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Figure 1: Left: Input unorganized point setP. Middle: Voronoi voxelization ofP, where some Voronoi vertices are selected
as poles (colored in navy blue). Right: Bipartite polar classification splits the poles into two disjoint sets lying in the opposite
sides ofP (colored in purple and coral, respectively). Note that the Voronoi voxels were constructed by offsetting the underlying
torus surface as the boundary constraint.

Abstract

In this paper, we propose bipartite polar classification to augment an inputunorganized point setP with two
disjoint groups of points distributed around the ambient space ofP to assist the task of surface reconstruction.
The goal of bipartite polar classification is to obtain a space partitioning ofP by assigning pairs of Voronoi poles
into two mutually invisible sets lying in the opposite sides ofP through direct point set visibility examination.
Based on the observation that a pair of Voronoi poles are mutually invisible, spatial classification is accomplished
by carving away visible exterior poles with their counterparts simultaneouslydetermined as interior ones. By
examining the conflicts of mutual invisibility, holes or boundaries can also beeffectively detected, resulting in a
hole-aware space carving technique. With the classified poles, the task ofsurface reconstruction can be facilitated
by more robust surface normal estimation with global consistent orientation and off-surface point specification
for variational implicit surface reconstruction. We demonstrate the ability of the bipartite polar classification to
achieve robust and efficient space carving on unorganized point clouds with holes and complex topology and show
its application to surface reconstruction.

1 Introduction

In computer graphics, extensive efforts have been devoted
to developing geometric modeling and surface reconstruc-
tion algorithms, which deal with point set data because of
their wide availability. In addition to 3D positions of the sur-
face points, some other prior knowledges, such asoriented
normal vectors, play crucial roles in the success of many ex-

isting methods. In certain challenging scenarios, e.g. miss-
ing data or close-by surface sheets, directly interpolating
the holes or smoothing the geometric details without con-
sidering the orientation information may not produce proper
reconstruction in terms of topological correctness. Surface
reconstruction from unorganized points [HDD∗92] is thus
an ill-posed and very challenging problem especially when
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such side information is hard to infer due to the defects of
the point clouds [HLZ∗09].

Traditionally, the classical algorithm [HDD∗92] and its
variants start from estimating normal directions by local
principal component analysis (local PCA) followed by a pri-
oritized orientation propagation process exploiting the mini-
mum spanning tree traversal to align the normal vectors such
that they can have consistent in/out orientations. The ori-
ented normal fields can then be utilized to reconstruct the
implicit functions approximating the surface or serve as an
input of other reconstruction algorithms [CBC∗01,KBH06].
To handle some situations like close-by surface sheets or thin
surface features, special priority measure and feature detec-
tion can be taken into account to improve the robustness of
the orientation propagation [HLZ∗09].

Despite the efforts taken by the traditional schemes, to
correctly propagate the orientations remains a challenging
problem, since normal estimation may be unreliable and
only local considerations are taken to align the orienta-
tions between nearby points, which may actually drastically
change. In [CCLN10], binary orientation tree(BOT) visu-
ally carves out the ambient space of a model from outside for
surface reconstruction by exploiting the direct point set visi-
bility [ KTB07] and shows superior performance of resolving
the point set orientation to traditional orientation propaga-
tion. However, it can only handle closed shapes due to the
assumption that the interior region is everywhere occluded
by the input point set. Recently,cone carving[SSZCO10]
also takes advantage of global visibility property to carve
out the exterior space of a shape to derive a more accurate
distance-to-surface measure for surface reconstruction even
with the presence of large holes or missing data. Its main
drawback is the high computational complexity which de-
grades its feasibility in practical applications.

Given an input point setP, we aim to establish a bipar-
tite space partitioning by classifying a set of representative
points distributed aroundP into two disjoint subsets to fa-
cilitate the following surface reconstruction task. One key
observation is that the points lying in theoppositesides
of a shape (e.g. in/out of closed surfaces or front/back of
open surfaces like frontal human faces) are mutually invisi-
ble from each other. Another intuition is that when observing
a 3D model, once some points from its opposite sides are si-
multaneously visible, it implies that we are looking into a
hole or across a boundary. Therefore, we take advantage of
point set visibility as a means of classification and exploit
the 3D Voronoi diagram constructed onP to generate the
representative points embedded in the ambient space ofP.
Specifically, each input pointp ⊂P is associated with a pair
of poles, p+ andp−, which are selected from the vertices
of the corresponding Voronoi voxel ofp. Since the Voronoi
poles (i.e., the set ofp+ andp−) are highly likely to be op-
posite with respect to the shape described byP if carefully
selected, such mutually exclusive property of the Voronoi

pole pairs enables us to detect holes when examining their
visibilities.

In summary, the proposed method, which we callbi-
partite polar classification(BPC), aims to identify the in-
side/outside regions of a shape. Specifically, the proposed
method assigns the Voronoi poles to two disjoint sets by it-
eratively carving out the visible poles lying outside the sur-
face with the opposite poles simultaneously determined. It
exploits thehidden point removal(HPR) operator [KTB07]
for visibility examination and is simple to implement and ef-
ficient to compute. In addition, the proposed method is hole-
aware and capable of dealing with incomplete raw point sets
without additional information. Compared with existing al-
gorithms, the proposed method is more robust to estimate
oriented surface normals with global consistency.

2 Related Work

Visibility information has been widely exploited by various
space carving techniques. One of the classical approaches
is the volume carving method [CL96], which eliminates the
empty voxels along the line-of-sight from the sampled points
to scanner. Another class of approaches is the image-based
visual hull, which utilizes silhouette information from a
number of reference images to carve out the outside regions
not belonging to an object [Lau94]. Instead of volumetric
representations, BOT [CCLN10] accomplishes space carv-
ing on raw input point clouds by taking “snapshots” from
various viewpoints to tag and remove certain exterior aux-
iliary points depending on their visibilities. However, such
a simple carving process cannot prevent from penetrating
into holes which reveal the inside space of the point set.
In [SSZCO10], cone carving createsvisibility conesapexed
at each point and extended outward to carve away the out-
side space, whose silhouette is traced by a view-dependent
point rendering process. Since splatting of all other points
is required, it is not an efficient algorithm even with the ac-
celeration of GPUs. The HPR operator [KTB07] is directly
related to our method. It determines the visible points among
a point set from a given viewpoint through aspherical flip-
ping transformation and convex hull computation. Recently,
Mehraet al. [MTSM10] extended the HPR operator to deal
with point sets containing concavities, non-uniformly spaced
samples, and possibly corrupted with noise. Some other re-
lated works [NT00, ZZBW08] include the visibility-driven
algorithms aiming to identify the interior and exterior parts
of polygonal models.

The pioneering work of Hoppeet al. [HDD∗92] com-
putes a signed distance function approximating an unorga-
nized point cloud by using estimated tangent planes, which
is followed by iso-surface extraction. Many implicit sur-
face modeling methods have been developed, such as vari-
ational implicit surfaces of radial basis functions (RBFs)
[CBC∗01, TO02], multi-level partition-of-unity [OBA∗03]
and Poisson reconstruction [KBH06]. All of these meth-
ods require prescribed surface normals to facilitate the re-
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(a) (b)

Figure 2: (a) Hole detection with the poles and main axes of
the conflict Voronoi voxels shown in blue spheres and lines,
respectively. (b) Spatial classification withoutγ-sphere carv-
ing. The green spheres are the unclassified poles, which can-
not be carved away by visual carving.

construction task. Some other approaches achieve 3D re-
construction by first computing unsigned distance approx-
imation to the input data followed by stochastic signing
of the function [MdGD∗10]. To obtain precise geometric
and orientation information of a 3D model [NRDR05] is
a process subject to the data acquisition conditions, which
may be affected by the presence of material artifacts, shad-
owing or inaccurate registration. To deal with incomplete
scan data caused by physical inaccessibility or poor visi-
bility, an interactive technique is introduced to recover the
topology of complex undersampled regions with user in-
put [SLS∗07]. To reliably estimate the surface normals, par-
ticularly with globally consistent orientation, is considerably
difficult and has been intensively investigated in previous re-
searches [HDD∗92,ACSTD07,GG07,HLZ∗09].

Voronoi diagrams and Delaunay triangulations have been
widely applied in surface reconstruction [EM94, ABK98,
DG03, CG06], which provide provable theoretical guaran-
tees under proper sampling conditions. However, the quality
of Voronoi-based approaches typically degrade due to under-
or non-uniform sampling. Although, the idea of using poles
for surface reconstruction is not new [ABK98,ACK01], the
proposed method differs from the previous ones in identi-
fying sufficient poles of high confidence by checking their
visibilities, which is a weak assumption that is true under
most situations. The contribution of this work is thus a novel
algorithm to classify the initially unorganized poles into two
sets with explicit spatial identification to facilitate surface
reconstruction.

3 Bipartite Polar Classification

Given a point setP, which possibly contains noise, holes
and non-uniformities, our goal is to partition the space into
the two opposite sides of the shape described byP. To
achieve this, we formulate it as a space carving problem by
grouping a set of representative pointsP ′ into two disjoint
setsP+ andP− (i.e.,P+ ∪P− = P ′ andP+ ∩P− = ∅),

which are mutually invisible to obtain a bipartite classifica-
tion. Such a classification problem is difficult in selecting
sufficient and discriminative points to identify the spatial re-
lationship and also to fit to the application in question. For
surface reconstruction, we associate each pointpi ⊂ P with
a pair ofpolesp+

i andp−
i , which are supposed to be oppo-

site and thusinvisible to each other. Specifically, the HPR
operator [KTB07] is utilized to carve out the visible exte-
rior poles† from the space and assign them toP+ with their
opposite poles assigned toP− simultaneously. Note that ini-
tially p+

i andp−
i do not necessarily correspond to eitherP+

orP−, and are then classified by visual carving. Hole detec-
tion is first performed by checking the conflicts of mutual
invisibility between the pole pairs from some preselected
viewpoints before the iterative carving process. The aware-
ness of holes prevents us from carving the poles away from
both sides ofP to obtain incorrect spatial classification. To
summarize, the proposed method,bipartite polar classifica-
tion (BPC), consists of the following main components:pole
selection, hole detectionanditerative polar classification.

3.1 Pole Selection

For spatial classification, it would be most desirable to cre-
ate a number of representative points which can be poten-
tially divided into two mutually invisible sets. To achieve
this, we choose to construct a 3D Voronoi diagramV of
P with each voxelVi ∈ V occupied by only a single point
pi ∈ P based on the observation exploited by some previ-
ous methods [ABK98, ACK01]. Since the Voronoi voxels
tend to be long and skinny under a good sampling quality,
the poles can thus be simply selected from the two vertices
of Vi farthest frompi . However, the Voronoi voxels would
become irregularly shaped with the influence of noise. Sim-
ilar to [ACSTD07], we perform a covariance analysis onVi
to obtain a principal axisni and its anisotropyσi ∈ [0,1],
which is defined asσi = 1− λmin

λmax
, whereλmin andλmax cor-

respond to the smallest and largest eigenvalues, respectively.
A high σi implies an elongatedVi extending perpendicularly
to the shape, andp+

i andp−
i can thus be selected to be the

two farthest vertices ofVi alongni . In contrast, a lowσi in-
dicates that the vertices ofVi are isotropically distributed.
Therefore, no poles are included for spatial classification.
We empirically adopted a threshold of 0.9 for pole selection.
A voxel Vi and its pole pairp+

i andp−
i are referred to as

reliable if σi > 0.9, otherwise they arevulnerable. For noisy
data sets, we optionally apply theweighted locally optimal
projection(WLOP) operator [HLZ∗09] to preprocessP be-
fore the Voronoi voxelization.

† Without loss of generality, we refer to the poles observed bythe
HPR operator as the exterior ones, since they are usually visible
when viewing from outside.
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3.2 Hole Detection

The aforementioned polarized Voronoi voxelization pro-
vides us a number of reliable poles, which are eligible for
the following spatial classification. It is important to be con-
scious of the presence of holes inP for a space carving
method like BPC to succeed. In geometric models, holes
are the locus where the spatial identification conflicts occur.
With the mutual opposite property between the Voronoi pole
pairsp+

i andp−
i , such conflicts can be easily detected by

examining their visibilities from a certain viewpoint. If both
a pair of Voronoi poles are observed at the same time, we are
aware that a hole is visible under current viewing direction,
which should be avoided. Hence, we perform aprescanning
process for hole detection before space carving. From a set
of preselected viewpoints, the HPR operator [KTB07] is ap-
plied to all reliable pole pairsP ′ as well asP to detect
the conflicts. Note that holes or boundaries are typically not
visible under all viewing directions. Hence, it is important
to record the detected Voronoi pairs of conflict andfreeze
them during the following space carving. The frozen poles
are never removed and function as abarrier across which
line-of-sight cannot pass. Undoubtedly, increasing the view-
points in prescanning will certainly find more such protec-
tive Voronoi pole pairs. Empirically, we found that it is suffi-
cient to prescan a model along the opposite directions ofx-,
y- andz-axes if it is located at the origin. Figure2 (a) shows
the Voronoi poles of conflicts and the detected hole of the
DISTCAP data set.

3.3 Iterative Polar Classification

After hole detection, we are ready to classifyP ′ =
{p+

i ,p
−
i | ∀pi ⊂ P,σi > 0.9} into P+ andP−. The follow-

ing iterative procedure composes the proposed polar classi-
fication method:

1. Initially, a number of viewing directions on a unit sphere
are uniformly sampled.

2. Randomly choose an unused viewing direction and place
a virtual camera atc sufficiently far away along this di-
rection. Then, apply the HPR operator to observeP ∪P ′

from c.
3. Remove the observedp+

i or p−
i from P ′ and assign ev-

ery visible pole toP+ and its counterpart toP−, but skip
the poles if conflicts occur (i.e., bothp+

i andp−
i are ob-

served).
4. For every carved pole pair, recursively performγ-sphere

carving.
5. Repeat from Step 2 ifP ′ is not empty (excluding the

frozen poles) and there are still unused viewing direc-
tions.

In Step 1, we uniformly sample 300 viewing directions
on a unit sphere which sufficiently exposesP andP ′ when
performing the HPR operation. The actual viewpointsc are
positioned by extending the viewing directions from the ori-
gin with a distance of 20∼ 30 (relative to a unit bounding

(a) (b)

(c) (d)

Figure 3: Noise effect on Voronoi voxelization and the re-
sults of BPC. (a) A cleanKNOT data set consisting of 10,000
points, and there are 9,529 reliable pole pairs. (c) TheKNOT

data set is perturbed by 1% random noise, and the number
of reliable pole pairs hence decreases to 4,059. (b) and (d)
are the corresponding reconstructed RBF surfaces of (a) and
(c), respectively.

sphere ofP). For efficiency consideration, we do not per-
form visibility examination from all candidate viewpoints
and empirically eliminate the nearest 10∼ 15 viewpoints
to the currentc from the candidate set since the fields of
vision of such viewpoints do not vary much fromc. Typ-
ically, the first few iterations identify most exterior poles.
Some exterior poles occluded byP or other exterior poles in
P ′ depending on the viewpoints are gradually observed as
the iterative carving algorithm proceeds. Recall that the pro-
tective poles detected in the prescanning stage indicate the
existence of holes or boundaries. Therefore, they are never
removed in Step 3 even though conflict does not occur under
the current viewing direction. The co-existence of pairs of
protectivep+

i andp−
i is important for hole detection as soon

as a hole becomes visible from a new viewpoint.

In Step 4,γ-sphere carvingstands for the process of plac-
ing a ball of radiusγ centered at a classified pole and carving
away any other unclassified poles lying within theγ-sphere
with the same polar classification, which is conceptually
similar to theα-balls used to construct theα-shapes [EM94].
Such a supplementary carving operation possesses signif-
icant impact on BPC. We conservatively setγ to a small
value due to two reasons. First, the Voronoi poles tend to
cluster, which implies distant points inP may have neigh-
boring poles. This phenomenon is best understood by con-
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(a) (b) (c) (d)

Figure 4: Surface reconstruction of a sparse and non-uniform point setHAND. (a) The BPC result. (b) The normal estimation
and orientation propagation by [HLZ∗09]. (c) and (d) The reconstructed RBF surface by the normal fields obtained from (a)
and (b), respectively.

sidering the TORUS (Figure1) or KNOT (Figure3) model,
which is symmetrically shaped. The interior poles form a
curve with each pole extremely close to its neighbors. By
carving away the nearby interior poles, the corresponding
exterior poles can also be explicitly classified, which may
be hard to be reached by visual carving. In practice, a small
γ suffices to globally deliver local classification results over
the entire model. Second, a smallγ is more appropriate since
P possibly contains holes. Otherwise, aγ-sphere of adaptive
radius which contains nop ⊂ P may be used. Although the
protective poles indicate the existence of holes, they are usu-
ally not dense enough to block theγ-spheres from growing
across the shape boundaries.

4 Applications

4.1 Surface Normal Estimation

For a reliable voxelVi , its principal axisni and exterior pole
assigned toP+explicitly specify a normal vector of its cor-
responding pointpi directed outward. As for the vulnerable
voxels, an unsigned normal directionn′

i may be estimated by
local PCA and then orientated with thek-nearest classified
poles ofpi by maximizing

k

∑
j=1

sign(p′
j ) · (p

′
j −pi) ·n

′
i , (1)

where sign(p′
j ) is a binary function that returns 1 or−1

if a pole p′
j is assigned toP+ or P−, respectively. Simi-

lar to cone carving [SSZCO10] and BOT [CCLN10], BPC
takes the global visibility into account to obtain a spatial
partition compliant with the model structure and is thus
more robust than traditional propagation-based approaches
[HDD∗92, HLZ∗09], which take only local conditions into
consideration for orientation determination.

4.2 Variational Implicit Surface Reconstruction

The classified polesP+ andP− are semantically similar to
the off-surface constraintstypically required in solving the

variation implicit surfaces[TO02,CBC∗01], which specify a
number of locations to assist the implicit surface to separate
the inside/outside space. Voronoi voxelization and BPC can
thus simplify the task of reconstructing the variational im-
plicit surfaces from unorganized points. Specifically, a sub-
set ofP may be augmented by off-surface pointsp̂i explic-
itly specified by their corresponding classified poles. Fig-
ure 3 illustrates two examples of reconstructing the varia-
tional implicit surfaces from clean and noisy data sets, re-
spectively. Note that despite the influence of noise, which
affects the Voronoi voxelization and decreases the size of
P ′, P ′ still suffice to deliver the topology and orientation
information ofP, resulting in topologically correct surface
reconstruction. Nevertheless, it will still be desirable tocon-
solidateP [HLZ∗09] to enrich the pole set especially when
the noise level is high.

5 Results and Discussions

With many well-established libraries of computational ge-
ometry algorithms, the implementation of BPC is straight-
forward. We adopted Qhull [BDH96] for the HPR opera-
tion [KTB07] and voro++ [Ryc07] for the Voronoi voxeliza-
tion, respectively. Initially, the input point setP is first nor-
malized into the interval of[−1,1] and translated to be cen-
tered at the origin. voro++ enables us to impose a bound-
ing sphere of radius 5 onP as boundary constraint and the
Voronoi voxelization ofP is performed to extractP ′.P∪P ′

are then collected together for hole detection (Section3.2)
and iterative polar classification (Section3.3) with the HPR
operator. Note that the presence ofP is essential for separat-
ingP+ andP− during the iterative carving process.

Table1 summarizes the CPU runtimes of processing the
models shown in this paper. Generally, BPC takes only a few
seconds to process a point set of moderate size. Despite the
overhead of the Voronoi voxelization and WLOP, BPC is still
quite efficient to process the point clouds with similar data
size when comparing to cone carving [SSZCO10]. When
dealing with a largeP, a subset ofP will be sufficient to
obtain an appropriate spatial classification, which is demon-
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Table 1: Computation times for point consolidation
(WLOP), Voronoi voxelization (VD) and bipartite polar clas-
sification (BPC) on several data sets. Point# and the num-
bers in parentheses under BPC stand for the number of
points and the iteration times of the HPR operation. All re-
sults were obtained on a desktop PC with an Intel i7 2.8GHz
CPU with 2GB RAM, and the computation times are repre-
sented in seconds.

Model Point# WLOP VD BPC

TORUS 4,800 - 8.36 0.73 (7)
HAND 7,609 - 12.27 2.86 (38)
KNOT 10,000 - 14.59 1.28 (7)

INUKSHUK 10,293 35.89 15.47 4.25 (36)
MANNEQUIN 10,722 11.95 18.86 6.97 (40)
FERTILITY 12,081 17.7 33.69 4.86 (42)
DANCER 12,428 26.61 27.52 9.19 (43)

CHILDREN 12,500 10.11 15.63 5.36 (39)
DANCER2 12,535 27.75 27.14 10.12 (41)
DISTCAP 12,745 - 51.97 5.37 (36)

HEPTOROID 14,334 23.31 15.25 4.63 (36)
BIMBA 15,002 - 43.13 11.63 (40)

DINOSAUR 18,494 31.28 99.67 19.33 (40)
HORSE 18,532 39.06 266.1 21.95 (43)

strated in Figure5. In this example, BPC is performed on a
uniformly sampled subset (15,002 points) of a dense point
setP (74,764 points). The orientated normal field ofP can
thus be estimated by local PCA and the classified poles of the
sampled subset, as described in Section4.1, and the Poisson
implicit surface [KBH06] can then be reconstructed. In this
example, one can hardly see any visual difference between
the reconstructed surfaces from the coarse and dense point
sets, and also from the results by [ACSTD07]. It is consid-
ered to be necessary to extract a reasonablygoodsampling
adhered to the underlying shape ofP for such a scenario
to succeed, because a proper Voronoi voxelization is re-
quired to obtain sufficient reliable poles. The WLOP opera-
tor [HLZ∗09], which preprocessed several originally denser
point sets as indicated in Table1, is potentially suitable for
this purpose.

Being a similar space carving method exploiting direct
point set visibility, BPC brings significant performance en-
hancement in dealing with complex models when comparing
with BOT [CCLN10]. Figure2 (b) demonstrates an example
of space carving on a point cloud by purely using the HPR
operation, which is taken by BOT. Since the ambient space
of a topologically complex model, such as KNOT (Figure3)
or HEPTOROID (Figure 9 (d)), is self-occluded from vari-
ous viewing directions, it is thus difficult to be handled by
simply visual carving. In addition, the poles lying within the
occluded regions actually form concave shapes of high cur-
vature, which are hard to be observed by the HPR operation.

The property of being opposite with respect to a shape of
pole pairs simplifies the task of space carving since their spa-

(a) (b) (c)

Figure 5: (a) Uniform sampling of theBIMBA point set (15K
points) and the corresponding BPC result; (b) and (c) Re-
constructed Poisson implicit surfaces by (a) and the original
point set (75K points), respectively.

(a)

(b)

Figure 6: RBF implicit surfaces reconstructed from (a) the
DINOSAUR and (b)HORSEdata sets.

tial classification can be simultaneously determined. In ad-
dition, since Voronoi poles are close to themedial axisof a
shape, they capture thereflectional symmetriesof a geomet-
ric model and approximate to a 2D manifold. Theγ-sphere
carving explained in Section3.3 can carry local classifica-
tion results around to carve out the regions which are actu-
ally not observed by the HPR operation. Concave regions
hidden by topological details which cannot be observed un-
der most viewing directions can thus be gracefully handled.
As shown in Figure9, BPC successfully deals with a variety
of shapes of high topological complexity. It is worth noting
that for every point set, the first six iterations of the HPR
operators account for the prescanning process of the hole
detection. As indicated in Table1, one iteration of the HPR
operation was sufficient for TORUS and KNOT to classify
all poles since their interior poles form continuous curved
medial axises and local classification results are propagated
over the model to obtain the global solution byγ-sphere
carving. Unlike traditional volume carving techniques, the
requirement of sufficient “scans” to carve out all exterior re-
gions is greatly alleviated by BPC.

In Figure4, the performance of BPC and the traditional
normal propagation scheme [HLZ∗09] on a sparse and non-
uniform point set with close-by surface sheets is compared.

c© 2011 The Author(s)
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(a) (b)
(c) (d)

Figure 7: Surface normal estimation with globally consistent orientation: (a)DINOSAUR by [HLZ∗09], (b) DINOSAUR by
BPC, (c)HORSEby [HLZ∗09], (d) HORSEby BPC.

In Figure 4 (a), BPC successfully classified the Voronoi
poles (with the interior ones shown in coral spheres), which
are then utilized to estimate and orientate the normal vec-
tors of every data point to assist RBF implicit surface re-
construction (Figure4 (c)). In Figure4 (b), the previous
method [HLZ∗09] failed to orientate the normal vectors of
some data points (invisible due to back culling of point splat-
ting), resulting in incorrectly reconstructed surface (Figure4
(d)). Figure7 shows two models whose 3D structures were
recovered by multiview epipolar geometry [HL06] and con-
tain holes, non-uniformities and noise. The previous method
obviously mis-aligned some normal vectors, while the re-
sults by BPC do not have such problems. Figure6 shows the
corresponding RBF implicit surfaces of the DINOSAUR and
HORSEmodels by BPC. Some more examples showing the
ability of BPC to facilitate surface reconstruction with thin
structures are demonstrated in Figure8 (a) and (b).

Limitations. Due to the goal of bipartite space partition-
ing, BPC is not able to deal with the shapes which can-
not explicitly separate the ambient space into two opposite
sides. As a Voronoi-based method, BPC is affected by the
quality of Voronoi voxelization. In Figure8 (c), a proper
Voronoi voxelization was not available in-between the ex-
tremely close-by surface sheets, so BPC failed to separate
the inside/outside space due to the lack of reliable Voronoi
poles, and hence resulting in geometrical errors in surface
reconstruction. For similar reasons, it will also be difficult
for BPC to carve out the exterior regions between opposite
holes.

6 Conclusion and Future Work

To summarize, BPC utilizes Voronoi voxelization to gener-
ate a set of representative points, i.e., poles, suitable to dis-
criminate the opposite sides of a shape. It is based on the
assumption that all exterior poles are visible from outside
and accomplishes spatial classification in a fashion of space
carving on point clouds. As a visibility-driven space carv-
ing technique, some advantages of BPC include its hole-
awareness and robustness to derive orientation information
from incomplete raw point sets. The classified poles in-

(a) (b) (c)

Figure 8: (a) and (b) The examples of BPC assisted surface
reconstruction from the point sets with thin structures. (c)
BPC failed to separate the close-by surface sheets due to the
lack of reliable poles.

dividually provide reliable surface normal estimation and
collectively convey topology information if properly post-
processed. Despite the overhead of Voronoi voxelization,
BPC is efficient to compute and simple to implement when
compared to other visibility-driven method [SSZCO10]. For
future work, we plan to investigate the feasibility to derive
higher level topological representations of point clouds by
BPC, e.g. skeletons, to assist surface reconstruction under
difficult situations.
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