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Abstract Virtual worlds have become very popular in recent years, with trends 
towards larger worlds and more user-generated content. The growth of 3D content in 
virtual worlds will make real-time content streaming (or 3D streaming) increasingly 
attractive for developers. To meet the demands of a large user base while lowering 
costs, peer-to-peer (P2P) content delivery holds the promise for a paradigm shift in 
how future virtual worlds will be deployed and used. We define both the problem and 
solution spaces for P2P 3D streaming, by outlining its requirements, challenges, and 
categorizing existing proposals. Open questions are also identified to facilitate the 
design of future systems. 
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Multiuser 3D virtual environments (VEs) such as Massively Multiplayer Online 
Games (MMOGs) have become very popular in recent years. World of Warcraft, a 
role-playing MMOG where players participate in epic battles and adventures between 
two opposing camps, has over 11 million paying subscribers by 20081. Second Life 
[1], a social MMOG entirely built by its “residents”, also boosts over 1.4 million 
active accounts and nearly 9 million U.S. dollar worth of virtual item transactions 
each month2. Due to the demand for more realistic worlds, VEs have become larger 
and more dynamic. As content becomes easier to create and cheaper to host, more 
developers, even individuals, are now building virtual worlds (e.g., Second Life hosts 
34 terabytes of user-generated content in 20073). The trends towards larger worlds 
and larger numbers of worlds are beginning to show the inadequacy of current VE 
installation methods, which require users to pre-install the full content via DVDs or a 
prior download. Easier access to the various and massive amount of VE content thus 
demands 3D streaming for content distribution [2][3]. 

                                                 
1 http://www.blizzard.com/us/press/081028.html 
2 http://secondlife.com/whatis/economy_stats.php 
3 http://www.informationweek.com/news/showArticle.jhtml?articleID=197800179 



3D streaming is a technique that delivers 3D content over networks in real-time to 
allow users to navigate a VE without a complete content installation. Similar to audio 
or video media streaming, 3D streaming requires the content be fragmented into 
pieces before it can be transmitted, reconstructed, and displayed. However, unlike the 
linearly streamed audio or video, 3D streaming is highly interactive and non-linear in 
nature, where the streaming sequence is based on the visibility or interest area of each 
user, making it individually unique among the users. 

Current 3D streaming schemes adopt the client-server model for content delivery. 
However, such architecture is difficult to scale as 3D streaming is both data- and 
processing-intensive. Prohibitively vast amount of server-side bandwidth and CPU 
power are required for a massive audience. On the other hand, highly scalable yet 
affordable computing and content sharing systems have been built successfully with 
peer-to-peer (P2P) networks. As users in a 3D scene could own similar content due to 
overlapped visibility, they may obtain content from each other in a P2P manner. 
However, while P2P media streaming has progressed significantly in recent years, it 
may not be directly applicable to 3D content due to different content access patterns. 
In both live and on-demand media streaming, content is often sent linearly after a 
starting point, whereas access to 3D content is rather arbitrary and nonlinear, and 
depends much on real-time user behaviors [4]. New insights and novel designs are 
thus needed for P2P-based 3D streaming. 

In this article, we describe the P2P approach to 3D streaming with a conceptual model 
and some recent designs [5] [6] [7]. Through prototyping (see Fig. 1) and simulations 
of our proposed framework, FLoD [7], we show that P2P holds great promises to 
provide scalable and affordable content delivery for future 3D virtual worlds. 

 

 



 

 

 

Fig. 1. P2P 3D streaming prototype system. The different frames show the 
progression of streaming as time passes. 
 



3D Streaming Requirements 

To understand how 3D streaming could work on P2P networks, we must first identify 
its requirements and challenges from the perspectives of both clients and servers. 
There are four main types of 3D streaming today: object streaming, scene streaming, 
visualization streaming, and image-based streaming [7]. In the context of virtual 
worlds, our main focus would be on scene streaming, whose goal is to provide each 
user a navigation experience within a scene by progressively delivering the 3D objects 
within the user’s area of interest (AOI) (i.e., the area currently visible to the user, 
often denoted as a circle around the user [2]). We may assume that each object 
consists of 3D models (e.g., meshes) and other associated data (e.g., textures, height 
maps, light maps, and animations), plus a certain position and orientation described in 
some form of scene description. To facilitate delivery, each object is first fragmented 
into a base piece and many refinement pieces in application-specific manners, using 
methods such as progressive meshes [8] or geometry images [9] for models, or 
progressive GIF, JPEG, or PNG for textures. Once a set of base pieces is obtained, an 
initial rendering of the scene can be performed to allow timely navigation. Additional 
time in the scene will allow users to download and render models in more details, 
given certain Quality of Service (QoS) requirements [10]. The two main requirements 
for a 3D streaming system thus are: 

 Streaming quality 
From the user's perspective, the main concern for 3D streaming is its visual 
quality. However, as visual quality can be subjective, a more definable concept is 
the streaming quality in terms of “how much” and “how fast” a client obtains 
data. For the former, we could use the ratio between the data already downloaded 
and that required to render the current view (i.e., a fill ratio). A ratio of 100% 
indicates the best visual quality (i.e., the same as pre-installed content). For the 
latter, we may use base latency and completion latency to indicate the time to 
obtain the base piece or the full data of an object. Base latency indicates the 
delay to display a basic view of the scene, while completion latency indicates the 
time needed to fully inspect objects. The goal thus is to maximize fill ratios 
while minimizing the latencies. 
 

 Scalability 
From the server's perspective, the main goal is to maximize the number of 
concurrent users by distributing transmission and processing loads to clients as 
much as possible. For transmissions, it is preferable if most content is delivered 
by clients and not by the server. For processing, the server should minimize its 



role in calculating the transmission strategies. Ideally, if these calculations are 
fully delegated to clients (e.g., distributed determination of visibility and delivery 
prioritization), then the server can simply answer data requests. 

 

Challenges in P2P 3D streaming 

While it is relatively straightforward for a server to determine and deliver content to 
clients, new issues are introduced when we switch to a P2P model. We can understand 
them from the perspective of a client, who needs to consider the following issues: 

 Object Discovery: 
In order to know which objects are to be downloaded, the user client must first 
discover the objects within its AOI. Preferably, visibility determination should be 
done without the server's involvement or any global knowledge of the scene. 
However, as only the server initially possesses complete knowledge of the scene, 
we need to partition and distribute the scene descriptions (i.e., object meta-data 
such as placements or orientations), so that a distributed discovery can be done 
(e.g., via hierarchical trees [5] or grids [7] [11]).  
 

 Source Discovery: 
To obtain content from other user clients instead of the server, each client must 
know some other clients (i.e., peers) who may hold the content of interest. These 
partner peers likely are within each other’s AOI as overlapped visibility indicates 
shared interests. However, other peers who have been in the same area 
previously may also retain content in cache. So how to maintain and discover 
potential content sources, either centrally [6] or in distributed manners [7], is 
another challenge.  
 

 State Exchange: 
Once a few peers are found, we still need to know which content pieces are 
available at which peers, and what network conditions exist for each peers, so 
that content requests can be fulfilled. A naïve approach is to query each known 
peer [7]. However, the query-response time of such a pull approach may not 
meet the real-time requirements of 3D streaming. A push approach where peers 
proactively notify each other of content availability thus is also possible [12]. 
 



 Content Exchange: 
To optimize the visual (or streaming) quality for a given bandwidth budget, a 
client can then leverage its knowledge on peers to schedule content requests 
based on visibility, content availabilities and network conditions. Interestingly, 
as 3D streaming can be view-dependent [8], where data pieces may be applied 
arbitrarily to reconstruct objects. As long as the piece dependencies are satisfied, 
only a roughly sequential transfer is needed (as opposed to the strictly sequential 
video streaming). Concurrent downloads can also be exploited to accelerate the 
retrieval for pieces that do not involve dependencies. Depending on the results of 
initial requests, additional peers or requests may then be needed. 

In client-server 3D streaming, object discovery is performed by the server, which 
possesses complete knowledge of all objects, and may determine for each client the 
viewable objects. Source discovery is not an issue as there is only one data provider. 
Full data availability is assumed for the server, and content delivery is unidirectional 
from the server to clients. In P2P 3D streaming, all of the above issues need to be 
addressed, with considerations to performance and scalability. 

A Conceptual Model 

Given the above requirements and challenges, we present a categorization of the main 
tasks for a P2P-based 3D scene streaming as follows (Fig. 2): 

 

 

Fig. 2. A conceptual model for P2P-based 3D scene streaming, where obtaining 
movements and performing rendering are the only task when content is locally 
available. Object preprocessing, determination, transmission, and reconstruction are 
additional stages for networked 3D streaming. In client-server 3D streaming, only 
fragmentation, prefetching, and prioritization are needed. Partition and selection are 
the new tasks introduced for P2P-based 3D streaming. 

 



 Partition: The task of dividing the entire scene into smaller units so that global 
knowledge of all object placements is not required for visibility determination 
[5]. Scene partition is essential if visibility calculations were to be decentralized. 
 

 Fragmentation: The task of dividing 3D objects into pieces so that they may be 
transmitted via a network and reconstructed back progressively by a client. 
Progressive meshes [8] and geometry images [9] are some example techniques. 
 

 Prefetching: The task of predicting data usage ahead of time and generating data 
requests so that transmission latency is masked from users. Predications of user 
movements or behaviors can be employed for this task [10] [11].  
 

 Prioritization: The task of performing visibility determination to generate the 
request order for object pieces. The goal is to maximize visual quality by 
considering factors such as distance, line-of-sight, or visual importance [2] [11]. 
 

 Selection: The task of determining the proper peers to connect and pieces to 
obtain based on considerations of peer capacity, content availability and network 
conditions, in order to efficiently fulfill prefetching and prioritization needs. 

The Design of FLoD 

Based on the above model, we present the FLoD framework [7] to realize P2P 3D 
streaming. We observe that as content and users (or nodes) tend to cluster at hotspots 
[13], a user often has overlapped visibility with its AOI neighbors (i.e., other users 
who are within the given user's AOI). By requesting data from the neighbors first, the 
server can be relieved from serving content repetitively. Note that neighbors here are 
based on virtual proximity and not the physical network. Finding AOI neighbors is in 
fact the discovery of the proper interest groups for content exchange, and must be 
done efficiently. For this purpose, we utilize a Voronoi-based Overlay Network (VON) 
[14] that supports neighbor discovery for P2P virtual environments (P2P-VEs). VON 
allows a node to learn of its AOI neighbors’ IDs, virtual coordinates, and IP addresses 
(i.e., akin to performing a spatial query for objects within the AOI). The basic idea is 
that even though a node may not know other nodes beyond its AOI, its neighbors near 
the AOI border (called the boundary neighbors) likely have such knowledge, and can 
notify about incoming neighbors. Neighbor discovery thus can be done in a fully 
distributed manner without relying on any servers. 



To allow client-side visibility determination, the VE is partitioned into square grids, 
each of which has a small scene description for the objects within. Each client can 
then determine the visible objects by retrieving scene descriptions for cells covered by 
its AOI. When entering a new area, a client first prepares some scene requests to 
obtain scene descriptions from its AOI neighbors or the server. Prioritized piece 
requests based on preferences are then sent for the visible objects. A view is rendered 
progressively as data pieces arrive from either the peers or the server (which acts as 
the final data source for unfilled peer requests). A query is also made to neighbors on 
content availability before actual requests are sent to randomly selected neighbors that 
answer the query. The process is repeated as a client moves in the environment. 

To demonstrate how FLoD works in real scenarios, we implement a prototype (Fig. 1) 
that performs all the major 3D streaming tasks except prefetching. We experiment 
with the prototype by setting up a Linux server to load the initial scene and respond to 
client requests, as users login to navigate and explore the scenes. The experiment 
shows that the server bandwidth usage is about half of a pure client-server approach, 
as clients can be self-sufficient in content serving [7]. 

To investigate large-scale behaviors, we then perform simulations with bandwidth 
limits (i.e., 1 Mbps download / 256 Kbps upload for clients, and 10 Mbps symmetric 
for the server). Objects are placed randomly on a 2D map, with sizes based on our 
prototype (i.e., 15 KB per object, with 3 KB base piece and 1.2 KB refinement pieces, 
and 300 to 500 bytes per scene description). The nodes move with constant speeds 
using random way-points [11] for 3000 time-steps, and request scene descriptions or 
data pieces as needed. 

Scalable systems need to keep resource usages bounded at all relevant system nodes. 
Fig. 3(a) shows the upload bandwidth for both a client-server (C/S) server and a 
FLoD server. As the server upload limit is 10 Mbps, the C/S server exhausts its 
bandwidth at 1250 KB/s when serving 200 nodes. On the other hand, a FLoD server's 
upload stays relatively constant below 50 KB/s. This reduction is explained in Fig. 
3(b), which shows that the upload and download bandwidth of FLoD clients converge, 
indicating that as the system scales (i.e., the number of AOI neighbors increases), 
FLoD clients become self-sufficient in content serving. However, some bandwidth 
overhead exists for using the P2P overlay, as the overlay needs to exchange user 
positions and notify peers of new neighbors [7]. This overhead thus grows as AOI 
neighbor density increases. While this overhead growth indicates a certain scalability 
limit, it also means that if the user density in each region is controlled, the entire 
system can accommodate users in a scalable manner. 
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(b) 

Fig. 3. Bandwidth usage comparison between P2P and client-server (C/S) 3D 
streaming. (a) Server bandwidth usage shows that a P2P server uses much less 
bandwidth than a C/S server after a saturation point of 200 nodes. (b) Client 
bandwidth usage shows that by providing content through client upload, a P2P client 
has matching upload/download that alleviates the server from content transmission. 
Some overhead for using the overlay exists and grows with user density in the region. 

 



Comparisons and Open Questions 

FLoD addresses object discovery by using grid-based scene descriptions, and queries 
AOI neighbors from a P2P-VE overlay for source discovery. A query-response 
approach is used for state exchange, and random selection from peers for content 
exchange. Though this basic design is simple, the data sources are limited and the 
query for content availability may be slow. In a subsequent work [12], we let clients 
keep historic AOI neighbors as extra sources, and proactively push content 
availability to AOI neighbors to reduce the query-response delay. Piece requests are 
also sent to closer AOI neighbors first to avoid concentrating requests. Simulation 
results show that both fill ratio and base latency improve with the enhancements. Two 
recent designs have since been proposed for P2P 3D streaming, and represent 
alternative approaches in the solution space: 

LODDT: Level-of-detail description tree (LODDT) [5] is a tree structure that stores 
urban cityscape hierarchically. Clients thus can progressively perform visibility 
determination given a partial tree covered by the user’s AOI. A few peer selection 
strategies based on object proximity and estimated content availability are also 
evaluated. Object discovery thus is based on a distributed tree, while source discovery 
is performed with a P2P-VE overlay similar to FLoD. However, as only a selected set 
of connectivity peers provides the AOI neighbors, LODDT is more of a super-peer 
than a fully distributed design. To learn of the client states, queries and responses are 
also exchanged among the peers. Content availability is not exchanged, but inferred 
from the relative positions between neighbors. Based on response time and estimated 
content availability, requests are then made randomly to potential sources. 

HyperVerse: HyperVerse [6] utilizes a group of public servers to construct a static, 
structured overlay that maintains the user positions for a VE. The clients learn of 
other peers from the servers, and exchange content by forming a loosely-structured 
overlay. Object discovery and source discovery thus are performed centrally by the 
server that notifies clients of relevant peers and objects. There is no explicit state 
exchange policy, while content is also requested from random neighbors. 

We compare these designs with FLoD in a taxonomy based on the main challenges 
below (Fig. 4), while outlining the potential solution space for P2P 3D streaming: 



Object Discovery: FLoD differs from LODDT mainly in the scene partitioning 
method (e.g., FLoD uses grids and LODDT utilizes trees), while HyperVerse uses the 
server to maintain the object list. A central list is arguably more flexible and secure, 
as distributed scene descriptions are not straightforward to update, and malicious 
clients could manipulate the object list. On the other hand, a central list faces 
scalability limitations if the server receives too many requests. Grid partitioning is 
simple and only a small number of cells are needed for ground-level navigation. 
However, for scenes viewable from different altitudes (e.g., city models or virtual 
globes), grids become inefficient as too many cells can be involved. On the other hand, 
tree structures require a top-down construction; so many nodes from the root down 
have to be retrieved first, before ground-level objects can be determined. 

Source Discovery: The current designs mostly use AOI neighbors as sources, 
maintained either centrally or among the peers. Using a P2P-VE overlay for neighbor 
discovery can drastically reduce server loads [14]. However, the overlay incurs some 
overhead that grows with AOI neighbor density. A super-peer-based tracker for 
sources may be a balance between the two extremes, and could keep track of non-AOI 
neighbors with relevant content. However, its failure needs to be well considered. 

State Exchange: Few states are being exchanged among the current designs (e.g., 
content availability and network condition), and the two main approaches are pull (i.e., 
query-response) and push (i.e., proactive update). Current evaluation indicates that the 
push approach is faster than pull [12]. However, whether alternative or hybrid 
approaches exist warrants further investigations.  

Content Exchange: Random selection is being used by both the basic FLoD design 
and HyperVerse. In the enhanced FLoD, requests are sent to closer neighbors first, 
while LODDT bases requests on estimated capacities. However, detailed comparisons 
have yet been made among these approaches. Additional criteria may also be used to 
form the requests, such latency or piece dependency. Current methods are mostly 
pull-based (i.e., requests are sent to the source providers), but push-based approaches 
is also a possibility (i.e., sources proactively send out content, similar to how Content 
Delivery Networks, or CDNs push web content to different geographic servers). 

Besides these network-specific issues, additional requirements in 3D streaming are 
also worth exploring. For example, performing content update with distributed peers, 
or providing content authentication for commercial applications [15]. Content 
prefetching and caching is also an important aspect to 3D streaming [10] [11]. 
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Fig. 4. Taxonomy of P2P 3D streaming approaches. FLoD [7] relies on 
grid-partitioned scene descriptions and a fully-distributed P2P-VE overlay to discover 
objects and sources, while using both push and pull to exchange content. LODDT [5] 
utilizes a hierarchical tree to partition the scene, while prioritizing requests based on 
network conditions. HyperVerse [6] designates the discovery phase as a server task, 
and uses clients only for content exchange purposes. 

Related Work 

Schmalstieg and Gervautz [2] first introduce scene streaming where a server 
determines and transmits visible objects at different level-of-details (LODs) to clients. 
Teler and Lischinski use pre-rendered image-based impostors as the lowest LOD to 
allow faster initial visualizations [3]. Cyberwalk [11] adopts progressive meshes to 
avoid the data redundancy from multiple LODs, and focuses on caching and 
prefetching to enhance visual perceptions. Social MMOGs such as ActiveWorlds4, 
There.com5, and Second Life [1], as well as the 3D Instant messenger IMVU6, utilize 
scene streaming to support dynamic content, but little of their mechanisms are 
publicly known. Our work complements the above works with distributed deliveries. 
Mayer-Patel and Gotz present the concept of non-linear media streaming [4] where 
interactive content (e.g., images for a virtual museum) is divided and sent through 
multicast channels subscribed by clients. The system supports a large number of 
receivers by sending the content via application-layer multicast (ALM). However, 
ensuring proper content partition (so that only relevant content is received) and 
bounded latency (important for interactive applications) are non-trivial issues. Under 

                                                 
4 http://www.activeworlds.com/ 
5 http://www.there.com/ 
6 http://www.imvu.com/ 



their approach, the clients would receive excessive content beyond current interests 
and experience variable latencies due to the limitations of ALM channels. 

Conclusion 

FLoD represents one of the first steps towards P2P-based 3D streaming. Compared 
with P2P media streaming, P2P 3D streaming faces the challenges of non-linear 
content access and the latency-sensitive dynamic grouping of users with similar 
interests. Grouping in P2P media streaming is easier, as group membership is 
relatively static and well-defined. Compared with client-server 3D streaming, P2P 3D 
streaming must deal with the additional challenges of object discovery, source 
discovery, state exchange, and content exchange. A recent study on Second Life 
traffic has shown that 60% to 88% of server bandwidth usage is for textures, and a 
busy region may serve close to 100 GB of textures each day [13]. As shown by our 
experiments and simulations, FLoD indeed can relieve the server of its heavy loads. 
Virtual globe applications such as Google Earth may also benefit from P2P 3D 
streaming, as they move towards 3D content with possibly multi-user interactions7.  

Real-time 3D content has yet found a way to most Internet users in spite of years of 
efforts. While challenges remain in areas such as protocol standards and the ease of 
content creation, content streaming may effectively address the delivery problem. 3D 
streaming on P2P networks thus is a topic of interest to both graphics and networking 
professionals. By identifying the basic issues, we hope to highlight this promising 
direction for making 3D content more accessible. An open source implementation of 
FLoD is available at http://ascend.sourceforge.net. 
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