
6.1-4

Abstract--To provide 3D programs for all kinds of mobile de-
vices, platform-dependent is still a big problem. In this paper, we
present a platform-independent 3D graphics library, jGL ES,
which is based on J2ME and has a similar programming envi-
ronment as OpenGL ES. With jGL ES, the programmers can
follow the same programming style of the framework of OpenGL
ES and smoothly transfer their source codes to be cross-platform
applications.

I. INTRODUCTION
The demand for showing 3D graphics on mobile devices

increases drastically in recent years as a result of portable de-
vices become more and more prevalent today. For this pur-
pose, OpenGL ES is adopted widely as a de facto industry
standard for embedded systems or mobile devices. However,
different mobile devices have different operating systems as
well as programming environments at this moment. Hence,
the 3D applications written by C/C++ with OpenGL ES li-
brary on portable devices are highly platform-dependent, i.e.,
the programs might run well on certain machines but probably
crash on others. Therefore, in this paper we present jGL ES, a
platform-independent 3D graphics library based on J2ME
(Java 2 Platform, Micro Edition) environment and has a simi-
lar programming architecture with OpenGL ES for mobile
devices, since J2ME can provide a cross-platform environ-
ment for almost all kinds of mobile devices.

II. ARCHITECTURE
From users’ viewpoint, jGL ES is an interface between 3D

applications and native operating systems. The system hierar-
chy and architecture of the graphics engine of jGL ES is
shown in Fig. 1.

A. Application Programming Interface
jGL ES is implemented by following the specifications of

OpenGL ES 1.0 [1], which is a well-known and widely-
adopted industry standard. However, since OpenGL ES and
its ancestor, OpenGL, are not designed for J2ME or Java plat-
form, to develop jGL ES using pure Java on J2ME environ-
ment, we have to redesign its application programming inter-
face (API). Because Java is an object-oriented programming
(OOP) language, we encapsulate all functions in various func-
tional objects and provide a GLES class for programmer use.
Each function in OpenGL ES has a corresponding one in jGL
ES. Hence, the users can use jGL ES in the same way as using
OpenGL ES except they have to use these functions in an ob-
ject-oriented manner as shown in Fig. 2.

This work was partially supported by the National Science Council of Tai-
wan under the numbers: NSC93-2622-E-002-033.

Fig. 1. The system hierarchy and architecture of the jGL ES graphics engine.

GLES myGLES;
private void paint() {

myGLES.glClear(GLES.GL_COLOR_BUFFER_BIT |
 GLES.GL_DEPTH_BUFFER_BIT);

myGLES.glPushMatrix();
myGLES.glRotatex(ROTATE_ANGLE, R_X, R_Y, R_Z);
myGLES.glEnableClientState(GLES.GL_VERTEX_ARRAY);
myGLES.glVertexPointer(3, GLES.GL_INT, 0, MODEL_VERTEX_ARRAY);
myGLES.glDrawArrays(GLES.GL_TRIANGLES, 0, 100);
myGLES.glPopMatrix();

}

Fig. 2. A part of an example code of jGL ES.

B. Architecture of Graphics Engine
The architecture of jGL ES is originated from jGL [2],

which is a 3D graphics library for Java (J2SE) with an
OpenGL-like API. Since the J2ME environment has more
constraints than J2SE platform, we modify several parts of the
architecture to fit the requirements of developing 3D applica-
tions in mobile environments.

To enhance the performance of jGL ES, we utilize the class
inheritance to redesign the system hierarchy of jGL ES as il-
lustrated in Fig. 1. The graphics context of jGL ES can be
divided into two parts. One is for changing the information
and states stored in the graphics context without performing
real actions; the other performs real actions and results in
changes directly. Since jGL ES is defined as a state machine
like OpenGL ES, the states of jGL ES have been classified
into several categories including flat or smooth shading, with
or without depth test (z-buffer), etc. Hence, different clipping,
geometric and rendering routines are pointed and called by the
GLES State Pointer on the fly in different states.

 jGL ES - a J2ME-based 3D Library for Mobile Devices

Cheng-Han Tu and Bing-Yu Chen, Member, IEEE
National Taiwan University

C. Performance and Memory Usage Issues
Currently, most mobile devices use low-cost processors and

rather limited memories. Consequently, to provide better per-
formance with lower memory requirements is a great chal-
lenge for supporting 3D graphics on mobile devices. Based on
our experience, we design the following strategies to speed up
the performance of jGL ES but use less run-time memory:

1) Support floating point data type
Most mobile devices are lack of floating-point accelerator,

thus J2ME CLDC 1.0 does not support the data type of float-
ing-point. In order to handle the calculation using this data
type for 3D graphics, we provide a well-tuned class GLfixed
in jGL ES which emulates floating-point data type and use
table-lookup method for acceleration, including the calcula-
tion of trigonometric functions.

2) Avoid deep class inheritance
It would be a great overhead on J2ME environment to have

deep class-inheritance hierarchy, thus we design the class in-
heritance hierarchy of jGL ES to avoid such situation.

3) Reduce the frequency of object (de-)construction
Memory allocation is a very time-consuming process, so

constructing and deconstructing objects frequently would
bring down the performance. Hence, we manage the memory
by ourselves by pre-creating a set of objects and deliver them
out on demand. Through this mechanism, we not only use the
memory efficiently but also reduce the frequency of runtime
object creation and deletion to have a higher performance.

4) Eliminate the redundancy of object properties
To reduce the run-time memory use, we also adopt Fly-

Weight design pattern to share the objects which have com-
mon, intrinsic, and invariant information, such as the same
constants.

III. EXPERIMENTAL RESULT
To test the performance of jGL ES, we use a Motorola

A780 mobile phone with a 318MHz CPU running on Embed-
ded Linux platform as our testing environment. Our demo
programs are compiled with J2ME CLDC 1.0 / MIDP 2.0 and
tested on J2ME WTK 2.1 default emulator, SonyEricsson
P900 emulator and some real mobile devices. Fig. 3 shows
some different rendering results on the emulators and TABLE
I lists the testing results on the real devices. We also have
tested jGL ES on several other mobile operating systems in-
cluding Symbian and Microsoft Windows CE. Furthermore, to
test the cross-platform capability, we also tested jGL ES on an
old mobile phone (Nokia 6600). The result shows that the 3D
program developed with jGL ES can run very well on such an
old device.

IV. CONCLUSION AND FUTURE WORK
By using jGL ES, we provide a smooth way for those who

are familiar with OpenGL ES or OpenGL libraries using
C/C++ language to make their 3D programs to run on almost
all kinds of mobile devices. Although the performance of cur-
rent version is still limited due to the power of the processors,

we indeed provide a convenient and efficient way to build up
a 3D program on almost all kinds of portable devices. Cur-
rently jGL ES supports 2D/3D transformations, some render-
ing options including wired-frame, flat-shading, smooth-
shading and limited lighting effects, etc.

Performance and memory limitation are still the great chal-
lenges for us to develop jGL ES. Since jGL ES provides one-
to-one mapping functional objects as OpenGL ES functions,
for the convenience to C/C++ programmers, it is possible to
provide a translator or pre-compiler to translate the C/C++-
based OpenGL ES codes to jGL ES codes automatically.

Our major contribution in this paper is not only for provid-
ing a 3D library for mobile devices, but also a cross-platform
and familiar programming environment. Since many compa-
nies are developing GPUs for mobile devices, by porting the
kernel of jGL ES to take the benefits of the native GPUs but
providing the same jGL ES API for 3D applications, pro-
grammers can easily develop a platform-independent applica-
tion and take advantages from the native devices.

Fig. 3 (Screenshot from some emulators). Left: A wired-frame Athena model.
Left-Upper: A flat-shaded icosahedron with a single (Red) lighting source.
Right-Upper: A wired-frame icosahedron. Left-Lower: A smooth-shaded cube.
Right-Lower: A wired-frame teapot.

TABLE I
TEST RESULTS OF REAL DEVICES

REFERENCE
[1] OpenGL® ES Common/Common-Lite Profile Specification Version

1.0.02, D. Blythe, Eds., Khronos Group, 2004.
[2] B.-Y. Chen and T. Nishita, "jGL and its Applications as a Web3D Plat-

form," ACM Web3D 2001 Conference Proceedings, pp. 85-91, 2001.

Test Environment: J2ME CLDC 1.0 / MIDP 2.0 Devices: Motorola A780
Model Teapot Icosahedron
#Polygon 100 60 60

Rendering mode Wired-frame Wired-frame Flat-shading +
lighting (single light)

Time 0.3s 0.2s 2.6s
Model Cube Anthena
#Polygon 12 400
Rendering mode Smooth-shading Wired-frame Smooth-shading
Time 0.6s 0.7s 4.9s

	I. INTRODUCTION
	II. ARCHITECTURE
	A. Application Programming Interface
	B. Architecture of Graphics Engine
	C. Performance and Memory Usage Issues
	1) Support floating point data type
	2) Avoid deep class inheritance
	3) Reduce the frequency of object (de-)construction
	4) Eliminate the redundancy of object properties

	III. EXPERIMENTAL RESULT
	IV. CONCLUSION AND FUTURE WORK

