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In this paper, an interactive dynamic background scene generating and editing sys-

tem is proposed based on improved motion graph. By analyzing the input motions with 
limited frame length and their metadata, our system could synthesize a large amount of 
various motions to yield a composing dynamic background scene with unlimited frame 
length by connecting the motion pieces through smooth transitions based on their motion 
graph layers. The motion pieces are generated by segmenting the input motions and cor-
responding deforming meshes spatially and temporally, while the smooth transitions 
connected the motion pieces are obtained by searching the best path in the motion graph 
layers according to the specified circumstances. Finally, the result motions are optimized 
by repeatedly substituting the motion sub-sequences. To design the dynamic background 
scene, users can interactively specify some physical constraints of the environment on 
the keyframes, such as wind direction or velocity of flow, or even some simple paths for 
characters to follow, and the system can automatically generate a continuous and natural 
dynamic background scene in accordance with the user-specified environment con-
straints. 
 
Keywords: motion graph, motion synthesis, motion analysis, background animation 
 
 

1. INTRODUCTION 

Making complicated animations is a tedious work. Even though several techniques, 
such as motion capture, can help a lot for generating realistic character motions, to build 
a dynamic background scene with a lot of various animation objects is still a 
time-consuming task. The dynamic background scene in this paper is defined as a set of 
animation objects in one scene except the leading roles (characters) , it usually contains a 
lot of animation models with similar but different motions, such as flying birds, running 
horses, or some environment parameters, like a huge amount of flags or trees (formed a 
forest). The amount of the background animation objects is usually very huge, but it is not 
necessary to fine tune their motions in details for mass production. 

Because of the characteristics of the large quantity of the background animation 
objects, the physical conditions express much clearer on them rather than a few of the 
leading roles. For example, the wind direction and wind speed in the scene maybe 
observed much easier from a grassland or a forest than from one dog walking through the 
field. Therefore, the problem of making a natural and smooth dynamic background scene 
is important in animation production. While making a dynamic background scene, we 
always want to have similar background objects act according to the same physical 
conditions, but behave variously at the same time. For example, we may use duplications 
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of trees to make a forest, and manipulate those copies to perform different motions at the 
same time. However, to generate such similar but different motions for a huge amount of 
animation objects is a tedious task by using current editing tools. Sometimes 
physical-based simulation is a possible solution, but not all background animation objects 
can be generated by it and some simulation methods are time-consuming. 

Another possible approach is to make a loop animation and let each instance play it 
at different starting frames. However, people should notice that a simple loop may still 
reveal the monotonous of the animation, and it is also difficult to set some constraints for 
these instances, such as wind direction or wind speed. To repeatedly play an existed 
animation, motion graph [11] provides a suitable technique for motion synthesis. It finds 
the transitions between the motion pieces of the original motions as the edges to construct 
a directed graph and easily generates new motions by building walks on the graph. 
Compared with other motion synthesis methods, motion graph has a higher potential to 
handle high-level constraints, since we could simply add or modify certain constraints to 
generate new motions through the synthesis phase of the motion graph. However, the 
main drawback of the traditional motion graph approaches based methods is that if the 
input data is not so sufficient, it may generate non-smooth results. Furthermore, without 
considering the environment constraints, the generated motions may not be consistent 
with the scene settings and are hardly to be controlled. 

Hence, in this paper, we present an improved motion graph method to generate 
asynchronous transitions for each kind of background animation objects, therefore 
effectively solve the main problem of motion graph which produces weak results when 
source data is insufficient. We also use a hill-climbing optimization technique to smooth 
the synthesized animation when the constraints are modified. Furthermore, we provide an 
interactive high-level keyframe-based editing tool for users to quickly and easily specify 
the global environment constraints of the scene and control a large amount of background 
animation objects in an easy way. To make our method as general as possible, in our 
system, we take the deforming meshes as the input, so that most kind of motions can be 
imported into our system, although some information might be lost, such as the skeleton 
of articulated characters. 

The rest of this paper is organized as the follows. Sec. 2 and Sec. 3 introduces some 
related work and the overview of our system, respectively. The major components of our 
system are described in Sec. 4, Sec. 5, and Sec. 6. Finally, Sec. 7 and Sec. 8 show some 
results, conclusions, and future work. 

2. RELATED WORK 

Our approach for dynamic background scene generation is related to the data-driven 
animation techniques of motion synthesis. Motion synthesis has been widely discussed 
and many different approaches have been presented. Li et al. [13] constructed a two-level 
statistical model to represent character motions. They used a linear dynamic system (LDS) 
to model the local dynamics and used the distribution of the LDS to model the global 
dynamics. Chai and Hodgins [6] used a continuous control state to control the dynamics 
instead of using discrete hidden states such like LDS. However, the statistical model is 
not really suitable for our target background animation models, such like flags or plants, 
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because of their stochastic motions. 
Motion graph [11] is one of the data-driven techniques of motion synthesis. The 

similar idea is also provided for 2D videos [19], while later comes with many interesting 
researches concerning video control [18], panorama composition [1] or other video ap-
plications. There are also many methods applying motion graph for character animation 
[2], or to invent new motion structures [5, 12]. Our work is also inspired by the idea of 
the motion graph dealing with the background animation models. 

Some methods are also proposed for constrained motion synthesis [6, 17, 20]. Ari-
kan et al.’s method [3] searches the motion database to find suitable frames to synthesize 
motions that match the annotations. It requires users to annotate the database before syn-
thesis and there are many labels for human actions. Even though our system also requires 
users to annotate the motion features, the background animation objects are relatively 
simple compared to human characters and the annotation task is also much easier. 

Oshita [14] developed a system to synthesize new motions by automatically select-
ing different methods to connect the pieces of motions, whereas we use asynchronous 
transitions to reduce the transition errors. James and Fatahalian’s method [9] precomput-
ed the dynamics to build the parameterizations of the deformed shapes and interactively 
synthesize the deformable scenes. There are also some methods focused on the analysis 
and evaluation of the motion transitions [21, 16]. Most of the motion synthesis methods 
emphasize the motion capture data, while we attempt to draw on these methods to gener-
ate a dynamic background scene. 

There are also some approaches discussing about large outdoor scenes. Perbet and 
Cani [15] used mesh primitives to animate large-scale prairies in real-time. Beaudoin and 
Keyser [4] discussed how to improve the simulation time by configuring level of details 
(LODs). Diener et al. [7] utilized 2D motion fields extracted from a video to animate 3D 
plant models. Zhang et al. [22] also provided a similar method to ours but only consid-
ered tree models. 

In this paper, we propose a method to generate a large amount of animation objects 
and use motion graph to raise the variances between the duplicated objects, which is ef-
fective for a large dynamic background scene generation. Our strategy drawing on the 
motion graph layers to increase the usability of the short source motions is similar to 
James et al.’s work [10], which also achieved asynchronous transitions. The major dif-
ference is that in our method, the animation models are segmented semi-automatically 
while we also provide an interactive scheme for users to control the whole environment 
settings. 

3. SYSTEM OVERVIEW 

Fig. 1 shows our system flowchart. There are three major stages in our system. They 
are motion analysis (left part), scene design (right upper part), and motion synthesis (right 
lower part). 

In the motion analysis stage (Sec. 4), we take an animation model M  with N  
vertices and F  frames as the input. Since the data may not be so sufficient to provide 
possible smooth transitions, we first segment the model M  to be S  components (Sec. 
4.1) according to its vertices’ spatial-temporal variations. Then, for further control pur-
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poses, each frame 1...i F=  is annotated with metadata ic C∈  (Sec. 4.2). The metadata 
here mean the physical characteristics, e.g., wind direction, which influence the motion of 
the animation model, and the metadata annotation is basically performed by the user with 
an interactive and interpolation scheme, like the user interface shown in Fig. 6. However, 
in some physical-based animation cases, the metadata ic  can be automatically assigned 
with the physical parameters when the physical-based simulator generated the original 
animation model M . Finally, the motion graph jG G∈  is constructed for each seg-
mented component 1...j S=  (Sec. 0). 

 
Fig. 1. The system flowchart. 

 
In the scene design stage (Sec. 5), the animation model M  can be imported into 

our system as many instances M̂  and users can set the environment layout and con-
straints Ĉ  through an easy-to-use user interface. Finally, in the motion synthesis stage 
(Sec. 6), the background animation scene can be synthesized by using the motion graph 
layer(s) G  while considering the annotated metadata C  and the environment con-
straints Ĉ  with a user-specified arbitrary frame length F̂ . The output animation model 
M̂  will have the same vertex number, connectivity, and segments as the original anima-
tion model M , but their frame lengths are different (in most cases, F̂ F> ). 

4. MOTION ANALYSIS 

The first phase of our system is motion analysis. In this phase, the system requires 
the user to import a source animation model M  with annotated physical characteristics 
(metadata) C , e.g., wind speed, for further control purposes. Before analyzing the input 
animation model M , it will be segmented first according to its vertices’ spatial-temporal 
variations. Hence, there are three components in this phase: model segmentation, 
metadata annotation, and motion graph construction. 

 
4.1. Model Segmentation 

 
In order to increase the usability of the input animation model's motion and raise the 

quality of the generated result, the input model M  is first segmented into several com-
ponents. The segmentation process is performed on the geometry of the model first, and 
then the over-segmented segments are merged based on the spatial-temporal analysis. 
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The input animation model M  is first segmented by using randomized cuts [8]. 
Since it is a pose sensitive algorithm, we take all frames of the input model into the cal-
culation stage in order to derive the best segmentation result for overall sequence. That is, 
the partition function of the input model is obtained by combining the result of every 
frame of the input data. 

After the spatial cuts, the model is over-segmented as shown in Fig. 2. Since we only 
considered the geometry characteristics of the input animation model in the spatial seg-
mentation process, some segmented segments have to be grouped due to their temporal 
characteristics. According to our observation, there are two types of segments should be 
grouped after the over-segmentation. The first-type segments are those which show high 
dependencies to each other, such as the dove’s two legs (Fig. 2 (right)), and the se-
cond-type ones are those generated from useless or too detailed cuts such as the disor-
dered pieces on the flag (Fig. 2 (left)). Hence, we evaluate the motion variance of each 
segment for comparing their motion differences. For each segment j , we first calculate 
its centroid i

jp  at each frame i  to form a motion vector jP , which is used to describe 
the movement trend of the segment and defined as: 
 

1 2(| |,| |,...,| |)F
j j j j j j jp p p p p p= − − −P , 

 
where jp  is the average of i

jp  for all frames 1...i F= . 
Then, we use k-means clustering to combine the over-segmented segments into S  

clusters (components), where S  is determined according to the type of the input data. In 
our strategy, we want to have as many clusters as possible, but meanwhile each group 
must be distinct to others. Therefore, we iteratively change k from the number of the 
over-segmented segments to 1 and stop when the differences between the new clusters are 
all larger than a threshold, which is defined as Dα , where D  stands for the maximum 
difference between each pair of the over-segmented segments and α is a model-dependent 
constant (in our experiences, its range is set between 0.7 ∼ 0.9). 

  
Fig. 2. The result of performing randomized cuts. The segmentation result of the flag (left) looks 
much more disorderly because we set an over-segmented parameter but the model has no plenty of 
trivial boundaries. 

 
After the above segmentation and grouping processes, each vertex could be assigned 

to one of the S  groups as shown in Fig. 3. By the two-pass analysis, we can not only 
semi-automatically separate the original animation model into several components ac-
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cording to their natural structures over sequences, but also can cluster its vertices which 
show similar variation during the whole motion sequence. This can help us to construct 
the motion graph for each cluster later. Fig. 4 shows other two segmentation results. 

  
Fig. 3. After performing the model segmentation, the input animation model is segmented. The 
vertices of the flag (left) and dove (right) models are both separated into two groups. Vertices be-
long to the red cluster have more intense movement than those in the yellow one. 
 
4.2. Metadata Annotation 
 

For further control purposes, it is better to annotate each frame of the original ani-
mation model M , so that the user can use the annotated metadata to control the synthe-
sized instances M̂  of the animation model. If the original animation model M  is ani-
mated by a physical based simulator, such as the flag shown in Fig. 3 (left), the metadata 

ic C∈  of each frame i  is assigned automatically with the physical parameters of the 
physical based simulator. However, if the annotation cannot be obtained automatically, 
we also provide a user interface for users to annotate the metadata. 

If a user tends to annotate the metadata semi-manually, the user can use an arrow to 
indicate the velocity and direction of the external forces of the environment like the user 
interface shown in Fig. 6. For stationary objects, like plants or flags, as shown in Fig. 3 
(left), the arrow represents the flow effect such as the wind; for dynamic objects, like an-
imals or humans, as shown in Fig. 3 (right), it stands for their moving speeds and facing 
directions. We define the characteristics annotated by arrows as the metadata of that mo-
tion. A user can just specify the metadata for some keyframes, and then the system will 
automatically assign the metadata to the rest frames by simply interpolating the us-
er-annotated metadata. 

Hence, for each frame i  of the input animation model M , its metadata are defined 
as: 
 

( , , )i i i ic τ φ θ= , 
 
which is a vector of Cartesian spherical coordinate system, where iτ  is determined by 
the length of the arrow, and iφ  and iθ  are set according to the arrow’s direction. The 
maximum length of the arrow is set to be fixed, and we normalize iτ  to make 0 1iτ≤ ≤  
to prevent the ambiguity between different motions and make further computation easier. 
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4.3. Motion Graph Construction 
 

Once we have a segmented animation model M  with S  groups and annotated 
metadata C , we could define the transition cost of every pair of frames to generate the 
motion graph layer jG  ( 1...j S= ). Since the metadata C  may be roughly assigned by 
the user, the cost function does not take the metadata into consideration (we will discuss 
how we handle the metadata in later sections). 

  
Fig. 4. Other segmentation results. The dog (left) and the plant (right) models are separated into 
two and three groups, respectively. 
 

If the input animation model M  is composed of F  frames, the transition cost 
( , )p qD m m  between any two frames ,p qm m M∈  is defined as: 

 
( )ˆ( , ) ( , )

n

v p k q k v p k q k
k n

D m m D m mα β+ + + +
=−

+∑ , 
 
where 

2
( , )x p q p qD m m x x= − , ˆ{ , }x v v∈ , n  is the window size for calculating the 

difference between the two frames p  and q , vD  represents the position difference of 
all vertices between them, and v̂D  stands for the velocity difference calculated by the 
same strategy. That means, to preserve the dynamics of the motion, we will compare two 
subsequences instead of directly comparing two frames as [19]. 

In addition, we prune the transitions by selecting only the local minimum with a 
specified threshold. Moreover, we also drop some useless transitions when | |p q n− ≤ . 
Limiting the frames to not jump to their near neighbors would bring us more reliable and 
continuous result as shown in Fig. 5. 

Besides, we also compute the average playing costs before and after the transition, 
which are denoted by ( , )pre p qD m m  and ( , )post p qD m m . These two matrices are calcu-
lated by almost the same equation as Eq. (1). The difference is that ( , )pre p qD m m  only 
concerns about the frames from p n−  to p , and ( , )post p qD m m  relatively computes 
from q  to q n+ . By comparing the differences between ( , )pre p qD m m , ( , )post p qD m m , 
and ( , )p qD m m , we can determine the number of blending frames when transition from 
frame p  to frame q  as: 
 

( )max

| ( , ) ( , ) |

max ( , ), ( , )
pre p q p q

pre p q p q

D m m D m m
B

D m m D m m
−

× ,       (1) 

 
where maxB  is the maximum blending frame number and defined as max 0.1B F=  in our 
experiment, and F  is the original frame number of the input motion. 
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All the above calculations are performed for each group. Therefore, we would have 
a motion graph jG  corresponding to each group j  after these processes and thus 
composite the motion graph layer G  of the animation model M . 

 
Fig. 5. The motion graphs are constructed for each segment (cluster). Note that the graph patterns 
are obviously different for each segment, which means it is reasonable for the segmentation. 

5. SCENE DESIGN 

After the motion analysis, the motion graph layer for each input animation model is 
constructed. Before using the motion graph layers to synthesize the output animation, we 
can now think about the issues of environment control and settings. In this phase, we will 
determine the structure of the whole background scene, for instance, how many models 
should be placed, where should we put them, and when and what constraints should be 
set. 
 
5.1. Scene Setting 

 
Because our goal is to generate a big dynamic background scene, it would be very 

possible that we demand for a large quantity of animation models, and there comes the 
problem of choosing models, making duplications and locating them. In our system, each 
input animation model is stored in a motion template bank when we load it, and every 
model imported to the scene from the template bank becomes an individual instance, 
which can be translated, rotated, scaled, and animated independently with other instances. 

To simplify the laborious work of putting all objects one after another, our system 
let the user first draw an enclosed plane through the user interface as shown in Fig. 6, and 
then choose the items from the motion template bank and set the amount of them. After-
wards, the system simply uses uniform distribution to place each instance. In order to 
prevent penetration artifacts between the instances, the bounding boxes of them are cal-
culated to avoid overlapping. 

After placing the instances and specifying the frame length F̂  of the output anima-
tion, the system would synthesize F̂ -frame animation as an initial output with initial 
environment constraints. The user can edit the environment constraints to modify the 
output animation interactively. The details of synthesizing the output animation will be 
discussed in Sec. 6. 

 
 

5.2. Constraint Specification 
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The second part of the scene design is to set the constraints of the whole environ-

ment through the arrows shown in Fig. 7. These constraints are used to guide the instanc-
es to find the best synthesis paths on their motion graph layers. Like the metadata annota-
tion described in Sec. 4.2, we also use arrows to specify the overall environment con-
straints of the background scene. 

There are two types of constraints. The first one is physical force constraint. The user 
can draw some arrows at any point of view to form a flow field to control the motion of 
the stationary objects. The second type is self-movement constraint, which denotes a 
moving style on the ground for character motion (dynamic objects). The lengths and di-
rections of the arrows determine the moving speeds and orientations, respectively. 

 
Fig. 6. The user interface of our system. The user can select animation models from the motion 
template bank and assign the amount of them, and then the instances will be placed in the specified 
area (the cyan plane). The red arrow shows the initial environment constraints of the scene. In this 
example, there are two kinds of animation models, flag and dove. 
 

The difference between the metadata of one animation model and the constraints of 
the environment is that every animation model has only one metadata during a smalltime 
slot (i.e., one frame), no matter what kind of model it is. This means each animation 
model during the small time slot is only affected by only one constraint, like a flag blown 
by the wind with a specific wind speed and direction or a dog walking to ward a specific 
direction with a specific walking speed. However, for the background scene, every posi-
tion could have different physical forces which will form an environment flow field. Then, 
the animation models will be affected by the flow field according to their positions. The 
weight of an arrow ka  to affect a model (instance) im  in the environment is decided by 
the inverse of their distance ikd . 

6. MOTION SYNTHESIS 

After completing the scene settings, the final phase of our system is motion synthesis. 
The first pass of motion synthesis is executed when we import the animation models (in-
stances) into the scene. At this time, an initial output animation is generated temporarily. 
For dynamic objects, the initial frame is simply set to the first frame of their source be-
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cause the initial physical force constraints have no effects on them. However, for station-
ary objects, we scan the frames of the animation models with a particular range of frames 
( 0.1F  in our experiment, where F  is the original frame number of the input motion) at 
a time to pick up a motion piece which relatively meets the environment constraints Ĉ , 
and take it as the initial motion segment. Use an initial section instead of one initial frame 
could make the motion fit the initial constraints much more smoothly. 

 
Fig. 7. We can add, remove, or modify the control arrows to specify the environment constraints of 
the background scene. 

 
Since the environment constraints Ĉ  may be different according to the positions in 

the scene, the above process should be performed for each instance individually. In the 
following description, we will only focus on how to synthesize the motion of one instance 
M̂ . For the other instances, the process is the same. After deciding the initial frame, for 
each segmented group 1...j S=  belongs to M̂ , we detect several edges of motion 
graph jG  to yield a path connecting the pieces of motions, and then combine the groups 
to output M̂ with more than F̂  frames. 

After that, the user can specify new constraints or modify existing ones. Once the con-
straints have been specified or changed, the next step is to reproduce a revised version 
which corresponds to those constraints Ĉ . We use a repeated subsequence replacing 
method similar to [18] to generate the new version. The error function is defined as: 
 

ˆ ˆ ˆ( , ) | |p q q qE D m m c c Tα β= + − +∑ ∑ ,        (2) 
 
where the first and second terms denote the total transition and constraint costs of motion 
sequence, T  is the number of transitions, ˆ pm  and ˆ qm  stand for the original frame and 
replacing frame respectively, qc  and ˆqc  are the metadata and environment constraints 
of frame q , α  determines the relative weight between the motion smoothness and 
constraint effectiveness, and β  is used to control the number of transitions. Too many 
transitions would slightly decrease the continuity but lack of transitions may result in a 
monotonous animation. To find the best path, we continuously select a segment of the 
motion, and then try to find other paths which could nearly connect the same source 
frame and destination frame. The system calculates the error value between paths, if the 
error of new path is smaller than exist one, we then attempt to replace it by switching 
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transitions. 
The final task is to optimize our result. So far, we only do processing on the single 

motion, however, some global optimization could enhance the quality of the result anima-
tion. We examine the neighboring duplications to check if there are pieces of motions that 
have too many frames overlapped, and replace the subsequences of those motions to 
make more natural motions. This optimization will be done only for some input motions. 
If the input motion is too short, trivially the generated duplications would have many 
overlapped sections, even if we reproduce the animation again and again. For one gener-
ated animation which connected by many motion pieces, we compare the pieces longer 
than 100 frames with the nearest duplication. If there are at least 100 continuous frames 
overlapped, we would reproduce the animation. 

7. RESULT 

All results in this paper are generated on a desktop PC with an AMD Athlon 64 
3500+ CPU with 1G memory, and the statistics of models and computation time are listed 
in Table 1. The Analysis Time includes model segmentation and motion graph construc-
tion and Synthesis Time shows the time for synthesizing 1,000 frames, which is the same 
as traditional motion graph approaches. 

Fig. 8 shows the comparison of the original animation data, traditional motion 
graph’s and our results (from top to down). From the left to right is the 295th to the 
302nd frames. Since the original animation data has only 300 frames, there is an obvious 
discontinuity between the 299th and the 300th frames in the upper (source) sequence. 
Because the source data is insufficient, by using the traditional motion graph, the result 
shown in the middle sequence still has the discontinuity problem between the 298th and 
the 299th frames, which is the transition point of both of the traditional motiongraph 
method and ours. 

        

        

           

(a)295 (b) 296 (c) 297 (d) 298 (e) 299 (f) 300(0) (g) 301(1) (h) 302(2) 
Fig. 8. From top to down: source data, flag animation synthesized by traditional motion graph, and 
flag animation synthesized by our method. The original flag animation consists of 300 frames, we 
pick the pieces of the animation starting from the 295th to the 302nd frames. 

 
Fig. 9 shows a scene with some bamboos and a dove. There are two kinds of bam-

boos in the scene as listed in Table 1. The arrow adhering to the dove controls the walk-
ing direction and speed of it, while another arrow gives the environmental physical force. 
People may notice that the movement of the synthesized bamboos in the video may not 
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obey the arrows shown in Fig. 9. That is because when the artist made the original 
(source) bamboo animation, although there is a specified global wind direction, the bam-
boo is adjusted to not only follow the wind direction but with a little bit ambient motion 
to make the bamboo look much more real. Hence, in our system, even a user specifies an 
extreme wind speed or wind direction, if there is no such data in the input motion, we 
cannot synthesize the desired result. Instead, the most similar motion pieces are selected 
and used to meet the requirement as close as possible. 

 
Fig. 9. A composite scene which contains synthesized bamboos (stationary objects) and a synthe-
sized dove (dynamic objects). The red arrows indicate the keyframes. The images are captured 
every 100 frames. 

Table 1 The source data information. The Groups# indicates the number of segmented 
components after processing the model segmentation, and Analysis Time and Synthesis 
Time show the time for motion analysis (includes model segmentation and motion graph 
construction) and motion synthesis (for 1,000 frames) of each input motion, respectively. 

Models Vertex# Triangle# Frame# Group# Analysis Time 
(sec.) 

Synthesis Time 
(sec.) 

Dove 215 338 20 2 5.7 0.1 
Flag 115 92 300 2 4.4 1.8 

Bamboo1 8188 7962 300 4 940.1 4.4 
Bamboo2 24732 23052 400 5 2414.8 6.7 

8. CONCLUSIONS AND FUTURE WORK 

Our contribution could be mainly explained from two aspects. For motion graph 
algorithms, we introduce a hybrid segmentation method to enhance its flexibility by sep-
arating the original animation model into several groups according to its vertices' spa-
tial-temporal variations. This method overcomes the bothersome problem of insufficient 
source for data-driven motion synthesis techniques. Furthermore, we innovate a scene 
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design interface to take the advantage of motion graph's convenience of high-level control. 
Our tool lets the user quickly generate a big scene with a large amount of animation ob-
jects, and could easily dominate the environment by setting some parameters simply 
through a pen-drawing user interface. 

There are several limitations and future works for this system. In the segmentation 
part, we now semi-manually set the number of clusters by changing threshold variables. 
The number of clusters affects the result directly and intensely. It may be possible to per-
form some analysis to determine these parameters automatically. Besides, since we do not 
take skeleton motion into consideration, we could not benefit from the convenience of 
controlling skeleton based models by keyframe editing framework. However, there are 
many researches that focus on character motion synthesis. Hence, there is a potential to 
merge the character animation with our background scene animation to perform a com-
plete scene design system. 
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