
The Visual Computer manuscript No.
(will be inserted by the editor)

Bing-Yu Chen · Yutaka Ono · Tomoyuki Nishita

Character Animation Creation using Hand-drawn Sketches

Abstract To create a character animation, a 3D char-
acter model is often needed. However, since the human-
like character is not a rigid-body, to deform the char-
acter model to fit each animation frame is a tedious
work. Therefore, we propose an easy-to-use method for
creating a set of consistent 3D character models from
some hand-drawn sketches while keeping the projected
silhouettes and features of the created models consistent
with the input sketches. Since the character models pos-
sess vertex-wise correspondences, they can be used for
frame-consistent texture mapping or for making charac-
ter animations. In our system, the user only needs to
annotates the correspondence of the features among the
input vector-based sketches; the rest processes are all
performed automatically.

Keywords Cel Animation · Non-Photorealistic Render-
ing · 3D Morphing · Consistent Mesh Parameterization ·
Sketches

1 Introduction

The techniques of computer graphics are widely used for
supporting the creation process of animations. In the tra-
ditional approach, animators had to draw each frame of
an animation by hand on paper or cel. This has now been
superseded by a method in which the frames are drawn
using computer-assisted tools, or by rendering the scenes
using 3D models. Moreover, if the animators use vector-
based drawings rather than raster-based paintings, they

Bing-Yu Chen
National Taiwan University
E-mail: robin@ntu.edu.tw

Yutaka Ono
The University of Tokyo
E-mail: ono@nis-lab.is.s.u-tokyo.ac.jp

Tomoyuki Nishita
The University of Tokyo
E-mail: nis@is.s.u-tokyo.ac.jp

can scale the drawings to any size and the images thus re-
quire less storage space. Meanwhile, by using 3D models,
the animators can add many attractive effects to their
animations, e.g., shading, shadowing or texture mapping,
which are difficult or time-consuming to draw by hand.

However, it is still difficult to construct human-like
character models to support the animation making process,
since their shapes are often drawn with considerable dis-
tortions due to the characters’ motion, changing view-
points or animators’ exaggerations. Although it might be
possible to make several 3D models whose shapes change
with such distortions, deforming the models manually for
each frame is a very time-consuming task. Therefore, we
propose a method for creating a set of 3D polygon models
that correspond to the input frames of some hand-drawn
sketches. Animators can use the set of models for easily
adding 3D effects, especially for adding shading effects
or shadows to the animation and for mapping textures to
a character, while preserving the user-specified features
with frame-to-frame coherence.

Our method takes a single cut of an animation from a
sequence of vector-based images drawn by animators as
the input, where each of the images contains the shape
and features of a character in a certain (key) frame of
the animation. The correspondences of the features be-
tween the frames are specified by the user. Our system
then creates a consistent 2D base domain according to
the features and the silhouettes of the character on each
frame. By subdividing the base domain recursively, the
system generates a set of consistent 2D triangle meshes
that approximate the features and the silhouettes of the
character on each frame. After an inflation process, a set
of consistent 3D polygon models is created, so that the
projected silhouettes and features of the models are con-
sistent with the input frames. In the all processes, only
the feature specification is operated by the user, the rests
are automatically done by our system.

The created 3D models have the following properties:
(1) Silhouette preservation: the projected silhouette
of each created model coincides with that of the char-
acter on the corresponding original frame. (2) Frame-



2 Bing-Yu Chen et al.

to-frame correspondences: the created models ex-
hibit vertex-wise correspondences. (3) Feature preser-

vation: all of the features of the input image are em-
bedded in the corresponding model and the projection
of these features coincides on the original frame.

The silhouette preservation property allows the an-
imators to use the set of consistent models that have
been created for adding shading effects or shadows, and
the frame-to-frame correspondence property allows them
to use frame-consistent texture mapping. Texture map-
ping with user-specified constraints along the input vec-
tors between the input image and the model, as well
as of models, is possible due to the feature preserva-

tion property. Moreover, since the created models pos-
sess vertex-wise correspondences, the method can assist
the animators to generate in-between shapes among the
input frames by applying morphing techniques.

2 Related Work

To add attractive and impressive 3D effects onto cel ani-
mations, the animators usually require 3D geometric in-
formation. The method of obtaining 3D information for
rigid objects is quite straightforward, since they can sim-
ply call on modelers to construct 3D models. Those 3D
models can be directly rendered by using so-called toon
or comic shaders [22], together with several stylized ren-
dering methods [7] [8] [15]. However, for human-like char-
acters, there seems to be no simple solution to obtaining
3D information due to their artistic distortions.

Rademacher [18] presented a typical method to create
an animation using a 3D character model, generated by
a professional animator. In this method, the animator-
generated 3D character model is deformed to match sev-
eral reference images, and the deformed models are then
interpolated to create a 3D geometry whose shape de-
forms with the changes of viewpoint. Mart́ın et al. [13]
also presented a related method. Since the animators
manually define the 3D models at each key viewpoint,
these methods were able to satisfy the three properties
that are highlighted in our method, i.e., silhouette preser-

vation, feature preservation, and frame-to-frame corre-

spondences, and they could be used for many applica-
tions. However, manually editing the 3D models is still a
time-consuming task. Li et al. [12] also provide a sketch-
based method to generate character animation.

A texture mapping method for cel animation pre-
sented by Corrêa et al. [3] also uses 3D models cre-
ated by animators. Although a reference model must be
created manually, a simple interface for deforming the
model to meet the silhouette preservation and frame-to-

frame correspondence criteria are provided. Therefore,
this technique may also be used for adding shading ef-
fects or shadows. However, since the feature preservation

requirement is only an approximation, it cannot be used

for complex textures that must critically satisfy the user-
specified constraints.

In order to create a 3D model, Igarashi et al. [6]
and Karpenko et al. [10] proposed easy-to-use sketch-
ing systems with which the user draws only the silhou-
ette. The systems can then create a 3D model that sat-
isfies the silhouette preservation requirement for a sin-
gle frame. However, it is not simple to extend this to
animation, since the frame-to-frame correspondence cri-
terion is obviously not considered. A method proposed
by Petrović et al. [17] for adding shadows cast by the
characters on the scenes requires only a small effort on
the part of the animators, because it creates 3D mod-
els semi-automatically using the above methods. How-
ever, these models do not possess feature preservation or
frame-to-frame correspondence properties, so the range
of applications where these models can be used is very
limited.

Some computer vision techniques could be used to
construct 3D models from 2D tracking-points. However,
most of these techniques assume that the object is rigid,
and hence they are not applicable to the characters in
character animations. Several methods, e.g., those pre-
sented by Bregler et al. [2] and by Torresani et al. [21]
have been proposed for generating 3D non-rigid models,
but they all require a large number of images and track-
ing points. Therefore, these methods cannot be applied
for key-frame character animations in general. Our pre-
vious work [16] also used some computer vision methods
to construct a set of consistent 3D character models from
an existing cel animation for adding some effects into the
original animation. Hence, the methods presented in this
paper are different from the previous one, since the in-
formation on some hand-drawn sketches is not so much
as that on a cel animation which has more frames than
the input sketches.

In this paper we aim to identify a method that can
be used to create consistent 3D models featuring sil-

houette preservation, feature preservation and frame-to-
frame correspondence properties. Applications for these
models include adding shading effects and shadows and
mapping textures within the animators’ constraints. The
burden for the animators with this technique is not so
different from the method provided by Petrović et al.

[17].

3 System Overview

In this section, the system overview is described from an
animator’s viewpoint. Initially, he or she loads a sequence
of images, which are hand-drawn sketches, representing
some key frames of a character animation shown in Fig. 1
(a)∼(c). The animator then overwrites some stroke vec-
tors on the features of the images as shown in Fig. 1
(d)∼(f). This work can be done by using some com-
mercial tools which can convert raster-based or scanned



Character Animation Creation using Hand-drawn Sketches 3

hand-drawn sketches into vector-based images. Of course,
if the original input images are already vector-based like
the example shown in Fig. 5 (a), this step can be omit-
ted. After specifying the corresponding points and paths
between the frames by adding some ID numbers, the pre-
processing setup step has been completed. The animator
can then obtain a set of consistent 3D models automati-
cally, as shown in Fig. 1 (g)∼(i). These models can then
be used for further applications, such as texture mapping
and shadowing, as shown in Fig. 1 (j)∼(l).

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 1 User input hand-drawn sketches of a dancing bear
and corresponding output models. (a)∼(c) Three of the six
input sketches. (d)∼(f) Converted stroke vectors from input
sketches with user-specified correspondences. (g)∼(i) Output
3D models shown in wireframe. (j)∼(l) Texture-mapped mod-
els with shadows using toon rendering.

With some complex characters, some areas of the
character are hidden by others, for example, the forearms
and the upper arms of the dancing bear shown in Fig. 1.
In this case, the animator has to draw some stroke vec-
tors and specify the correspondence of the missing parts
by separating the input images into multiple layers. This
decomposition is natural for the process of making cel
animations [4].

4 Generation of Consistent 2D Meshes

After the pre-processing setup described in Section 3,
we now have F vector-based images as Fig. 1 (d)∼(f),
where F is the number of input frames. These images
are treated as F sets of 2D (x-y) planar graphs, and each
graph is denoted as Gf = (Wf , Pf ), f = [1, F ], where Wf

is a set of points in <2 and Pf is a set of finite simple
paths in <2 connecting two different points in Wf , and
each path is sampled to a polyline. Moreover, we assume
that the graphs are consistent which can be guaranteed
by guiding the user’s input, where two graphs are con-
sistent means that there are one-to-one correspondences
among their points and paths as the two graphs shown
in Fig. 2 (a).

To generate 2D meshes from the graphs, it is neces-
sary to convert the graphs so that they contain no iso-
lated points and paths as shown in Fig. 2 (b). Therefore,
we separate our consistent 2D triangle mesh generation
algorithm from a sequence of input graphs into two steps.
In the first step (Section 4.1), we create a set of consistent
base domains, which are consistent triangulated graphs

G′

f (Gf ) = (Wf , P ′

f ) of Gf = (Wf , Pf ), where P ′

f ⊆ Pf ,

as shown in Fig. 2 (c) for all of the frames, which means
some paths are inserted into the graph Gf to make each
patch has only three points and paths, and a patch is
defined as a closed region bounded by the paths of the
graph.

In the second step (Section 4.2), we create a set of
consistent 2D triangle meshes Mf in which the triangu-
lated graphs G′

f are embedded by subdividing each patch

of G′

f , as shown in Fig. 2 (c).

4.1 Consistent Graph Triangulation

The algorithm described in this section creates a set of
consistent base domains, which are triangulated graphs
G′

f (Gf ) = (Wf , P ′

f ) from a set of consistent input graphs

Gf = (Wf , Pf ), by adding the paths, one by one, to
Gf . This method, which sequentially adds paths to the
graph, is modified from the method described by Kraevoy et al.

[11]. In order to describe the algorithm clearly, we use
G∗

f = (Wf , P ∗

f ) as an intermediate graph between the

given set of consistent graphs Gf = (Wf , Pf ) and the
output set of consistent base domains G′

f (Gf ) = (Wf , P ′

f )
for all of the frames. We first compute a path q1 con-
necting {p1,i, p1,j}, where i 6= j and p1,i, p1,j ∈ W1,
which does not cross the unbounded region and which
minimizes the path length. If path q1 is found, then
we sequentially compute paths q2, ..., qF for connecting
{p2,i, p2,j}, ..., {pF,i, pF,j}, respectively, where q2, ..., qF

are corresponding paths with q1, so that the graphs G∗

1
=

(W1, P
∗

1
∪ {q1}), ..., G

∗

F = (WF , P ∗

F ∪ {qF }) are still con-
sistent.

In order to find paths q2, ..., qF , we need to search all
possible paths in the graphs from the standpoint of the



4 Bing-Yu Chen et al.

0

1
2

3

4

5
6

7

8

0

1

2

3

4

5

6

7 8

0

1

2

34

5

6

7

8

0

1

2

3

4

5

6

7

8

(a)

0

1
2

3

4

5
6

7

8

0

1

2

3

4

5

6

7 8

0

1

2

34

5

6

7

8

0

1

2

3

4

5

6

7

8

(b)

0

1
2

3

4

5
6

7

8

0

1

2

3

4

5

6

7 8

0

1

2

34

5

6

7

8

0

1

2

3

4

5

6

7

8

(c)

Fig. 2 (a) Input graphs of two frames. Green numbers show
the corresponding ID numbers for points and blue numbers
are for paths. (b) Triangulated graphs of (a). (c) Output con-
sistent 2D triangle meshes.

topology. To achieve this topological search and to com-
pute the paths, we use trapezoidal maps of the graphs as
shown in Fig. 3. The paths are generated by connecting
the centroids of the trapezoids and the centers of the ver-
tical extensions, as in Fig. 3 (b) and (c). The paths are
then optimized by removal of the redundant points. The
conditions for removing the redundant points are that
(1) removing the point does not change the topology of
the path, and (2) removing the point does not move a
remaining path too close to other points or paths. The
second condition is necessary to avoid degeneracy in the
following algorithms. For example, removing the squared
point in Fig. 3 (d) is topologically possible, but it would
make the path too close to other points or paths. After
all possible paths are found, we will choose the path with
the same topology as the path in the first frame. Once the
paths q1, ..., qF are decided and added to G∗

1
, ..., G∗

F , we
will check if G∗

1
, ..., G∗

F have become triangulated graph
to stop or continue the triangulation process.

Note that this triangulation algorithm is not symmet-
ric, because graph G∗

1
is dealt with first, and the others

follow on. Although it is possible to make the algorithm
symmetric by further computing path sets for G∗

2
, ..., G∗

F

as the first steps and then deciding the minimum average

(a) (b)

(c) (d)

Fig. 3 Path search/computation using a trapezoidal map.
(a) An input graph. (b) A trapezoidal map of (a) with its
”road map”. (c) Four topologically different paths for con-
necting yellow points. (d) Optimized path derived from the
red path in (c).

length path sets, we have found that just dealing with
G∗

1
in the first instance is sufficient in our experiments.

4.2 Consistent Face Subdivision

We now have consistent base domains G′

f (Gf ) = (Wf , P ′

f ),
and each patch in a base domain has a simple boundary
defined by three paths as shown in Fig. 2 (b). To cre-
ate consistent 2D triangle meshes Mf , in which the in-
put graphs Gf are embedded as shown in Fig. 2 (c), we
first define 2D meshes, M∗

f = (Wf ,K∗

f ), by identifying

G′

f as meshes, where K∗

f is a simplicial complex derived

from the paths of G′

f . Since the paths of G′

f are rep-
resented by polylines, M∗

f may not consist of triangles
or be consistent among frames in general. To establish
consistency over M∗

f , we apply an edge-split operator to
M∗

f to make the boundary of each face have the same

number of vertices among frames as shown in Fig. 4 (b).
A consistent triangulation method for simple boundary
polygons may then be applied to all the faces of the M∗

f

independently, the results of which are shown in Fig. 4
(c), and we use M ′

f to denote the generated consistent
2D triangle meshes. The triangulation method we used
here is an adaptive semi-regular refinement method (a
combination of 4-to-1 and 2-to-1 subdivisions).

Although M ′

f are consistent 2D triangle meshes, they
may have some undesirable creases, due to the paths that
were added for graph triangulation, and thus may not be
valid. Therefore, we apply a smoothing method to M ′

f

based on the algorithm of Freitag et al. [5] that moves
each vertex locally to minimize an energy function, while
constraining the positions of the vertices corresponding
to Gf and get Mf .



Character Animation Creation using Hand-drawn Sketches 5

G1 G2

(a)

(b)

(c)

Fig. 4 A process of consistent face subdivision. (a) The
input patches of two base domains G

′

1(G1
) = (W

1
, P

′

1)
and G

′

2(G2
) = (W

2
, P

′

2). The yellow points are the cor-
responding points in W 1 and W 2. (b) The results after ap-
plying edge-split operators to (a). (c) Consistent 2D triangle
meshes are generated by subdividing (b).

4.3 Consistent 3D Meshes Generation

After creating consistent 2D (x-y) triangle meshes M1, ...,

MF , we inflate each vertex of the meshes to determine
its z(depth)-coordinate. We apply an inflation method
to the boundary vertices of Mf , based on the method
proposed by Igarashi et al. [6], and create a height field
for the positions inside the boundary. Each z-coordinate
of the vertices of Mf is determined from the height field.
Since the values of the height field for frame f are only
dependent on the boundary of Mf , frame-to-frame coher-
ence with respect to the z-coordinates is not considered.
To maintain the frame-to-frame coherence, we apply an
optimization method based on Taubin’s paper [20], to
smooth the depth of the vertices, both inter-frames and
within-frame, by an iterative process.

If the characters in the input frames are composed
of several layers, we create the 3D meshes separately for
each layer and then bring them together as a composi-
tion. If the user has defined the same closed input paths

for two different layers, the paths are regarded as stitches.
Two meshes are combined by uniting the vertices of the
stitches. After combining the layers, they are smoothly
shifted and sheared so that they do not intersect with
each other.

Since the animators draw the characters aesthetically,
it is difficult to generate their 3D shapes fully auto-
matically. In addition to the above automatic inflation
method, we also provide several tools to let the animators
manually adjust the z-coordinate of the vertices if nec-
essary, such as the methods described in [17] [18] [19].
We only allow the changes in the positions of vertices
along the direction of the projections in order to main-
tain the silhouette preservation and the feature preser-
vation properties.

5 Results and Applications

The dancing bear models shown in Fig. 1 (j)∼(l) are
created from six input images. Three of these are shown
in Fig. 1 (a)∼(c). In the pre-process step, 60 curves are
drawn on each frame. By using the current system, it
takes about 20 seconds to produce six consistent 3D
models using a desktop PC with an Intel Pentium 4
1.7GHz CPU. Each model contains 6,018 faces (trian-
gles) and 3,280 vertices. To overwrite stroke vectors on
the input hand-drawn sketches and specify the corre-
spondences of 59 features among the six frames takes 30
minutes through our user interface, which is similar to
the time taken by other tools for object space morphing.

The running dinosaur models shown in Fig. 5 (b)
are also created from six input images. Three of these
are shown in Fig. 5 (a). It takes about 40 seconds to
produce six consistent 3D models with 86 features, each
of which contains 4,862 faces and 2,550 vertices. Since the
constructed dinosaur models are three-dimensional, we
can change the viewpoint to render the dinosaur model
as the images shown in Fig. 5 (c). However, since we have
the input images from only one viewpoint, changing the
viewpoint too large will cause some errors due to the lack
of the information from other viewpoints.

The created set of 3D character models can be used
for the following applications.

Shading Effects and Shadows: Fig. 6 shows two
synthesized scenes that use different illumination condi-
tions. In Fig. 6 (a), we use low contrast diffusion colors to
simulate an evening scene. On the other hand, in Fig. 6
(b), we use high contrast diffusion colors and apply spec-
ular effects to mimic the light through trees. The lighting
conditions and the position of the ground can be changed
by the user. To add shading effects to the characters,
we implemented our rendering algorithm on program-
mable graphics hardware (NVIDIA GeForce FX), and
were able to render the scenes in real-time. Scenes that
include shading effects or shadows can be easily gener-
ated once the 3D models have been created. It typically



6 Bing-Yu Chen et al.

(a)

(b)

(c)

Fig. 5 An example of a running dinosaur. (a) Three of the
six input vector-based images. (b) Texture mapped models
using toon rendering. (c) Viewed from another viewpoint.

takes two or three minutes to change the illumination
conditions and the directions of the light sources. Since
our method can be seen as an extension of the work by
Petrović et al. [17], adding shadows or shading produces
almost the same results as their method.

(a) (b)

Fig. 6 (a) Long shadows cast by two bears. A shadow caused
by one bear is cast onto another bear. The background image
is taken from Corrêa et al.’s paper [3]. (b) Simulating the
effect of light through the trees.

Texture Mapping: Since the 3D models that were
created exhibit feature-preservation and frame-to-frame

correspondence properties, mapping a texture image onto
each model or obtaining intermediate models is straight-
forward. The stroke vectors drawn on the images by the
animator work as guides or constraints for texture map-
ping or morphing. Fig. 7 shows a simple example of map-
ping one texture image onto two models. Note that the
pattern of the texture corresponds on each model. We
transfer the same texture from the first model to oth-
ers by giving the same texture coordinates to the corre-
sponding vertices, i.e., texture transfer.

However, simple texture mapping is not sufficient in
some cases. Fig. 8 (a) shows a bad example, since it
produced some serpentine lines around the animator-

Fig. 7 Simple textured models. Note that the texture on
the groins of both of the dinosaur models is continuous.

specified stroke vectors. The model shown in Fig. 8 (a) is
the same as that shown in Fig. 8 (b) which is a close-up
view of Fig. 1 (k), but the eyes and the mouth of the bear
model in Fig. 8 (a) have some errors. This unpleasant ef-
fect is caused by the differences in the vertex densities of
the models in the regions of the stroke vectors, as in the
models shown in Fig. 1 (g) and (h). Although we can put
hard constraints onto the stroke vectors, we cannot en-
sure the uniformity of the vertex densities around them.
This problem is closely related to the manner of draw-
ing silhouettes in an artistic style [7] [8] [15]. Since in a
character animation the features are the most important
parts, the problem must be solved.

(a) (b)

Fig. 8 (a) A texture-mapped model with some errors. Note
that the eyes and the mouth are drawn with serpentine lines,
which are quite different from (b). (b) A correct texture-
mapped result which is a close-up view of Fig. 1 (k).

In our approach, we record the texture around each
animator-specified stroke vector separately from the or-
dinal textures by parameterizing its width onto a ver-
tex sequence that corresponds to the stroke vector. To
render the vertex sequence corresponding to the stroke
vectors, we first check whether (a part of) the vertex se-
quence is visible. If it is, we disable the z-buffer, generate
triangle strips in the image space according to the para-
meterized width and draw them directly onto the image
plane. Fig. 8 (b) (also Fig. 1 (k)) shows the modified
texture-mapped model of Fig. 8 (a).

The texture-mapped dinosaur model shown in Fig. 7
is composed of several layers, e.g., the body and the left
leg are two different but connected layers. By applying
the same constraints to the stitches of the connected
layers, the texture on connected layers can be mapped



Character Animation Creation using Hand-drawn Sketches 7

smoothly. Note that the texture on the groin of the di-
nosaur model shown in Fig. 7 is continuous.

Morphing and Shape Blending: To morph mod-
els by using their vertex-wise correspondences, many 2D
or 3D morphing methods [1] [9] [14] might be applied.
However, most of existing morphing methods are de-
signed for morphing between two models, and cannot be
easily extended to more than two models. Hence, we cur-
rently chose to use a simple Spline interpolation method
to construct the intermediate models, as shown in the
upper row of Fig. 9, for generating a smooth anima-
tion sequence. Moreover, by specifying the correspond-
ing strokes and features onto the images of two different
characters, two 3D models with a consistent mesh pa-
rameterization can be constructed. Then, the morphing
sequence between the two character models can also be
generated. To blend two or more different character mod-
els can also be achieved.

time

sp
a
ce

Fig. 9 The upper row shows the intermediate models con-
structed between the models shown in Fig. 1 (j) and (k). The
middle row shows the pseudo-view-dependent models gener-
ated from the models in the upper and lower rows. The lower
row shows the morphing sequence generated from other two
input frames from another viewpoint.

Pseudo-view-dependent Models: Given sets of
input frames from different viewpoints, by specifying the
corresponding strokes and features onto the images, the
3D models that interpolate the viewpoints can be con-
structed as shown in the middle row of Fig. 9.We thus
can help the animators to generate both temporal and
spatial intermediate shapes. Since the models are con-
structed from a set of consistent 2D graphs, if there are
no corresponding features on the input frames, we can
not construct the models. Therefore, even if the user
gives an input of a set of images to show the back of

the bear, we can still not generate a set of pseudo-view-
dependent models from the front of the bear to the back.

6 Conclusions and Future Work

In this paper, we proposed a method for creating a set
of consistent 3D models from a sequence of hand-drawn
strokes. The models have the following properties. (1)
Their projected silhouettes coincide with the input strokes,
and therefore they can add plausible shading effects or
shadows to a scene. (2) They possess vertex-wise corre-
spondence, so it is possible to obtain a continuous ani-
mation sequence by interpolating their coordinates or to
add the same textures to all of the models by propagat-
ing the texture coordinates to the corresponding vertices.
(3) The correspondence of the vertices can be controlled
by the animators’ drawing strokes, and thus the tech-
nique can be applied to morphing or texture mapping
with constraints set by the animators.

The additional effort required of the animators, be-
yond the traditional process of making cel animations, is
only to specify several correspondences on input strokes,
where the animators would like to place constraints. Thus,
our method can yield a range of applications with only
a minimum of effort. Since our method can construct
several 3D models with a consistent mesh parameteriza-
tion for different characters, several related applications
might also be achieved.

Since the 3D position of the vertices of the created
models are estimated, the surfaces of the created models
may be a little bumpy. This limitation is not so impor-
tant when we apply toon-shading to the models. When
it comes to background characters such that used in an
animation of crowds, the details of the character models
are also not so necessary. Therefore, it may be accept-
able to use the created models in those cases. Moreover,
our method is also suitable for adding some effects to
cel animation like what has been done in [17]. To help
traditional 2D animators to provide a prototype of 3D
character animation is also one of our major contribu-
tions. The generated 3D animated character models can
then be further modified by using commercial modeling
tools such as Maya.

The following list of topics indicates aspects of the
work that we hope to cover in the future: (1) To re-
duce the labor of animators by finding the correspon-
dences between the input images automatically or semi-
automatically. This might become possible by utilizing
computer-vision techniques. (2) To enable the creation
of models from non-consistent images. (3) Given a char-
acter animation sequence, to transfer the motion of the
character to another character which is only drawn on a
single image.

Acknowledgements We thank Dr. Ken-ichi Anjyo (Ori-
ental Light & Magic Inc.) for providing the input images



8 Bing-Yu Chen et al.

(Fig. 1). This work was partially supported by the National
Science Council of Taiwan under the numbers: 93-2213-E-
002-084.

References

1. Alexa, M., Cohen-Or, D., Levin, D.: As-rigid-as-possible
shape interpolation. In: Proc. SIGGRAPH 2000, pp. 157–
164 (2000)

2. Bregler, C., Hertzmann, A., Biermann, H.: Recovering
non-rigid 3d shape from image streams. In: Proc. CVPR
2000, pp. 2690–2696 (2000)

3. Corrêa, W.T., Jensen, R.J., Thayer, C.E., Finkelstein,
A.: Texture mapping for cel animation. In: Proc. SIG-
GRAPH 98, pp. 435–446 (1998)

4. Fekete, J.D., Bizouarn, É., Cournarie, É., Galas, T.,
Taillefer, F.: Tictactoon: A paperless system for profes-
sional 2-d animation. In: Proc. SIGGRAPH 95, pp. 79–90
(1995)

5. Freitag, L.A., Jones, M.T., Plassmann, P.E.: An efficient
parallel algorithm for mesh smoothing. In: Proc. IMR
95, pp. 47–58 (1995)

6. Igarashi, T., Matsuoka, S., Tanaka, H.: Teddy: A sketch-
ing interface for 3d freeform design. In: Proc. SIG-
GRAPH 99, pp. 409–416 (1999)

7. Kalnins, R.D., Davidson, P.L., Markosian, L., Finkel-
stein, A.: Coherent stylized silhouettes. ACM TOG
22(3), 856–861 (2003). (Proc. SIGGRAPH 2003)

8. Kalnins, R.D., Markosian, L., Meier, B.J., Kowalski,
M.A., Lee, J.C., Davidson, P.L., Webb, M., Hughes, J.F.,
Finkelstein, A.: Wysiwyg npr: Drawing strokes directly
on 3d models. ACM TOG 21(3), 755–762 (2002). (Proc.
SIGGRAPH 2002)

9. Kanai, T., Suzuki, H., Kimura, F.: Metamorphosis of ar-
bitrary triangular meshes. IEEE CG&A 20(2), 62–75
(2000)

10. Karpenko, O., Hughes, J.F., Raskar, R.: Free-form
sketching with variational implicit surfaces. Computer
Graphics Forum 21(3), 585–594 (2002). (Proc. Euro-
graphics 2002)

11. Kraevoy, V., Sheffer, A., Gotsman, C.: Matchmaker: Con-
structing constrained texture maps. ACM TOG 22(3),
326–333 (2003). (Proc. SIGGRAPH 2003)

12. Li, Y., Gleicher, M., Xu, Y.Q., Shum, H.Y.: Stylizing
motion with drawings. In: Proc. SCA 2003, pp. 309–319
(2003)

13. Mart́ın, D., Garćıa, S., Torres, J.C.: Observer dependent
deformations in illustration. In: Proc. NPAR 2000, pp.
75–82 (2000)

14. Michikawa, T., Kanai, T., Fujita, M., Chiyokura, H.:
Multiresolution interpolation meshes. In: Proc. PG 2001,
pp. 60–69 (2001)

15. Northrup, J.D., Markosian, L.: Artistic silhouettes: A hy-
brid approach. In: Proc. NPAR 2000, pp. 31–38 (2000)

16. Ono, Y., Chen, B.Y., Nishita, T.: 3d character model
creation from cel animation. In: Proc. CyberWorlds 2004,
pp. 210–215 (2004)

17. Petrović, L., Fujito, B., Williams, L., Finkelstein, A.:
Shadows for cel animation. In: Proc. SIGGRAPH 2000,
pp. 511–516 (2000)

18. Rademacher, P.: View-dependent geometry. In: Proc.
SIGGRAPH 99, pp. 439–446 (1999)

19. Singh, K., Fiume, E.L.: Wires: A geometric deformation
technique. In: Proc. SIGGRAPH 98, pp. 405–414 (1998)

20. Taubin, G.: Curve and surface smoothing without shrink-
age. In: Proc. ICCV 95, pp. 852–857 (1995)

21. Torresani, L., Hertzmann, A., Bregler, C.: Learning non-
rigid 3d shape from 2d motion. In: Proc. NIPS 2003, pp.
577–580 (2003)

22. Winnemöller, H., Bangay, S.: Geometric approximations
towards free specular comic shading. Computer Graphics
Forum 21(3), 309–316 (2002). (Proc. Eurographics 2002)

Bing-Yu Chen received the
B.S. and M.S. degrees in Com-
puter Science and Information
Engineering from the National
Taiwan University, Taipei, in
1995 and 1997, respectively,
and received the Ph.D. degree
in Information Science from
the University of Tokyo, Japan,
in 2003. He is currently an as-
sistant professor in the Depart-
ment of Information Manage-
ment and the Graduate Insti-
tute of Networking and Multi-
media of the National Taiwan
University since 2003. His re-
search interest are mainly for

Computer Graphics, Geometric Modeling, Web and Mobile
Graphics. He is a member of IICM, ACM, and IEEE.

Yutaka Ono received the B.S.
and M.S. degrees in Informa-
tion Science and Computer Sci-
ence from the University of
Tokyo, Japan, in 2002 and
2004, respectively. He is cur-
rently working for SEGA Corp.
since 2004. His research in-
terest is mainly for Computer
Graphics, Geometric Model-
ing, and Computer Animation.

Tomoyuki Nishita received
the B.S., M.S., and Ph.D. de-
grees in Electrical Engineer-
ing from the Hiroshima Univer-
sity, Japan, in 1971, 1973, and
1985, respectively. He worked
for Mazda Motor Corp. from
1973 to 1979. He has been a
lecturer at the Fukuyama Uni-
versity since 1979, then became
an associate professor in 1984,
and later became a professor in
1990. He moved to the Depart-
ment of Information Science of
the University of Tokyo as a
professor in 1998 and now is
a professor at the Department

of Complexity Science and Engineering of the University of
Tokyo since 1999. He received Research Award on Computer
Graphics from IPSJ in 1987, and also received Steven A.
Coons awards from ACM SIGGRAPH in 2005. His research
interest is mainly for Computer Graphics. He is a member of
IEICE, IPSJ, ACM, and IEEE.


