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Abstract. Digital photos are massively produced while digital cameras
are becoming popular, however, not every photo has good quality. Blur
is one of the conventional image quality degradation which is caused by
various factors. In this paper, we propose a scheme to detect blurred
images and classify them into several different categories. The blur de-
tector uses support vector machines to estimate the blur extent of an
image. The blurred images are further classified into either locally or
globally blurred images. For globally blurred images, we estimate their
point spread functions and classify them into camera shake or out of
focus images. For locally blurred images, we find the blurred regions us-
ing a segmentation method, and the point spread function estimation on
the blurred region can sort out the images with depth of field or moving
object. The blur detection and classification processes are fully auto-
matic and can help users to filter out blurred images before importing
the photos into their digital photo albums.

1 Introduction

Image degradation comes into existence in different environments: unstable cam-
era, night scene, moving object, etc. Many users take photos excursively and it
turns out that there exist a lot of low quality photos. It is not convenient that
the users have to take much time to find these defective photos out after a tour.
The goal of blur classification in this paper is to help the users to automatically
detect the blurred photos and classify them into some categories to let the users
make further decisions.

Since the image gradient model is highly related to image blurring [1], our
blur detector uses support vector machine (SVM) to verify the gradient model
and estimate the magnitude of blur in an image, and then the blurred image is
also determined to globally or locally blurred. Either camera shake or out of focus
may cause globally blurred image, yet we can verify them by the point spread

function (PSF). The PSF describes the response of an image to a point source or
point object. After calculating the PSF of an image, the globally blurred image
can be classified into camera shake or out of focus. Simultaneously the locally
blurred image can be classified into two types: depth of field and moving object.
We find the blurred regions by segmentation method, and the PSF estimation on
the blurred region can sort out the image with depth of field or moving object.



Therefore, every image, by our blur detector, can be classified into one of the
following five types: non-blurred, camera shake, out of focus, moving object, and
depth of field. Fig. 1 shows the procedure of the blur detection.
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Fig. 1. The procedure of the blur detection.

2 Related Work

Tong et al. [2] proposed a scheme that makes the use of the ability of Harr
wavelet transform in both discriminating different types of edges and recovering
sharpness from the blurred version, and then determines whether an image is
blurred or not and to what extent an image is blurred. Elder et al. [3] proposed
an algorithm to detect local scale control and localize the edges over a broad
range of the blur scale. This method for edge detection leads to a method for
estimating the local blur of image contours.

Ben-Ezra et al. [4] proposed a hybrid image system that uses a secondary
detector to estimate the motion in the image. Combining the blurred image
and the acquired motion information, a PSF is estimated that represents the
path of the camera during the integration. Rooms et al. [5] assumed the PSF
can be modeled with a single parameter, and they used a Gaussian function
to estimate the single-parameter PSF from a single observation of a degraded
image. Fergus et al. [1] adopted a variational Bayesian approach to estimate the
PSF of an image. Given the grayscale blurred image B, the blur kernel K and
the latent image L are going to be estimated by finding the values with the
highest probability from the statistics of L. These statistics are based on the
image gradients rather than the intensities, so the optimization is working on
gradient domain. The variational algorithm minimizes a cost function that can
represent the distance between the approximation and the true posterior. The
updates are repeated until the change converges. The mean of the distribution
is then taken as the final value of K.

Pedro et al. [6] proposed an algorithm using a graph-based representation of
the image and applied it to image segmentation. Let G = (V,E) be an undirected
graph with vertices vi ∈ V to be segmented and edges (vi, vj) ∈ E corresponding



to pairs of neighboring vertices. A segmentation S is a partition of V such that
each component C ∈ S is a connected component in graph G′ = (V,E′) where
E′ ⊆ E. Let S0 be the initial segmentation, where each vertex vi is in its own
component, and the algorithm merges the vertices repeatedly. After m steps, Sm

is the output that segments V into r components S = (C1, . . . , Cr).

3 Blur Extent Estimation

3.1 Image Gradient Model

Gradient can be considered as a gradation from low to high values. The gradient
of an image is a function that at each pixel the gradient vector points in the
direction of largest possible intensity increase with the components given by
the derivatives in the horizontal and vertical directions. The gradient of a two
variables function F (x, y) is defined as

∇F =
∂F

∂x
î +

∂F

∂y
ĵ. (1)

If we define F as the source image, Gx = ∂F
∂x î and Gy = ∂F

∂y ĵ are two images
which at each pixel contain the horizontal and vertical derivative values. At each
pixel in the image, the resulting gradient values can be combined to give the

gradient magnitude, using G =
√

G2
x + G2

y. We can also calculate the gradient’s

direction as θ = arctan(Gy/Gx).
Fig. 2 shows that the gradient histogram distribution of a clear image is

massive on small values but there also exist some small noises on large values.
Besides the magnitude histogram, we can find that every direction has almost
the same probability in the direction histogram. On the contrary, the gradient
magnitude distribution of a blurred image is almost empty on the large values
and there only exists small values, and the gradient direction histogram also
shows there are some values higher than others. According to the difference of
the gradient distribution between a normal image and a blurred image, we can
discriminate them by examining an image’s gradient histogram.

3.2 Support Vector Machines

SVM, which has been proposed as a very effective method for pattern recogni-
tion [7, 8], is a set of related supervised learning methods used for classification.
A special property of SVM is that it minimizes the classification error and max-
imizes the geometric margin. SVM maps input vectors to a higher dimensional
space and constructs a hyperplane to separate the data into two groups. Two
parallel hyperplanes are built up on each side of the hyperplane that maximize
the distance between the two groups.

Given a training set of pre-labeled data points (xi, yi), i = 1, ..., l where
xi ∈ Rn belongs to either of two classes and yi ∈ {1,−1} denotes the label, the



Fig. 2. Left: original images. Middle: gradient magnitude histogram. Right: gradient
direction histogram.

support vector machines, to establish a hyperplane that can divide all x with
maximizing the distance between the two classes, solves the following optimiza-
tion problem:

Minimize
1

2
w · w + C

N
∑

i=1

ξi

Subject to yi(w · φ(xi) + b) ≥ 1 − ξi, ξi > 0

The nonnegative variable ξ = {ξ1, ξ2, . . . ξN} allows a small number of misclas-
sified points for better generalization, and C > 0 is the penalty parameter of
the error term. Furthermore, K(xi, xj) = Φ(xi) · Φ(xj) is called the kernel func-
tion and we use the radial basis function (RBF) as the kernel function where

K(xi, xj) = e−|xi−xj |
2/2σ2

.
Instead of predicting the label, sometimes we are looking for a probability

prediction Pr(y = 1|x), Platt [9] proposed a method to approximate the poste-
rior by a sigmoid function:

Pr(y = 1|x) ≈ PA,B(x) ≡
1

1 + exp(Af(x) + B)
, (2)

where the parameters (A,B) are estimated by solving a maximum likelihood
problem.

3.3 Blur Extent Estimation Using SVM

There are two types of training data: clear images and blurred images. Every
labeled image Ii, i = 1 . . . l is converted to grayscale, so the gradient magnitude



and direction maps can be built up first. By adding up the counts of the gradient
values, the gradient magnitude histogram can be made as well as the gradient
direction histogram. The magnitude histogram is segmented to a n1 dimensional
vector while the direction histogram is segmented to a n2 dimensional vector.
Therefore, every patch becomes a n1 + n2 dimensional vector. The training set
consists of pre-labeled data points (xi, yi), where xi ∈ Rn1+n2 and yi ∈ {+1,−1}
denotes it is a blurred image or a clear one.

The unknown image Iu, the same as the training data, is converted to one
vector xu by the gradient magnitude histogram and the gradient direction his-
togram. The vector xu ∈ Rn1+n2 will be classified by SVM and the output is one
probability value 0 ≤ pu ≤ 1. If pu is higher, relatively, the chance Iu belongs to
a blurred image is higher.

4 Blur Discrimination for Local and Global Blur

In order to distinguish the locally blurred images with the globally blurred im-
ages, we segment the image into many grids and apply the blur estimation on
each grid. A decision map is made to show where the blurred region is. The
estimation does not need to be very precise since we just want to find locally
or globally blurred image. Sometimes the monochrome scene with low gradients
such as sky or wall might be treated as a blur region by the method described in
the previous section. Thus, the monochrome identification is needed to eliminate
the fake blur. Both monochrome region and blurred region have small gradient
value, however, the difference between them is the color variance. By checking
the variance with a threshold, we can verify if the region is blur or monochrome.
After counting the number of blurred grids and non-blurred grids, the globally
blurred image and locally blurred image can be discriminated.

5 Classification of Globally Blurred Images

5.1 Point Spread Function

Given a globally blurred image, it is possibly caused by either camera shake or
out of focus. For a given blurred image B, the blurring effect can be modeled
as B = K ⊗ L + N , where ⊗ denotes the discrete image convolution and L is
the latent image convoluted by a blur kernel K with sensor noise N . The blur
kernel K is a PSF, which is the key to distinguish the camera shake and out of
focus, since they have significant difference. The PSF of a camera shake image
has line structures and the blurred direction matches the PSF direction, but the
PSF of an out of focus image is flat and dispersed, which means every pixel is
polluted by nearby pixels. A common problem is that the blur kernel K(x, y) is
often unknown, or only partially known. In this case, the unknown K has to be
estimated from the blurred image B.



5.2 PSF Estimation

Many PSF estimation algorithms have been proposed, and in this paper we
follow the work of Fergus et al. [1]. The advantage of their algorithm is that
only one image required. The approximation of the posterior distribution can
be expressed by Bayes’ Rule, and the variational algorithm minimizes a cost
function that can represent the distance between the approximation and the
true posterior. The parameters of the distributions are updated alternately by
coordinate descent. The updates are repeated until the change converges. The
mean of the distribution is then taken as the final value of the PSF.

5.3 PSF Classification

The PSF classification is rather similar to the blur estimation. The training
images consist of half camera shake blurred images and half out of focus blurred
ones. Every image is estimated to find the n×n blur kernel K, and the kernel is
the feature of SVM classification. The kernel of every image is then transmuted,
row by row, to a n2 dimensional vector, and the model is built from these vectors.
The predicting data, the same as training data, is converted to a vector from
the estimated blur kernel, and then predicted to camera shake or out of focus
by SVM.

6 Classification of Locally Blurred Images

If an image has some blurred regions and some clear regions at the same time,
it is considered as a locally blurred image. There are two possible occasions that
locally blurred region occurs: moving object and depth of field. To discriminate
the two kinds of locally blurred images, we have to segment the foreground object
from the background first. Image segmentation is a historical problem and there
are many algorithms in this area. Pedro et al. [6] proposed an algorithm using a
graph-based representation of the image and applied it to image segmentation.
Their method is fast in practice and can preserve the details in low-variability
regions while ignoring the details in high-variability regions.

Our goal is to find where the blurred region exactly is. For this reason, we
apply the blur estimation on each region after the image segmentation to find the
blur extent of each region. The fake blur problem arises here that the following
two reasons may cause misclassification: 1. if the region is too mall; 2. if the
region is monochrome. The fake blur can be judged by the neighboring pixels. If
there is a region in the image with fake blur and its blur extent is unknown, we
examine all pixels around the region to find the most frequent value and assign
the value to the region.

In order to distinguish the moving object and depth of field, we apply the PSF
estimation as described in the previous section. The estimated patch, however,
is not decided only by the gradient. Since there are still some clear regions in the
image, the PSF estimation should not be performed on the clear regions. We find



the patch P that can maximize the blur probability. The PSF classification on
the patch can decide if the blurred patch is caused by motion or camera focus.
If the blur is from motion, we can conclude that the image has moving object.
If the blur is from camera focus, relatively, we can conclude that the image has
depth of field.

7 Results

7.1 Blur extent estimation

From 200 blurred images and 200 clear images, half of the images are randomly
chosen as the training data, and the remaining images are the predicting data.
The gradient magnitude histogram is segmented to a 360 dimensional vector as
well as the direction histogram. It turns out that the accuracy is 99.5% since
only one image is wrong for 100 blurred images and 100 clear images. Fig. 3
shows some images and their blur extent values.

(a) Blur extent value =
0.889063

(b) Blur extent value =
0.879511

(c) Blur extent value =
0.007651

(d) Blur extent value =
0.043577

Fig. 3. Different images and their blur extent values.

7.2 Blur Discrimination for Local and Global Blur

For those images with blur extent larger than 0.5, we segment the image into
many grids to check if the blur is globally or locally. The width and the height of
the grid may affect the prediction result: if the grids are too large, the prediction



will not be accurate; if the grids are too small, there will be a multitude of fake
blurred regions. The width and height of the grid is set to 10% of the image. If
the prediction value of the grid is larger than 0.5, it is a blurred region. The non-
blurred region, vice versa, are the grids with value less than 0.5. The variance of
monochrome identification is heuristically set to 30. It turns out a decision map
that can tell where the blurred region is. Every image is segmented to k regions
including k1 blurred regions, k2 non-blurred regions, and k3 fake blurred regions
in the decision map. If k1/(k1 + k2) ≥ 0.7 , then the image is a globally blurred
image, otherwise it is a locally blurred image. Fig. 4 shows the grid structure and
the visualization of the prediction result. The image is considered as a locally
blurred image because there exist both blurred regions and non-blurred regions.

Fig. 4. Blur region detection.

7.3 Classification of Globally Blurred Images

From 80 camera shake blurred images and 80 out of focus image, half of the
images are randomly chosen as the training data. We rescale all images to no
more than 800x600 because the blur kernel size is related to the image size.
Assuming the camera shake is not huge, we set the kernel size to 49x49. Every
image is then given a probability value p, 0 ≤ p ≤ 1 denotes the chance to be an
out of focus image or a camera shake image. If p is higher, relatively, the chance of
the image to belongs to an out of focus image is higher. The prediction on the 40
camera shake images and 40 out of focus image results 4 wrong prediction which
means the accuracy is 95%. Fig. 5 shows the prediction on different globally
blurred images and the estimated PSFs.

7.4 Classification of Locally Blurred Images

The accuracy of the classification of the locally blurred images is about 70%
when predicting 40 depth of field and 40 moving object images. Fig. 6 shows
the visualized result after segmentation, the blur estimation on each region with
fake blur, and the final probability map.



(a) PSF estimation probability = 0.038328

(b) PSF estimation probability = 0.842785

Fig. 5. The classification of globally blurred images.

(a) Original image (b) Blur extent estimation
result

(c) Estimated PSF on the
blurred region

Fig. 6. Locally blur detection.

8 Conclusions and Future Work

In this paper, we propose a framework to estimate the blur extent of an image
and classify different types of blurred images. Blur extent estimation is performed
on every input image, and those blurry image are chosen. The grid search is then
applied to distinguish between locally blurred images and globally blurred ones.
For the globally blurred image, we estimate its PSF and it can be classified
into camera shake or out of focus. For the locally blurred image, we find the
blurred regions using a segmentation method, and the PSF estimation on its
blurred region can sort out the image with depth of field or moving object. The
advantage of our framework is that the processes are automatic, so that the users
can easily find the images they want by these hints.

The method proposed in [2] requires several rules and steps to calculate the
blur extent of an image. Relatively, our method for blur extent estimation is
highly accurate and not heuristic because the classification error is minimized



automatically via SVM. Furthermore, our method can verify the images from
different types of blur which is not proposed in other previous methods. The
idea is new and has the potential for further researches.
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