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非負値行列因子分解による長時間ビデオからの
照明と幾何情報の測定法

陳 炳宇1,2,a) 陳 心怡1,b) 西田 友是2,c)

概要：現実的な視覚効果を作成するには、シーンの幾何モデル、照明条件、材質特性は必要である。本
論文では、長時間ビデオから屋外シーンを測定するために非負値行列因子分解（Non-negative Matrix

Factorization；NMF）を利用することで、フォトメトリックステレオの反復アプローチを提案する。提案
法は影の存在があるでも、その屋外シーンの表面の幾何と照明情報を測定することができる。これを達成
するために、本論文では、長時間ビデオでの、1）影のピクセルを検出する方法、2）屋外シーンの幾何と
照明情報を測定できる NMFによるフォトメトリックステレオの反復アプローチをを提案する。
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Estimating Lighting and Geometry Information
from Time-Lapse Videos via Non-Negative Matrix Factorization

Bing-Yu Chen1,2,a) Hsin-Yi Chen1,b) Tomoyuki Nishita2,c)

Abstract: To create appealing realistic visual effects, complete geometric models, lightings, and material
properties of a scene are often required in film production or augmented reality. This compact representation
also enables various applications in many image synthesis and editing tasks. In this paper, we introduce
an iterative photometric stereo approach via non-negative matrix factorization (NMF) to model an outdoor
scene from a time-lapse video, and retrieve the surface geometry and lighting information of the scene even
in the presence of shadow. To accomplish this, in this paper, we provide 1) a novel shadow detection method
to locate shadow pixels in a time-lapse video, and 2) an iterative photometric stereo framework with NMF
to recover the geometry and lighting information of the outdoor scene.
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1. Introduction

The goal of realistic image synthesis is to produce

computer-generated images that are indistinguishable

from real photographs. The process needs detailed mod-

els of scenes including light sources and objects specified
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by their geometry and material properties. One of the

best ways of obtaining these data is through the mea-

surements of the scene attributes from real photographs

by inverse rendering. However, classic inverse rendering

methods have been largely limited to the settings with

highly controlled lightings or known geometry. Hence,

many of them only focused on small objects or indoor

scenes. Even for the methods that worked in outdoor en-

vironments, they are usually based on some special setups

to record the illuminations during the scene capturing. As

well, they required the prerequisite of the surface geome-
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図 1 (a) Four frames of the input time-lapse video. (b) The

extracted normal map (left) and reflectance map (right).

(c) The synthesized image (left) and the difference image

(right) by comparing with its original input image. In

the difference image, the blue color indicates small differ-

ence, while the red color indicates large difference. (d)

The lighting transfer result. The small figure on the left-

upper side is the source image, and its extracted lighting

parameters are applied to the target scene.

try. Although there are many techniques available for 3D

building reconstruction and surface reflectance measure-

ment, it is well-known that acquiring such information is

extremely difficult, especially in complicated and diverse

outdoor scenes.

An alternative line of inverse rendering utilized time-

lapse data to recover various scene properties including

scene geometry, surface reflectance, shadows, illumina-

tions, and camera parameters. The major advantage of

the time-lapse data is that, by observing the same scene

under many different lighting conditions, it contains much

more information that can be extracted comparing to us-

ing either a single image or an unstructured video via

dense sampling. Several previous works have explored this

data source. Lalonde et al. [6] estimated the illumination

model by using the time-lapse data. Thereby, it enables to

illumination-consistent appearance transfer across differ-

ent cameras. However, their method requires complicated

preprocessing and camera location, thus it cannot be ap-

plied on image sequences obtained from general sources,

for example on-line videos. Closely related to our method

is that of Sunkavalli et al. [16]. They decomposed the

scene into shadow, illumination, and reflectance compo-

nents under some assumptions on the distribution of the

shadow and sky condition. Since they only recovered a

partial geometry of the scene, their factored representa-

tion cannot be transferred to another scene directly. In

contrast, our goal is to extract both the surface geometry

and lighting properties of the scene without the require-

ment of knowing the camera location, shadow distribu-

tion, and weather condition.

Therefore, we introduce an iterative photometric stereo

approach with non-negative matrix factorization (NMF)

to model an outdoor scene from a time-lapse video, and re-

trieve the surface geometry and lighting information even

in the presence of shadow.

2. Related Work

Inverse Rendering. Inverse rendering refers to re-

cover from real photographs the attributes of scenes, in-

cluding reflectance, lightings, and textures. Ramamoor-

thi and Hanrahan [12] presented a signal-processing

framework of reflection, which is useful in theoretical anal-

ysis and various practical applications of inverse render-

ing. For indoor setting, there are a significant amount of

methods [3], [13], [15], which produced high quality mea-

surements and leading to the creation of realistic images.

There are also some methods designed for outdoor envi-

ronments under natural illumination. Assuming a sim-

ple parametric model for skylight, Yu and Malik [20] pro-

posed to solve a series of optimization problems to find the

parameters of appropriate lighting and reflectance mod-

els. Debevec et al. [4] estimated the reflectance proper-

ties of the surfaces via iterative optimization. Similarly,

Nimeroff et al. [11] rendered scenes under natural illumi-

nation by combining several basis images.

Time-Lapse Sequence Analysis. Intrinsic images [1]

are mid-level description of a scene. An image can be

decomposed into two intrinsic images: a reflectance im-

age and an illumination image. Although decomposing

a single image into the intrinsic images remains a dif-

ficult problem, deriving intrinsic images from an image

sequence has seen great success. Weiss [18] used a maxi-

mum likelihood framework to recover the intrinsic images

from a time-lapse video in which the illumination varies

but the reflectance remains constant. Matusik et al. [10]

used time-lapse data to estimate the reflectance field for a

fixed viewpoint by solving an optimization problem, but

a light probe camera is needed to estimate the incident il-

lumination. Lalonde et al. [6] proposed to use time-lapse

data with GPS information to geometrically calibrate the

camera position. Sunkavalli et al. [16] described a method

for converting a time-lapse video of an outdoor scene into

the basis curves where the data at each pixel has been

factored into illumination, geometry, and reflectance com-

ponents. Besides, there is also some recent work focused
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on the problem of analyzing and extracting information

from time-lapse video sequence, e.g. [7][17].

Photometric Stereo. Woodham [19] introduced photo-

metric stereo, which is a method allows us to recover the

surface normal and reflectance of Lambertian objects from

a set of images obtained under several different lighting

conditions by solving a linear system. Hayakawa [5] pre-

sented an unconstrained photometric method using SVD

to estimate the surface normal and reflectance of objects

without a prior knowledge of the light-source direction and

intensity. Yullie et al. [21] extended this method to a rank-

4 formulation that allows to recover the ambient light but

assumed all images share a common background ambient

lighting. Photometric stereo under complex illumination

has also been demonstrated in [2]. Recently, applications

of photometric stereo are also proposed. For example,

Shen et al. [14] extend photometric stereo method to do

weather estimation.

3. Background

Lambertian Surface Model. In many works, to over-

come the high dimensionality of BRDF (Bidirectional Re-

flectance Distribution Function) and make the recovering

process feasible, more compact representations depended

on a small number of parameters have been developed.

The simplest reflectance model used in many problems is

Lambertian reflectance model. We assume that the sur-

face point (x, y, Z(x, y)) with the normal direction N(x, y)

on the pixel (x, y) of a captured image is illuminated by a

distant light-source whose direction is denoted by vector

M . We also assume that the surface point absorbs the in-

coming light of various wavelengths c ∈ {r, g, b} according

to the reflectance function ρ(x, y). Under the Lambertian

reflection model, a pixel intensity ic(x, y) in the captured

image is given by

ic(x, y) = ρc(x, y)[N(x, y) ·M c]. (1)

Photometric Stereo. In calibrated photometric stereo

techniques, the problem is to derive the surface normal,

surface reflectance, light-source direction, and light-source

intensity simultaneously. The formulation of photometric

stereo is described as follows: a measurement matrix I

contains the intensities of P pixels through F frames. As-

suming that the surface follows the Lambertian reflectance

model, this measurement matrix can be factorized as:

I = RNMT,

where RP×P is the surface reflectance P×P diagonal ma-

trix and only the diagonal elements contain the reflectance

values, NP×3 is the surface normal P × 3 matrix, M3×F

is the light-source direction 3 × F matrix, and TF×F is

the light-source intensity F × F diagonal matrix. There-

fore, from the multiple images captured by a fixed camera

under varying illuminations, the surface model can be for-

mulated as :

I = (RN)(MT) = SL,

where S = RN, L = MT, each row of S encodes the

reflectance and orientation of a scene point, and each col-

umn of L encodes the direction and intensity of the light-

source. Traditionally, SVD is usually applied to derive

both L and S, i.e., I ≈ ŜL̂, where Ŝ and L̂ are the factor-

ized results representing surface geometry and light direc-

tion. However, because shape reconstruction is the main

concern in the photometric stereo problem, using SVD to

reconstruct the surface normal also limit the estimated

albedo and light magnitude to be gray-level.

Matrix Factorization using NMF. Although SVD is a

well-known method for matrix factorization, in some sit-

uations there also some limitations of SVD. For example,

it cannot be directly applied to the intensity matrix with

missing data. As well, the factorized basis vectors may

contain both positive and negative components, but the

negative components may contradict to the physical re-

alities in our factorization process. Thus, we propose to

use NMF [8], [9] to deal with the missing data and search

for the non-negative vectors as the representative basis.

NMF can be formulated as follows: given an n×m matrix

Vn×m with each element vij ≥ 0 ∈ V and a prespecified

positive integer r < min(n,m), NMF can find two non-

negative matrices W and H, such that V ' WH, where

their elements wij ≥ 0 ∈ W and hij ≥ 0 ∈ H. If each

column of V represents an object, NMF approximates it

by a linear combination of r “basis” columns in W. The

conventional approach to find W and H is by minimizing

the difference between V and WH.

4. Geometry and Lighting Extraction

For an image sequence, where a surface point is lit by

different light sources in different frames, Eq. (1) can be

extended as:

ick(x, y) = ρc(x, y)[N(x, y) ·M c
k ], (2)

where k = 1, 2, ..., F is the image index and F is the num-

ber of images. There are two important assumptions in

this model: the surface points 1) are lit by the same dis-

tance light source, and 2) are not in the shadow of any
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light source. This illumination model is suitable for in-

door object(s), since we can control the lightings to pre-

vent the shadow. However, in an outdoor environment,

the above assumptions are usually violated:

( 1 ) The sunlight itself only affects the scene in some parts

as the sun is a directional light source, but the sky-

light scatters around a large portion of the outdoor

scene and influences the scene with indirect illumina-

tion.

( 2 ) Under the orthographic projection, the only light

source direction that can result in an entirely shadow-

less image, is the one aligned with the viewing di-

rection. Consequently, shadowing is inevitable in an

outdoor time-lapse video since the light source moves

but the viewing direction is fixed.

Therefore, we first detect the shadow pixels (Sec-

tion 4.2) to ignore them in the factorization process,

and then perform the rest factorization processes (Sec-

tions 4.3 and 4.4). In addition, our model assumes that

the color of visible pixels is due to the reflection from the

surfaces in the scene. Hence, we do not consider the sky

pixels in our representation, and those pixels are removed

in advance.

4.1 Problem Formulation

For modeling the sky light in a real scene, we include

an ambient term ack(x, y) into the illumination model in

Eq. (2):

ick(x, y) = ρc(x, y)[N(x, y) ·M c
k + ack(x, y)]. (3)

The above equation is formulated for one pixel (x, y) on

one frame k. When there are F frames and every frame

contains P pixels, we will have P×F equations, which can

be written into a matrix form with a rank-4 formulation:

Ic = (RcN)(MTc) = ScLc, (4)

where IP×F is the stack of the intensities of all pixels in all

frames, SP×4 encodes the reflectance R and orientation

N of each surface point, and L4×F encodes the directions

M and spectra T of the light sources.

Besides, we observed that the establishment of Eq. (4)

does not always hold, because some values (pixels) in Ic

might be shadowed in some frames. Hence, we include

a shadow mask C into Eq. (4). Then, the illumination

model in the matrix formulation becomes:

C ◦ Ic = C ◦ (ScLc) = C ◦ (RcNMTc), (5)

(a) (b)

図 2 An example of shadow detection. (a) The original image

captured by a webcam. (b) The detected shadow map of

(a). The shadow is indicated by black color.

where ◦ denotes an element-wise matrix multiplication,

and ci,j = 0 ∈ C indicates a shadow pixel; otherwise

ci,j = 1.

Consequently, our problem is converted to an inverse

problem in a matrix form: given an measurement matrix

Ic ≥ 0 in the Lambertian surface reflectance model, the

question is to decide the surface geometry and lighting

parameters Rc, Tc, N, M, and the confidence matrix C,

while satisfying the following constraints:

( 1 ) N×N ≥ 0, for the non-shadow pixels;

( 2 ) Rc ≥ 0;

( 3 ) Tc ≥ 0.

To tackle this problem, we first propose a shadow detec-

tion method to estimate the shadow matrix C. Then, we

introduce an iterative two-stage factorization framework

to estimate Rc, N, M, and Tc.

4.2 Shadow Detection

The illumination model described in Eq. (4) assumes

that every pixel in the same scene receives the same light.

However, if a pixel is in shadow, its illumination should

not be equal to that of other pixels in the same scene.

Hence, if we pretend that a shadowed pixel receiving the

same light as the other pixels, the estimated albedo for

this pixel should be smaller than its actual value. There-

fore, we first try to estimate the actual albedo ρ(p) for

each surface point p. We assumed that every surface point

is not in shadow in at least four frames. Hence, the ac-

tual albedo ρ(p) is estimated by the estimated initial light

L and the intensity values I4(p) from four shadow-less

frames. After that, we use the initial light L to compute

the per-frame albedo ρ̃k(p) for each pixel p in each frame

k. Finally, if the computed per-frame albedo ρ̃k(p) in the

frame is smaller than the actual albedo ρ(p), we conclude

that this pixel p is the shadow in this frame. The follow-

ing procedures are performed to construct a shadow mask

Ck ∈ C for each frame k.
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4.2.1 Initial Light Estimation

To estimate the initial light Lk ∈ L of the scene in each

frame k, we factorize the grey-level intensity matrix I by

adopting the projected gradient NMF [9]: I ≈ SL. For-

mally, NMF decomposes a P × F data matrix I into the

product of a P ×R surface matrix S and a R×F lighting

matrix L, where P is the number of pixels in one image

and F is the number of images. The algorithm takes the

basis dimension R as the input. Setting R to different val-

ues means using different dimensions of basis to represent

the original data. Since we assume that the surface illumi-

nation are from the sun light and sky light, we set R = 4

for the decomposition process. After the factorization, we

derive an estimated lighting matrix L as the initial light.

4.2.2 Shadow Identification

In the following steps, we show the procedures to iden-

tify the shadow pixels in each frame.

( 1 ) For each frame, we first assign every pixel a rank of

position in the current frame according to its bright-

ness. The pixel has lower rank if it is brighter, and

vise versa. Then, for each surface point p, we find the

first 4 frames that their corresponding pixels p have

the lowest ranks. The derived frame indexes for the

surface point p are denoted as: [k1, k2, k3, k4]p, where

k1,...4 = 1, 2, ...F .

( 2 ) For each surface point p, we use the intensity data col-

lected from the shadow-less frames selected in Step 1.

and the initial light L estimated in Section 4.2.1 to

estimate the actual albedo ρ(p) of the surface point p

by solving the following equations:

I4(p) = [ik1(p), ik2(p), ik3(p), ik4(p)] = S(p) · L,

ρ(p) =‖ S(p) ‖2 .

Then, for each pixel p, we calculate its per-frame

albedo ρ̃k(p) for each frame k by solving the following

equation:

ik(p) = ρ̃k(p) · Lk.

( 3 ) For each pixel p, we compare its per-frame albedo

ρ̃k(p) with the estimated actual albedo ρ(p). If the

distance between these two values is greater than a

certain threshold, we mark the pixel p in the frame k

as in the shadow.

図 2 (b) shows the detected shadow mask of 図 2 (a),

which is captured by a webcam.

4.3 First Factorization

The objective of the first factorization is to estimate the

(a) (b)

図 3 An example of normal extraction. (a) The original cap-

tured image. (b) The extracted normal map of (a).

surface normal N and the light direction M in Eq. (5),

where Ic is given and C is estimated in the previous sec-

tion. To exclude the influence of the shadowed pixels,

we extend the projected gradient NMF method originally

proposed in [9]. By incorporating the shadow mask C into

the NMF objective function, we can weight the contribu-

tion of each element in Ic toward the error. Setting an en-

try ofC to zero will cause the corresponding measurement

to have no effect on the factorization error. Accordingly,

the new objective function is formulated as :∑
i,j

(ci,j ◦ (I− SL)i,j)
2,

where (I − SL)i,j is one of the elements of the matrix

(I− SL).

Thereby, NMF is applied. To be more robust, we used

the derived lighting matrix Lc to re-estimate the shadow

mask C again by the same approach described in Sec-

tion 4.2.2. Then, we use the refined shadow map C to

re-estimate the surface matrix Sc and the lighting matrix

Lc. The above processes can be performed iteratively.

After obtaining the refined surface matrix Sc and lighting

matrix Lc, the normal matrix N and the light direction

matrix M are derived as:

N =
S

‖ S ‖
,M =

L

‖ L ‖
.

図 3 (b) shows the extracted normal map of 図 3 (a).

4.4 Second Factorization

Once the surface normal N and the light direction M

in Eq. (5) are estimated in Section 4.3, the remainder now

are the surface albedo matrix Rc and the light intensity

matrix Tc.

Surface Albedo Estimation. By setting a matrix

Vc = C ◦ (Ic�NM), we can approximate Rc and Tc by

factorizing Vc, where � denotes the element-wise matrix

division. In the revised NMF method, the confidence term

is set as 0 when the inner product NM is less than 0 or

bigger than 1, because the cosine term could not be larger

than 1 or less than 0. In addition, we only keep the esti-

mated albedo matrix Rc in this stage, since the estimated
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(a) (b)

(c) (d)

図 4 Factorization results. (a) The original captured image.

(b) After removing sky and detecting shadow. (c) The ex-

tracted normal map. (d) The extracted reflectance map.

Tc is not so reliable in this factorization process.

Light Intensity Estimation. Until this stage, the last

unknown is the light intensity matrix Tc which can be

simply solved by the least squares estimation.

5. Result

図 1 and 図 4 show some extraction results. 図 1 (b)

and 図 4 (c) (d) show the extracted normal maps and

reflectance maps of 図 1 (a) and 図 4 (a), respectively.

図 4 (b) also show the image after removing the sky and

detecting the shadow, where the shadow is indicated by

black color.

6. Conclusion

Recovering all intrinsic properties, such as lighting, ge-

ometry, and materials of a physical-based appearance

model is difficult when all of them are unknown. While

this problem is ill-posed in nature, we have presented a

new technique for determining the geometry and lighting

information of the entire scene. The key insight is to ex-

tend the classical photometric stereo approach to model

complex outdoor scenes. We propose an iterative NMF

framework to decompose a time-lapse video into the geom-

etry term and the lighting term in the presence of shadow.

One strength of our approach is that no assumption are

placed on the time-lapse video, so we can flexibly apply

our method on various sources with general conditions.
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