
Leaf Deformation Taking Into Account Fluid Flow

Paulo Silva

The University of Tokyo

Yonghao Yue

The University of Tokyo

Bing-Yu Chen

National Taiwan University

Tomoyuki Nishita

The University of Tokyo

Abstract—This paper proposes a method for animating leaf
structural deformation considering the leaf water content and
its change due to evaporation. To achieve this we embed a mass-
spring system into a mesh representing the leaf, and couple
the mass-spring parameters with a simulation representing the
fluid flow and evaporation occurring in the leaf. This chain of
events aims to simulate the natural process that connects the
leaf structural deformation to the water amount in the cells
through the turgor pressure. To the best of our knowledge no
existing method considers this phenomenon in the simulation of
leaf wilting in computer graphics.

Index Terms—Leaf Deformation, Fluid Flow, Aging.

I. INTRODUCTION

Leaves curling and crinkling are commonplace during the

cold months of the year, as they are part of most natural

sceneries. These this type of natural phenomena are useful in

many applications from the movies industry to the interactive

and entertainment industry. Therefore modeling leaves is an

important topic in computer graphics. Apart from possible

static applications, usually it is important to have a time-

varying representation of natural phenomena. In this paper we

focus on the deformation leaves suffer as they age, dry and die.

Our objective is to provide a mechanism that is as automatic

as possible by taking as base the actual natural processes

occurring in the plants. We believe this to be fundamental

for modeling ecosystems realistically in both interactive and

non-interactive applications.

While modeling trees and plants has seen quite a lot of

attention from the scientific community [1], [2], [3], [4], leaf

deformation has been much less focused on. Most current

research focuses on the modeling part. By contrast we assume

the object is already modeled and we concentrate on animating

it.

As the plant ages, changes in its metabolism and in the

surrounding environment lead to structural changes in the plant

itself. These changes include curling and crinkling, which vary

depending on the underlying support structure and on factors

such as the amount of fluid in the leaf. It is our opinion

that this process needs to be simulated to faithfully capture

the deformation leaves undergo. In the method proposed in

this paper, we model the changes in internal fluid pressure

while taking into account the underlying structural support

offered by the leaf venation. We build our method on the

work by [5]. In that work the authors propose a model for the

fluid flow in leaves. They consider a venation, stomata and

fluid maps and use these to simulate the plant transpiration

cycle. We take the ideas in that paper for the fluid flow

(a) (b)

Fig. 1: Leaf deformation example, (a) input image, (b)

simulation result.

simulation and add our own deformation model on top. Our

deformation model is composed by a mass-spring system

embedded in a mesh representing the input leaf. This mass-

spring system includes springs to deform the leaf, accounting

for both shrinking and curling effects due to water loss.

Then we couple this simulation with the fluid flow simulation

from [5] using their output to control the parameters of our

system. Those parameters include spring constants and spring

rest lengths. Then by updating this system in a Newtonian

physical simulation we obtain an indirect relation between

the leaf shape and the fluid pressure in the leaf. This fluid

pressure is called turgor pressure and is an important factor in

keeping the rigidity of the leaf structure [6]. Additionally we

also consider the influence of the leaf venation in the structure

support, by connecting it to the spring stiffness constant. The

main contribution of this paper is a method of animating leaf

deformation based on implicit turgor pressure variation. This

paper has the following structure. First we present present

some related work in senescence simulation in computer

graphics. In section III we present the general idea of our

method, and detailed descriptions of the fluid flow simulation,

mass-spring model and how it is embedded in the mesh, and

how we couple the two simulations. Then, in section IV, we

present animations generated by our method and we include

some details about our experimental environment. Finally

we conclude this paper with some ideas on possible future

directions.

II. RELATED WORK

There is a considerable amount of work modeling plants,

but the amount of work related to leaf deformation is scarce.

Here we focus on the works related to leaf deformation that



we find most relevant.

Hong et al. [7] proposed a method based on a venation

skeleton and a surface membrane to model the aging leaves.

This system can be used to interactively deform the leaf. This

contrasts with our method where no user interaction is required

apart from specifying the simulation input.

Lu et al. [8] presented a method to animate leaf wilting due

to gravity. This method closely relates to the method by [7] as

it also uses a venation skeleton to deform the leaf. However,

this method only considers the effect of gravity.

Kidder et al. [9] presented a method for simulating fruit

senescence, which also includes animation of the fruit skin.

Like ours, this method also considers the amount of water

content in the deformation of the fruit skin. Nevertheless, each

method has a completely different target, as Kidder et al.’s

method focuses fruits or volumetric objects, and ours focuses

leaves or planar objects.

Recently Xiao and Chen [10] presented a strain based

method to explain the deformation of leaves. The author then

uses FEM based simulation to produce a simulation of drying

leaves. On the other hand, our method considers the effect

of the fluid pressure or turgor pressure, which is essential for

plants to maintain rigidity [6]. To the best of our knowledge,

no other work takes this into consideration in the simulation

of leaf structural deformation.

III. LEAF DEFORMATION

Our method aims to reproduce the structural deformation

visible in senescent leaves. Leaves come in a wide variety

of shapes and sizes. In this work we focus on angiospermic

and sheath leaf types. These leaf types tend to have a more

or less flat surface, with an underlying venation that serves

as both support to the leaf structure and also has transports

channels for nutrients, water, and so on. The fluid flow in the

leaf, together with the leaf venation are the two factors that will

most influence the leaf shape in our model. To achieve the leaf

deformation effect we propose two separate simulations. One

simulation that accounts for the fluid flow and evaporation, and

a mass-spring based simulation that actually deforms the leaf

shape. Both these simulations take into account the amount of

fluid and the venation distribution in the leaf. Next we explain

how we couple these two simulations and we give detailed

explanations on each.

A. Method Overview

The main input to our method is an image of a leaf

(see Fig. 1 (a)). First we extract the leaf texture to use as

a color map. Together with this map we extract the leaf

boundary using computer vision techniques based on [11].

From this boundary we create a mesh representation of the leaf

using [12]. This textured mesh is then used in the subsequent

simulations by applying extra textures maps and embedding a

mass-spring model as explained next.

We consider the leaf has a two dimensional surface on which

we define three maps based on [5]. These maps are a fluid map,

a stomata map and a venation map. The fluid map represents

(a) (b) (c)

Fig. 2: (a) venation map (b) stomata map, (c) fluid map.

the amount of water at each location in the leaf (see Fig. 2

(c)). Stomata are small openings located mostly on the lower

surface of the leaf, which serve the purpose of transpiration,

moving water molecules out of the leaf, and also respiration.

The stomata map represents the distribution of these openings,

and is used to remove water out of the leaf simulating the

water lost by transpiration (see Fig. 2 (b)). The water flows in

a network of channels called Xylem which is part of a larger

vascular network or venation. In order to model the venation

distribution we use a venation map. A two dimensional map

that represents the venation implicitly by its flow capacity.

That is, the amount of water that can flow at each location in

the structure (see Fig. 2 (a)). Together with these maps we also

need to consider a location where the fluid enters the system.

An explanation of this simulation is presented in Sec. III-B.

Additionally to this simulation we add a mass-spring model

to the the input mesh. As the fluid map is updated, the spring

constants and their rest lengths also change to reflect the

new water content in the leaf. More precisely, the as the

water content changes at a certain location the springs at

that location, if any, will use those values to calculate their

parameters. This will cause the springs to contract or extend

accordingly, which aims to simulate the changes in the turgor

pressure. Then, when the water amount is reduced the plant

will, for example, loose rigidity and wilt under its own weight,

or contract in case the spring stiffness increase. We update the

leaf shape by updating the mass-spring system in a Newtonian

physics simulation. This simulation is described in Sec. III-C.

B. Fluid Diffusion

This component of our method uses the work by [5].

For the sake of clarity we make a short explanation of this

method here. The fluid flow simulation main data structures

are the venation, stomata and fluid maps (see Fig. 2). Then

the fluid flow is simulated using a continuous model based on

a diffusion process as described by Eq. (1).

∂y(u, v)

∂t
= ∇ · (β(u, v)∇y(u, v)) + I(u, v)−O(u, v), (1)

where y(u, v) represents the fluid map, β(u, v) represents the

venation map, I(u, v) represents the sources map and O(u, v)
represents the stomata map. The continuous model in Eq. (1)

is discretized as shown in Eq. (2).

−βi−1y
m+1

i−1
+ (βi−1 + βi + 1)ym+1

i − βiy
m+1

i+1
= ymi . (2)



Fig. 3: Example of a leaf mesh used as input in our

deformation model.

where i is the pixel index and m is the time step index.

The author then separates the simulation into three steps. A

transpiration step where fluid is extracted from the system, an

source step where fluid enters the system and a diffusion step

where the fluid is diffused in the system. Then Eq. (2) will

lead to a tridiagonal system which can be efficiently solved.

Solving this system for y will consequently update the fluid

map. For more details we refer the reader to the original paper.

C. Deformation Model

At this stage we assume to have an input mesh such as the

one in Fig. 3. We want to deform this mesh by both contracting

parts of it or just letting it yield under its own weight. To do

this we make use of a mass-spring system which we embed in

the mesh. Mass-spring systems are widely used in computer

graphics. The interested reader might want to consult [13] for

an overview. One of the phenomena that we expect to see

from a drying leaf is loss of mass and size. To model this,

we start by positioning a mass particle at each mesh vertex.

Then we add a spring at each triangle edge. A spring sij on

edge eij , which connects vertices ~vi to ~vj (see Fig. 4), exerts

a force ~Fij on particle pi, located at ~vi, and an opposing force

−~Fij on particle pj located at ~vj . This force is defined simply

by Eq. (3).
~Fij = −kij(∆xij − lij0)~uij , (3)

where kij is the spring constant, ∆xij = ‖~xi−~xj‖, ~xi and ~xj

are the current position of the particles pi and pj respectively,

lij0 is the initial spring rest length which is calculated as

∆xij at time t = 0 and ~uij = (~xi − ~xj)/‖~xi − ~xj‖.
Changing the distance lij0 we can contract the leaf producing

a localized shrinking effect. Changing the spring constant kij
we can also let the leaf mesh stretch under its weight or

under external forces. Apart from shrinking, the leaf also tends

to curl. To model this behavior, and to lock the orientation

Fig. 4: Schematic of a very simple mesh.

between different triangles, we add another type of spring, this

time on each shared edge eij . We call these angle springs,

as they use the angle between faces sharing edge eij in

computing the spring force. For this we require the mesh to

be homomorfic to a disk. Or in other words, the mesh can

only have edges referenced by one face, boundary edges, or

edges referenced by two faces, inner edges. We also require the

normal orientation to be consistent, as the angle is calculated

using the direction of the triangle normal . The force these

springs generate is defined by Eq. (4).

Fmn = kθmn
(θmn − θmn0

), (4)

where Fmn is a scalar which represents the force that the

angular spring smn exerts on particle pm and pn. These

two particles are located on opposite triangles which share

a common edge (see Fig. 4). Additionally kθmn
is the angular

spring constant, θmn is the current angle between triangles

and θmn0
is the initial rest angle. This force is applied on each

particle in the triangle normal direction. When θmn−θmn0
< 0

the the force will be in the direction opposite to the normal.

This will force the spring to go back to its rest configuration.

Analogously for when θmn − θmn0
> 0. Therefore, the

equation has no minus sign. The angular springs are initialized

according to Alg. 1. The function trianglesReferencing

Algorithm 1 Angular Spring Placement

for each inner edge eij do

(Tk, Tl)← trianglesReferencing(eij)

~vm ← vertexOpposing(Tk, eij)

~vn ← vertexOpposing(Tl, eij)

θmn0
= angle(Tk, Tl)

addSpring(eij , ~vm, ~vn, θmn0
)

end for

returns the triangles that share edge eij , vertexOpposing



Fig. 5: We project the vertices opposite to edge eij onto the

line that contains eij . The we calculate the vectors between

these projected points and the original. Finally we compute

the angle between these vectors. This will be the angle of the

angular spring associated with edge eij .

returns the vertex from face Tk that is not part of edge eij ,

and angle calculates the angle between faces Tk and Tl. The

function angle is defined in Alg. 2. The function project

Algorithm 2 Angular Spring Angle

~v′m ← project(~vm, eij)

~v′n ← project(~vn, eij)

~vm′m ← normalize(~vm − ~v′m)

~vn′n ← normalize(~vn − ~v′n)

cos(θmn) = ~vmm · ~vnn
θmn ← cos−1(cos(θmn))
~nl = normal(Tl)

if ~vm′m · ~nl < 0 then

θmn ← θmn + π
end if

return θmn

returns the projection of ~vm on the line defined by eij , the

function normalize normalizes the vector passed as argument

and the function normal returns the vector normal to the

triangle Tl passed as argument (see Fig. 5). The rest angles

of the springs are updated directly by the amount of fluid

present at the center point of each spring. For example, for a

spring on edge eij that would be the point halfway between

vertices vi and vj . Analogously for the angular springs. On

the odder hand, the venation map values weight the spring

constants. That is, using a normalized version of this map

(values ∈ [0, 1]) we can make areas with thicker venation

have stiffer spring constants. Finally this mass-spring system

is integrated in time, and the change in the fluid map will

indirectly cause a change in the leaf structure. This aims to

simulate the change in turgor pressure.

IV. RESULTS

This section provides information about our test environ-

ment, simulation timings, example deformations and a brief

discussion of our method limitations.

TABLE I: Mesh information, number of triangles, edge

springs and angular springs for each input mesh.

Name Vertices Triangles Edge Springs Angular Springs

Bramble 1707 3232 4938 4758

TABLE II: Average time step in milliseconds per update step

given the fluid map size. This includes fluid flow simulation

and mass-spring simulation.

Name 128× 128 256× 256

Bramble 11 17

Name 512× 512 1024× 1024

Bramble 40 145

A. Performance

Our test environment was equipped with an Intel Core 2

Duo CPU clocked at 2.13GHz, 2GB of main memory and

a NVIDIA GeForce 9400M GPU with 256MB of dedicated

video memory.

We tested our method with several input pictures each at

several resolutions. Triangulation parameters were similar in

all cases. In these tests the number of triangles, number of edge

springs and number of angular springs can be seen in Tbl. I.

The timings presented in Tbl. II include the average time

it took for a complete update step of both the fluid flow

simulation and the mass-spring simulation. The fluid flow

simulation has a very big weight at higher resolutions, while

for the smaller fluid map resolutions both simulations take

about the same time. Note that the triangulation resolution is

fixed. Even in our unoptimized implementation we still obtain

real-time performance.

B. Example Deformations

Here we show the results of applying our method to a

few input meshes. The data for the fluid flow simulation was

mostly hand made. The mesh generation however, as with the

spring placement, were both done automatically. In Fig. 6 we

show a few frames of the deformation the leaf suffers while

drying. However we believe our method is versatile enough

to be applied in a much larger variety of plants than the few

presented here.

C. Limitations

Since our method is based on the method by [5] it does

suffer from the same limitations. Our method speed is mostly

influenced by the resolution of the fluid map. However we

found small maps, such as 256×256, still provide compelling

results. The result depends on the triangulation. We found an

uniform triangulation to be suited for our purposes. But we

believe the triangulation can be improved using the venation

map as constraints.

V. CONCLUSIONS AND FUTURE WORK

We presented a method for leaf deformation by implicitly

accounting for the turgor pressure. This pressure controls the



(a)

(c)

(b)

(d)

Fig. 6: Above, example of a fluid diffusion sequence for a

bramble leaf at time (a) t = T0 and (b) t = T1. Below, the

corresponding deformation (c) and (f) respectively.

rigidity in plants [6], and we think it’s important to take

it into consideration. To model this we used leveraged the

work by citeSilva12 which accounts for the plant internal

fluid flow. On top of this method we introduced a mass-

spring model to deform the leaf mesh. The parameters of this

mass-spring model are controlled by the fluid flow simulation.

In this way, the plant natural transpiration cycle indirectly

controls the leaf structure deformation. This is equivalent to

indirectly accounting for the influence of the turgor pressure in

controlling the leaf structure. We shown this with some results

generated by our method.

We leave for future work the usage of the venation as a

form of improving the triangulation result. We don’t consider

this essential, since the mesh might be artist created. But we

aim to achieve a fully automatic system, and this step can

possibly increase the quality of the generated mesh. Although

we the shape is a very important indicator of the stage of

senescence in which a leaf is in, other factors also contribute

to a more realistic result. Color change is one such factor [14].

We believe simultaneous simulation of leaf structural and

color changes is important to achieve a realistic senescence

simulation, and therefore that is another important future

direction. We think another interesting direction would be to

extend this method to generate an animation of an entire plant.

That is, to consider other plant structures such as the stalk,

roots and so on.

REFERENCES

[1] P. Tan, G. Zeng, J. Wang, S. B. Kang, and L. Quan, “Image-based tree
modeling,” ACM Trans. Graph., vol. 26, 2007.

[2] T. Ijiri, S. Owada, M. Okabe, and T. Igarashi, “Floral diagrams and
inflorescences: interactive flower modeling using botanical structural
constraints,” ACM Trans. Graph., vol. 24, pp. 720–726, 2005.

[3] J. Weber and J. Penn, “Creation and rendering of realistic trees,”
SIGGRAPH ’95, pp. 119–128, 1995.

[4] M. T. Wong, D. E. Zongker, and D. H. Salesin, “Computer-generated
floral ornament,” SIGGRAPH ’98, pp. 423–434, 1998.

[5] P. Silva, Y. Yue, B.-Y. Chen, and T. Nishita, “Simulating plant color
aging taking into account the sap flow in the venation,” IEVC, 2012.

[6] N. A. Campbell, J. B. Reece, L. A. Urry, M. L. Cain, S. A. Wasserman,
P. V. Minorsky, and R. B. Jackson, Biology, p. 134. 8 ed., 2008.

[7] S. M. Hong, B. Simpson, and G. V. G. Baranoski, “Interactive venation-
based leaf shape modeling: Natural phenomena and special effects,”
Comput. Animat. Virtual Worlds, vol. 16, no. 3-4, pp. 415–427, 2005.

[8] S. Lu, C. Zhao, and X. Guo, “Venation skeleton-based modeling plant
leaf wilting,” Int. J. Comput. Games Technol., vol. 2009, pp. 1:1–1:8,
2009.

[9] J. T. K. Jr., S. Raja, and N. I. Badler, “Fruit senescence and decay
simulation,” Computer Graphics Forum, vol. 30, no. 2, pp. 257–266,
2011.

[10] H. Xiao and X. Chen, “Modeling and simulation of curled dry leaves,”
Soft Matter, vol. 7, pp. 10794–10802, 2011.

[11] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software

Tools, 2000.
[12] “CGAL, Computational Geometry Algorithms Library.”

http://www.cgal.org.
[13] A. Nealen, M. Müller, R. Keiser, E. Boxerman, and M. Carlson,

“Physically based deformable models in computer graphics,” Computer

Graphics Forum, vol. 25, no. 4, pp. 809–836, 2000.
[14] P. O. Lim, H. J. Kim, and H. Gil Nam, “Leaf senescence,” Annual

Review of Plant Biology, vol. 58, no. 1, pp. 115–136, 2007.


