik
et al.[2003a; 2003b] acquired dense BRDF samples from spherical
objects of more than 100 materials. The whole process only takes
about 3 hours to acquire the BRDF for each material.

3 Data Acquisition

In this section, we describe the BRDF data acquisition process of
our system. For each capture session, we need to calibrate rela-
tive intensity and direction of each light. After lighting calibration,
we can take multiple images under different lighting conditions by
moving the light sources. Our system assumes that the camera is
orthographic and the light sources are distant lights. Each pixel in
the captured images can be regarded as a BRDF sample.

3.1 Acquiring Images

Our acquisition system consists of a Canon EOS 20D digital camera
controlled by a computer and a light stand with three LED light
sources mounted on it. A real photograph of our system is shown
in Figure 2. The distance from the object to the camera is about 2.5
meters and the distance from the object to the light stand is about
1.5 meters. During the acquisition, we move the light stand around
the object and capture images. We capture total of 36 images for
each object, although these images may not all be used. For the

objects with high reflectivity, we need to capture multiple exposures
of images to construct a high dynamic range image for each lighting
direction. On the contrary, we only capture low dynamic range
images for diffuse objects since LDR images are already accurate
enough. Upon finishing the acquisition, all the images captured are
adjusted by the scaling factors recovered by light calibration.

3.2 Light Calibration

Before proceeding to the acquisition process, the directions of the
light sources to the object and their relative intensities need to be
calibrated first. We use the method which is proposed by Goldman
et al.[2004] to calibrate the light sources. Two spheres are used
for calibration: a steel one and a styrofoam one coated with white
diffuse paint. For each light source, we capture one images of a
steel sphere and another image of a styrofoam sphere. The image
of steel sphere is used to find the light directions and the image of
styrofoam sphere is used to figure out the relative intensities of light
sources.

Lighting Direction: We locate the brightest pixel pmax in the ith
image, Ii, to calculate the direction of the light source. Since the
object is sphere and the camera is orthographic, we can compute
the normal vector at pmax, which is donated as npmax

= (nx,ny,nz).
The lighting direction, Li, is recovered by reflecting the viewing
vector about npmax

. Since the viewing vector is (0,0,1), then

Li = (2nxnz,2nynz,2n2
z −1) (1)

Lighting Intensity: If the lighting direction Li is known, the
intensity of the diffuse sphere at pixel p in image Ii is I(i,p) =

Eiρ(np ·Li), where ρ is the diffuse albedo and Ei is the lighting
intensity. We can recover the relative intensity by solving the fol-
lowing equation

Eiρ =
∑p I(i,p)

∑p np
T Li

(2)

Because the paint used on the styrofoam sphere may not be totally
diffuse, We can not apply all the pixels to solve Eiρ . For each pixel
p with its normal np and the lighting direction Li, three rules are
used to remove outliers. The pixel p is removed when

1. np
T

Li is not in the interval [t1, t2],

2. The angle between the viewing vector V and the reflection
vector R is above t3,

3. The intensity of the point I(i,p) is below t4,

where t1, t2, t3 and t4 are thresholds set empirically. The rules 1
and 2 are used to remove pixels in the specular highlights and the
rule 3 is used to remove dark pixels. After light calibration is done,
scaling factors of three color channels are known and images are
scaled accordingly.

4 Arranging BRDF Measurements from

Acquired Images

4.1 Computing Surface Orientation

To convert the captured samples into BRDF data, we need to com-
pute normals of the surface. Here, we used standard Lambertian
photometric stereo [Woodham 1980]. Although this method can
not work well if there are specular highlights or shadows, we get



around these limitations by taking multiple images into considera-
tion and rejecting highlight and shadow pixels.

Suppose we have n images of an arbitrary object taken under vari-
ous lighting conditions. Let Ip = [I(1,p),I(2,p), ...,I(n,p)]

T be a vec-

tor of the intensity at the point p and L = [L1,L2, ...Ln]
T . Assum-

ing that the material is diffuse, the following equation holds:

Ip = ρL
T

np (3)

Then we can solve the resulting linear system to obtain ρnp =

L
−1

Ip. Because np is an unit vector, we have ρ =
∣

∣L
−1

Ip

∣

∣ and

np = 1
ρ L

−1
Ip. In our implementation, because we always have

more than three images to recover the normals, we use SVD to solve
np and the problem becomes a least-square fitting to a set of linear
equations.

4.2 Outlier removal

To obtain good surface normals, we have to remove pixels in spec-
ular highlight or shadows. The simplest method is to let users man-
ually choose intensity thresholds to remove the outliers. However,
the quality of the normal map will totally depend on these thresh-
olds. To improve the quality, we have tried other two methods:
two-steps outlier removal and RANSAC method.

Two-steps Outlier Removal. This method is based on finding
the best pixel combination. We need at least three measurements
to solve Equation 3. There are Cn

3 combinations if we randomly
choose three measurements from Ip. The first step is, for each com-
bination C j,1 ≤ j ≤Cn

3 , we compute the diffuse factor ρ j . The C j

is not valid if ρ j is not within a given range. After removing the
outliers, we apply Lambertian photometric stereo on the remaining
pixels to find the normal np and the diffuse factor ρ . Although we
get a recommendable set of pixels for normal recovery, there may
still be outliers in this set. Thus, the second step is to remove these
outliers by examining how far away they are from the line created
at the previous step. Finally, we use Lambertian photometric stereo
again to get the final result.

Random Sample Consensus Algorithm. Random sample con-
sensus algorithm (RANSAC) [Fischler and Bolles 1981] is an algo-
rithm for robust fitting of models in the presence of outliers. Since
our inputs are a small number of images, we modify the original
RANSAC algorithm to fit our requirements. First, similar to the
two-steps outlier removal, we choose three pixels at one time and
there are totally Cn

3 combinations to be examined instead of choos-
ing three pixels randomly. The algorithm includes the following
steps:

1. For each combination C j of measurements, we fit a line to
it. Then, we compute the error term which is the sum of the
distances of all measurements to the fit line.

2. We use the combination which has minimum error as the best
initial fit. Then we check on all the pixels and find the valid
pixels which have small enough error within a given thresh-
old.

3. We use photometric stereo again to recover the normal from
these valid pixels as the final result.

For every object, we generate three normal maps using these three
methods and choose the best one to use. However, in some cases,
highlight pixels still affect the result and are not removed totally.
For these cases, we just manually select these regions where high-
light pixels exist and estimate normals in these regions by smooth-
ing out neighboring normals.
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Figure 3: Rusinkiewicz coordinate system.

4.3 Segmentation for Objects with Multiple Mate-

rials

In general, the objects we desire to capture may consist of multi-
ple materials. We design a method to capture multiple materials
from a single object at once. In our system, we segment the object
into several regions manually according to their diffuse colors. We
also assume that the boundaries of the material regions are distinct
enough to simplify the problem. However, there are always pixels
at the boundaries of the regions which may be composed of multiple
materials. Thus, we separate each region into two parts: inner part
and boundary part,and only take inner parts for BRDF acquisition.
This assumption does limit the scope of our system from measuring
objects with very complex materials on their surfaces and need to
be addressed in the future.

4.4 Coordinate System

After image acquisition and recovery of normal maps, we have to
convert the captured samples into BRDF data. The goal is, for each
sample, to use the normal map to find the corresponding location in
the BRDF space, and put the data into a BRDF table.

Natural Coordinate. For isotropic BRDFs, the BRDF values will
be the same when rotating about the normal of the surface. Based
on this characteristic, we can define isotropic BRDFs using natural
coordinate system as

µn(θi,θo,φd), (4)

where φd = φi −φo is used to represent the rotation invariant. Here
we describe how to convert captured data into a BRDF in natural
coordinate system. For a BRDF sample at pixel p with the normal
np = (nx,ny,nz) under the conditions that the lighting direction is
L and the viewing direction is V, we can derive the new lighting
and viewing direction L

′ and V
′ relative to np by the following

equation:

L
′ = Ru,arccos(nz)L (5)

V
′ = Ru,arccos(nz)V (6)

where N = (0,0,1) is the up vector in the tangent space, u = np×N,
Ru,θ is a 3×3 transformation matrix that rotates by an angle θ about

an arbitrary direction u. Then L
′ and V

′ are further transformed into
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Figure 4: Results of using different k nearest neighbors. (a) k = 5. (b) k = 25. (c) k = 100.

polar coordinates, ω ′
i = (θi,φi) and ω ′

o = (θo,φo). We then assign
the BRDF sample to the µn(θi,θo,φd).

Rusinkiewicz Coordinate: Although natural coordinate system
can easily be made out, there is a disadvantage of using it. For ma-
terials with specular characteristics, features of specular peaks can
not be preserved by interpolation methods because we only have
sparsely sampled BRDF data. Thus, we use a different coordinate
system which is proposed by Rusinkiewicz [1998], which is shown
in Figure 3. Unlike natural coordinate system, a BRDF is parame-
terized as a function of a halfway vector and a difference vector:

µr(θh,θd ,φd). (7)

With this coordinate, specular reflection will be aligned with the θd

axis and the shape of peaks will preserved while using interpolation
on the sampled data. Converting sample data into Rusinkiewicz
coordinate is also quite simple. Given the lighting direction L and
viewing direction V, the halfway vector H is derived by

H =
L+V

|L+V|
, (8)

and the difference vector D is derived by

D = Rv,−θh
Ru,−φh

L, (9)

where where T = (0,1,0) is the left vector in the tangent space, v =
np×T , and u = np×Z. Then, H and D are further transformed into
polar coordinates, ωh = (θh,φh) and ωd = (θd ,φd). We then assign
the BRDF sample to the µr(θh,θd ,φd). There is another advantage
of using Rusinkiewicz coordinate. In our system, we assume that
the camera is orthogonal and the light sources are parallel projected.
Hence, all the pixels in the same image will have the same θd , since
θd = arccos(HT

L). Therefore, we can treat each acquired image as
a “slice” in the BRDF space.

5 Interpolation Scheme

If we acquire BRDF samples from spherical objects similar to the
work by Matusik et al.[2003a; 2003b], we can get high quality mea-
surements since the shape of the object is known and we can acquire
all possible normals from a sphere. The major difficulty we face is
that both shape and reflectance model are unknown. In previous
two sections, we have described how to recover the shape of the
object from photographs and how to convert the captured data into
different BRDF coordinate system. Now the problem is, since we

have scattered BRDF data, we need to interpolate the data to re-
cover the complete BRDF. Scattered data interpolation techniques
are very useful in many areas, such as chemistry, physics, and engi-
neering. In computer graphics, it also can be used for model recon-
struction from scanned data points [Park and Lee 1997]. There are
many ways to interpolate scattered data. Lee et al.[1997] proposed
an algorithm for interpolation and approximation using multilevel
B-splines. Radial basis functions (RBFs) are also used for interpo-
lation and approximation of scattered data [Floater and Iske 1996].

5.1 The Epanechnikov Kernel

In our system, a local smoothing method is used to interpolate the
acquired data. We treat a BRDF as a probability density function
and the measured data are sample points of the probability den-
sity function. To estimate the complete function, we use a non-
parametric estimator called Epanechnikov kernel [Simonoff 1996].
This kernel is a discontinuous parabola function of the following
form:

h(x) =

{

3
4 (1−u2) −1 < u < 1
0 otherwise,

(10)

where u = x−xi

h , h is the bandwidth and xi are the values of the
variable in the data. In our system, we use the distance from input
values to measured data as x− xi, then we can interpolate BRDF
values at any position.

5.2 Search Strategy

Originally, we need to do an exhaustive search on all the BRDF data
to find the interpolated result. But we find that it is not necessary to
search every data point since most of them have no contribution to
the interpolated value because of the bandwidth. Hence, to improve
the performance of search, we used an approximated solution. We
build an ANN search structure [Arya et al. 1998] for the data and
query the value through it. We only find the k nearest neighbors
for interpolation, and the bandwidth will automatically changed ac-
cording the minimum and maximum distances of the data to ensure
that we can always find an interpolated value. Figure 4 shows the
results using different k. We can get a smoother result by choosing
a larger k, but it also takes longer to compute.
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Figure 5: Results of image-based BRDF acquisition. At the left, the recovered normal map; at the center, one of the source image; at the
right, a synthetic image rendered under the same lighting condition. (a) A red teapot. (b) A brown teapot, (c) A leaf. (d) A T-shirt.
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Figure 6: Results of image-based BRDF acquisition for a object with multiple materials. (a) The recovered normal map. (b) The segmentation
map. (c) One of the source image. (d) A synthetic image rendered under the same lighting condition.

6 Results

In this section, we present results using the technique we have de-
scribed including captured images, corresponding estimated normal
maps, and the reconstructed images. We first use our system to re-
trieve BRDF from objects with a single material. Figure 5 (a) and
(b) shows the results of acquisition and reconstruction of BRDFs
for two teapots. From left to right, we show the estimated normal
map, one of the input image for some lighting direction and the re-
constructed image using the recovered normal map and interpolated
BRDF data under the same lighting direction. t is noticeable that,
due to the shape of the teapots, they cast self-shadows on their sur-
face. Our algorithm can detect self-shadows and do not take these
illegal samples into account. Figure 5 (c) and (d) show more results
of acquisition and reconstruction of BRDFs for a leaf and a green
T-shirt. To test out system on objects with multiple materials, we
also captured a plastic dog, which is shown in Figure 6. Because
we use a smoothing method to retrieve BRDF values, the bright-
ness of highlight pixels may be darker than captured image. The
RANSAC algorithm performs better because there are both white
and black regions and it is not easy to choose suitable thresholds
for other two methods.

To demonstrate the capability of material transfer, we capture a
plastic monster doll (Figure 1(a)) and acquire its grey diffuse mater-
ial. We then render the captured material with the recovered normal
map of a cloth (Figure 1(b)) to make the cloth plastic as shown in
Figure 1(c) and (d). The acquired materials can also be rendered
onto synthetic objects. Figure 7(a) is the normal map for a geomet-
ric model of a statue. We map the acquired material onto its surface
to give it different looks like grey plastic (Figure 7(b)), green cloth
(Figure 7(c)) and leaf under two different lighting conditions (Fig-
ure 7(d) and (e)).

7 Conclusions and Future Work

To create photorealistic images, it is better to use measured data
instead of an analytical model to preserve the details of the mate-
rial. In this paper, we build an image-based acquisition system to

measure BRDFs from real objects. During the experiments, we ac-
tually acquire BRDFs from 6 objects. Although there are still some
flaws in the results due to the error of light calibration and surface
orientation estimator, the system itself is robust and easy to use. A
local smoothing method is used to reduce the noise in data acquisi-
tion to create images of different viewpoints from original captured
images. In the future, we would like to explore the following direc-
tions.

Precise Surface Normal Estimation. So far, the reconstructed
BRDF can still not be very accurate at highlight pixels because the
estimated normal maps are not accurate enough especially near the
edges of the objects. Hertzmann et al.[2003] use a captured refer-
ence sphere to estimate the normals of the object, but their method
suffers from the existence of self-shadow. We may solve this prob-
lem by using a partial matching algorithm in the future. Mallick
et al.[2005] also propose a method to reconstruct specular surfaces
without explicit reflectance model or reference objects.

BRDF Measurement for Objects with Complex Shapes. To
improve the generality of this system, the ability to measure BRDF
data from complex objects is necessary. How can we acquire the
BRDF data from a strange-shaped object with multiple materials?
The existence of self-shadows is a thorny problem for us to cluster
the materials. All we need is a segmentation algorithm to separate
different materials even if there are shadow or highlight pixels.

Reflectance Representation. If we want to use the measured
BRDF data for rendering, we need to look it up in the BRDF data-
base and find the query result for each pixel. This process is re-
ally time-consuming and hence not suitable for real-time render-
ing. Thus, we would like to reduce the amount of data to save both
storage space and computation time. Principal components analysis
(PCA) might be a good starting point to compress the BRDF data.
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Figure 7: The top of (a) is the normal map for a geometric model of a statue. The bottom is the normal map for a sphere. We map the
acquired material onto the surface of the statue to give it different looks of grey plastic (b), green cloth (c) and leaf under two different
lighting conditions ((d) and (e)). The bottom shows the renderings of the reference balls of these materials.
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