
The Development of 3D Graphics and VRML Libraries
for Web3D Platform by Using Java

Bing-Yu Chen1 and Tomoyuki Nishita2
1Department of Computer Science, The University of Tokyo, 113-0033 Japan

2Department of Complexity Science and Engineering, The University of Tokyo, 113-0033 Japan

SUMMARY

This paper proposes a new 3D graphics program-
ming environment for Web3D on the Internet. To de-
velop 3D graphics programs on the Internet is not easy
because there is no popular 3D graphics library like
OpenGL. For this purpose, we developed a 3D graphics
library called jGL by using Java exclusively. jGL is a
general-purpose 3D graphics library, and its API (Appli-
cation Programming Interface) is defined in a manner
quite similar to that of OpenGL. Since jGL offers the
same functionalities as OpenGL, the programmers can
use it easily. Furthermore, since people can use some
simple Java programs on cellular phones recently, the
migration experimentation toward i-αppli is also de-
scribed in this paper. Moreover, VRML (Virtual Reality
Modeling Language) is a standard file format for de-
scribing 3D models on the Internet. To display a 3D
model on the Internet, people may like to use the VRML
file format. Therefore, we also developed a VRML li-
brary called jVL by using Java exclusively as an exten-
sion of jGL. In this paper, the results and some detail
descriptions are updated and different from those in [3].

Key words: OpenGL; VRML; Web3D; Java;
graphics library.

1. Introduction

Recently, the Internet users are growing day by day,
and so are the demands of 3D graphics on the Internet.
However, when we develop a 3D graphics program on
the Internet, since the Internet itself is a heterogeneous
network environment, to offer several versions of the
same program for several different platforms is not easy.
This is so-called the platform dependant problem. Al-
though Java1 can be used to solve this problem now be-
cause of its hardware-neutral features, its 3D graphics
support forms another problem.

To develop a 3D graphics program on a
stand-alone computer, the programmer always uses a
general-purpose 3D graphics library, like OpenGL 2 .
However, there is no such a library on the Internet when
using Java. Moreover, if there is a 3D graphics library for
Java, it should be easy to learn and use. Therefore, we
developed a 3D graphics library called jGL, and defined
the API of it in a manner quite similar to that of OpenGL.
Hence, while using jGL, the programmers do not need to
learn how to use a entirely new 3D graphics library, so
that to develop 3D graphics applications on the Internet
becomes easier than before.

Unlike Java 3D and other similar 3D graphics li-
braries for the Internet; jGL does not need any native
codes or pre-installed libraries, such as OpenGL, it is
developed with pure Java only. To develop a 3D graphics
application with jGL on the Internet, the programmer can
just ignore how to do the 3D graphics rendering on the

1 http://java.sun.com/
2 http://www.opengl.org/

Java VM (Virtual Machine). The entire 3D graphics ren-
dering is done by jGL. If the application is designed to
be run by other users on the Web, all he or she has to do
is just to put it on the Web server with jGL. Then, the
users can use this program via the in-lined applet on any
Java enabled Web browser. Moreover, the users who run
any application developed with jGL do not need to install
any package even jGL before using it; all of the required
codes are downloaded at run-time from the server.

We released the first version of jGL at the end of
1997 [4]. That version provided only the basic rendering
routines due to the machine performance. Moreover,
some complex functions, such as texture mapping, are
also ignored, since those functions are time-consuming.
However, because the computer hardware has much im-
proved and more and more fancy 3D graphics applica-
tions have been required for the Internet, we therefore
decided to enhance the capabilities of jGL. Unfortunately,
although the computer hardware is getting faster and
faster day by day, the network bandwidth is still the same
as, or even worse than before. Trying to increase the ca-
pabilities of jGL may make its code size become too
large to be transmitted over the Internet. To enhance the
capabilities and minimize the code size at the same time,
the kernel of jGL has been re-written.

Recently, some simple Java applets can be run on
cellular phones, for example the i-αppli3 of the 503i and
504i series provided by NTT DoCoMo in Japan. Since
i-αppli is not standard and based on Java 2 SDK, Micro
Edition (J2ME) that is different from the platform of jGL,
which is Java 2 SDK, Standard Edition (J2SE), jGL can
not be run on the i-αppli platform directly. To make the
cellular phones to have 3D graphics supports, we ported
some basic parts of jGL onto the i-αppli platform.

Besides the 3D graphics library as a programming
environment for the Internet, we also need to show and
use 3D models while developing 3D graphics applica-
tions. Hence, we also used pure Java to develop a VRML
library called jVL by following the API of jGL and the
specification of VRML [2], since VRML is a standard
file format for describing 3D models on the Internet.
Furthermore, the 3D graphics rendering of jVL is also
done by jGL.

2. Related systems

For the Web3D platform, there are some related

3 http://www.nttdocomo.co.jp/p_s/imode/java/

systems on the Internet. Some are 3D graphics libraries
(Java 3D and JSparrow in the following); others are for
displaying 3D objects or scenes (Eyematic Shout3D,
blaxxun3D, Cortona Jet, and Xj3D in the following).

Java 3D � Java 3D4 is provided by Sun Microsys-
tems, Inc. as the 3D support for Java programming lan-
guage, but has not become an official part of core Java
package. Java 3D needs the support from OpenGL or
DirectX, which has been pre-installed. Since it can get
the benefits from the graphics hardware the run-time
performance is good, but the platform dependent prob-
lem is occurred. To use a program based on Java 3D, the
users have to install the run-time package of Java 3D
before using it. Moreover, the API of Java 3D is specific,
so people who want to develop some 3D graphics pro-
grams with Java 3D may spend much time to learn how
to use it.

JSparrow � JSparrow5 is an implementation of
Java binding for OpenGL provided by PFU, Ltd. Since it
needs the support from native OpenGL, it also has the
platform dependent problem as Java 3D. Moreover, to
use a program developed with it, the users also have to
install the JSparrow package before using it.

Eyematic Shout3D � Eyematic Shout3D6 is a
commercial product of Eyematic Interfaces, Inc. It is
developed using pure Java and can display 3D models on
the Web. Although the file format of the 3D model is not
VRML, it provides a converter from VRML to its own
file format (not one-to-one mapping). Like VRML, it
also provides its own API to let people program anima-
tion of the 3D model.

blaxxun3D � blaxxun3D7 is a commercial product
of Blaxxun Interactive, Inc. As Eyematic Shout3D, it is
also developed using pure Java and can display 3D mod-
els on the Web. It reads VRML and draft X3D (Extensi-
ble 3D; the next generation of VRML) file format, al-
though it does not fully support both. Following the
concepts of JavaEAI (Java External Authoring Interface),
blaxxun3D also provides an API to let people program
their 3D models.

Cortona Jet � Cortona Jet8 is a commercial prod-
uct of Parallel Graphics, Inc. As Eyematic Shout3D and
blaxxun3D, it is also developed using pure Java and can
display 3D models on the Web. It reads VRML file for-

4 http://java.sun.com/products/java-media/3D/
5 http://home.att.ne.jp/red/aruga/jsparrow/
6 http://www.shout3d.com/products_shout3d.html
7 http://www.blaxxun.com/products/blaxxun3d/
8 http://www.parallelgraphics.com/products/jet/

mat, but does not provide any API for programming.
Xj3D � Xj3D9 is an open-source project of the

Web3D Consortium, Inc. Xj3D is also developed using
Java, but the 3D graphics rendering is based on Java 3D.
It can read VRML and draft X3D file format exactly;
actually it is the testing platform for the X3D.

As listed in , since Java 3D is not platform
independent and programmers need to pay more time to
study how to use it, we think to provide a real platform
independent 3D graphics library with a familiar API is
useful. Moreover, although there are several programs
could be used to show 3D models, the users can not use
them for programming such as changing the light sources
or the actions of the 3D model. Therefore, the develop-
ment of 3D graphics programs on the Internet is easier
than before by using jGL and jVL.

Table 1

Table 1. The comparison of related systems.

systems pure Java famous API VRML
Java 3D no not at all no

JSparrow no yes no
Shout3D yes no yes

blaxxun3D yes no yes
Cortona Jet yes no yes

Xj3D no no yes
jGL + jVL yes yes yes

3. Introduction of jGL

jGL is a 3D graphics library for Java and has no
necessary to be pre-installed (all of the required codes
are downloaded at run-time). Moreover, since OpenGL is
so famous and has been known by many 3D graphics
programmers, we defined the API of jGL in a manner
quite similar to that of OpenGL by following the speci-
fications of it [11]. Therefore, the programmers who
want to use jGL to develop 3D graphics programs on the
Internet do not need to learn how to use an entirely new
library; they can find one-to-one mapping functions in
jGL and those in OpenGL.

3.1 OpenGL vs. jGL

The functions of OpenGL can be divided into two
main categories: OpenGL Utility Library (GLU) and
OpenGL (GL) as shown in Fig. 1 (a). jGL follows the

same function hierarchy and is defined as Fig. 1 (b).

9 http://www.web3d.org/TaskGroups/source/xj3d.html

3D Application 3D Java Applet

GLUT AUX GLUT GLAUX

 GL GLU GLU

GL Graphics Context

Native Window Systems Java Virtual Machine

(a) (b)
Fig. 1. The hierarchy of (a) OpenGL and (b) jGL mod-

ules.

GL implements a powerful but small set of draw-

ing primitive 3D graphics operations, including rasteri-
zation, clipping, etc. GLU provides higher-level OpenGL
commands to programmers by encapsulating these
OpenGL commands with a series of GL functions. Be-
sides these two main interfaces, there is an OpenGL Pro-
gramming Guide Auxiliary Library, called AUX or
GLAUX, which is not an official part of OpenGL API,
but is widely used and familiar to many programmers.
For this reason, we also include GLAUX in our package.
Recently, OpenGL Utility Toolkit (GLUT) has been
widely used by programmers also, so we also imple-
mented this part.

The implementations of GL, GLU, and GLUT of
jGL are mainly based on the specifications of OpenGL,
GLU [5], and GLUT [8]. Besides GL, GLU, GLUT, and
GLAUX, which are just interfaces for programmers,
there is an underlying graphics context, which is trans-
parent to programmers.

3.2 Implementation of graphics context

To reduce the code size and keep or enhance the
performance of jGL, we utilize the class inheritance
characteristics to design the system hierarchy of the
graphics context as shown in Fig. 2.

The graphics context of jGL can be divided into
two parts. One part is for display lists; all of the com-
mands from the GL will not be executed but stored as a
sequence of rendering commands. The other part is for
real graphics contexts; all of the commands from the GL
will be executed immediately.

The commands that will be executed in the real
graphics context also can be categorized into two types.
One type is just for changing some information stored in
the graphics context. The other type performs the real

actions and directly produces some changes due to the
stored information. We also refer to [1] [6] [7] [9] to op-
timize the rendering algorithms for performance en-
hancements.

Fig. 2. The graphics context of jGL.

3.3 Performance enhancement issues

The run-time performance is a great challenge for
both 3D graphics and Java application. Moreover, jGL is
designed to operate over the Internet, where the network
bandwidth affects the overall performance significantly.
Hence, the performance enhancement issues of jGL do
not only contain the run-time performance but also the
capability enhancement and the byte-code size minimi-
zation.

Therefore, we use the following four policies to
develop jGL: (1) utilize class inheritance to avoid
�if-then-else� statements; (2) divide a routine into several
smaller ones; (3) group rarely used routines into a larger
one; (4) use function-overriding to minimize code size.

3.4 Porting experimentation for i-αppli

The development environment of jGL is different
from the i-αppli platform which is a specific Java VM
and operated on cellular phones. To port jGL onto it, we
have to obey the following limitations due to the i-αppli
platform: (1) there is no floating-point data type; (2) the
size of the jar-ball must be smaller than 10KB; (3) there
is only a few primitive drawing functions provided by
i-αppli. [10] Therefore, to port jGL onto the i-αppli plat-
form, we re-implemented all of the necessary calcula-
tions by using only the integers. To minimize the jar-ball
size, we removed all of the unnecessary constants and
error checks. Finally, we have implemented more than 30
OpenGL functions in the i-αppli version of jGL, which
include 3D model transformation, 3D object projection,
hidden-surface removal, primitive geometry, etc. More-

over, the jar-ball size is about 4,194 bytes.

4. Introduction of jVL

jVL is a VRML library for Java and also an exten-
sion of jGL. To provide a new programming environ-
ment for the Internet, besides a 3D graphics library, a
library for displaying 3D models is also necessary.
Therefore, also to test the capabilities of jGL, we use jGL
and follow the specification of VRML to develop jVL.
jVL is also developed with pure Java only, hence it has
no platform dependant problem and has no necessary to
be pre-installed. Moreover, to make jVL to be easy to use,
we define its API by following the API of jGL.

user�s view jGL

Abstract Interface under user�s view

Display List Graphics Context

Attribute State Pointer

4.1 System architecture

The VRML data structure can be mainly divided
into two parts, which are nodes and fields. A 3D model is
associated with several nodes with a tree structure, and
the parameters of the nodes are stored in some fields.
Then, we designed the system hierarchy of jVL as shown
in Fig. 3 by following the VRML data structure.

user�s view jVL

Browser under user�s view

Scene Tree Parser

Node Field

Render jGL

Fig. 3. The system hierarchy of jVL.

Fig. 3

As shown in , the Node and Field are the two

main parts for constructing a 3D model, jVL is only an
interface for programmers, and all of the algorithms are
contained in the Browser. While loading a VRML file,
the Parser is called to parse the file to generate the Scene
Tree which represents the model. When rendering the
Scene Tree, jGL is used to generate the image by using
the data stored in the Nodes and Fields.

4.2 Performance enhancement issues

From the experiences of developing jGL, we use
the following two policies to develop jVL: (1) utilize
class inheritance and function-overriding as jGL; (2) use
display list mechanism of jGL.

5. Results

Currently, we have implemented more than 300
common used OpenGL functions in jGL, including GL,
GLU, GLUT, and GLAUX. These functions include 2D /
3D model transformation, 3D object projection, depth
buffer, smooth shading, lighting, material property, dis-
play list, selection, texture-mapping, mip-mapping,
evaluator, NURBS (Non-Uniform Rational B-Splines),
stippled geometry, etc. Functions not supported so far are
mainly for anti-aliasing.

import jgl.GL;
import jgl.GLApplet;

public class hello extends GLApplet {
 public void display () {
 myGL.glClear (GL.GL_COLOR_BUFFER_BIT);
 myGL.glColor3f (1.0f, 1.0f, 1.0f);
 myGL.glBegin (GL.GL_POLYGON);
 myGL.glVertex3f (0.25f, 0.25f, 0.0f);
 myGL.glVertex3f (0.75f, 0.25f, 0.0f);
 myGL.glVertex3f (0.75f, 0.75f, 0.0f);
 myGL.glVertex3f (0.25f, 0.75f, 0.0f);
 myGL.glEnd ();
 myGL.glFlush ();
 }

 public void init () {
 myUT.glutInitWindowSize (500, 500);
 myUT.glutInitWindowPosition (0, 0);
 myUT.glutCreateWindow (this);
 myGL.glClearColor (0.0f, 0.0f, 0.0f, 0.0f);
 myGL.glMatrixMode (GL.GL_PROJECTION);
 myGL.glLoadIdentity ();
 myGL.glOrtho (0.0f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f);
 myUT.glutDisplayFunc ("display");
 myUT.glutMainLoop ();
 }
}

Fig. 4. The source code of a simple example of jGL to
show a white rectangle.

To test the capabilities of jGL, we provided 30

examples on jGL Web page10. These examples are se-
lected from the OpenGL Programming Guide [13],
which is an official programming guide of OpenGL.
Since jGL is developed in pure Java, these examples can
be executed on all of the Java-enabled machines. We

have performed the tests on all of the major operating
systems including Microsoft Windows 98/NT/2000/XP,
Sun Solaris 7/8/9 (SPARC and Intel platform editions),
SGI IRIX 6.3/6.4/6.5, and Linux.

Fig. 4 shows the source code of a Java applet as a
simple jGL program using GLUT to show a white rec-
tangle, which is similar to a simple example provided in
the OpenGL Programming Guide (code from Example
1-2, pages 18-19, Figure 1-1).

Fig. 5. 24 teapots with different material properties are

rendered with jGL.

Fig. 5

Table 2. The performance testing of .
rendering time Platform

609 ms
Intel Pentium 4 2.8GHz,
1 GB memory,
Microsoft Windows XP

4,507 ms
Sun UltraSPARC IIi 360MHz,
256MB memory,
Sun Solaris 9

To evaluate the run-time performance of jGL, we

used a test program that renders 24 lighted,
smooth-shaded teapots drawn with different material
properties that approximate real materials, where each
teapot is generated by Bésier surface generating func-
tions of jGL (evaluator functionality of OpenGL) and
contains 12,544 polygons. The rendering result is shown

10 http://nis-lab.is.s.u-tokyo.ac.jp/~robin/jGL/

in Fig. 5. This test program is also an example in the
OpenGL Programming Guide (Plate 17). The results are
listed in Table 2. The Java environment used in this paper
is J2SE v 1.4.1_01.

Since the run-time performances can not be esti-
mated by using a simple model, we use the same cube
but repeat it 6,400 times to measure their run-time per-
formances. Fig. 7 (b) shows a similar example of repeat-
ing the same cube only 100 times. By using the desktop
PC used in , the rendering time of jGL and Java
3D are 406 ms and 353 ms, respectively. The graphics
accelerator installed in the desktop PC is using an
NVIDIA Quadro 4 900XGL GPU.

To test the i-αppli version of jGL, we used a mov-
able robot arm as shown in Fig. 6. This test program is
also an example in the OpenGL Programming Guide
(code from Example 3-7, pages 148-150, Figure 3-25).
Moreover, to use the button on the cellular phone, the
robot arm can be acted as the example in the OpenGL
Programming Guide.

Table 2

As of this writing, we have implemented more than
70% of all VRML nodes in jVL. Besides the nodes, route
and event transmission mechanisms have also been im-
plemented. To evaluate the run-time performance of jVL,
we used a simple table with variable colors for the legs
and top might be prototyped as shown in Fi , which is
selected from the specification of VRML (code from
Section D.4, pages 211-213, Figure D.3). The results are
listed in Table 3.

g. 8

Fig. 8. A simple table is rendered with jVL.

Fig. 8

Fig. 6. A robot arm is rendered on a mobile phone.

To compare with Java 3D, we wrote a program that

draws a rotating cube drawn with different color values
similar to the �HelloUniverse�, which is a simple Java
3D example in the Java 3D API Specification [12] (Sec-
tion 1.6.3, pages 9-10) as shown in Fig. 7 (a). We tested
it and the Java 3D example on the same machine. The
results show that both of them are rendered in real-time.

Table 3. The performance testing of .

rendering time Platform
10 ms = 100 fps desktop PC as Table 2
47 ms = 21.3 fps workstation as Table 2

Table 4. The performance testing for data size of jVL.

number renderingof cubes time
s

s
0 s
0 s
0 s
0 s
00 ms

rforman be estima

100 30 m
400 90 ms
900 190 ms

1,600 320 ms
2,500 490 m
3,60 691 m
4,90 931 m
6,40 1,202 m
8,10 1,512 m
10,0 1,853 (a) (b)

Since the pe ce could not ted by

using a simple model, we use more than 100 rotating
cubes

Fig. 7. The programs used to measure the performances
of jGL and Java 3D. (a) A rotating cube drawn
with different color values. (b) An example to
repeat the same cube 100 times. drawn with different colors as shown in Fig. 7 (b),

which is the example of only 100 rotating cubes. Table 4
lists the performance of evaluating the rende time
according to the model data size on the laptop
Table 2.

Fig. 9 shows the source code for displaying a
 fi

ring
 PC as

VRML le by using jVL and jGL. Moreover, to change
or control th

 compare

e objects, lights, and sensors included in the
VRML file is also possible.

import jvl.VL;
import jgl.GLApplet;

public class viewer extends GLApplet {
 VL myVL = new VL (myGL);

 public void display () {
 myVL.vlRenderWorld ();
 }

 public void init () {
 myUT.glutInitWindowSize (500, 500);
 myUT.glutInitWindowPosition (0, 0);
 myUT.glutCreateWindow (this);
 myVL.vlSetWorldURL (getDocumentBase(), �exampled.4.wrz�);
 myVL.vlInit ();
 myVL.vlViewpoint (getSize ().width, getSize ().height);
 myUT.glutDisplayFunc ("display");
 myUT.glutMainLoop ();
 }
}

Fig. 9. The source code using jVL for displaying a
VRML file.

To with Eyematic Shout3D and
blaxx 3D, we used a VRML file which contains 100
3D bu

6. Conclusions

This paper entation of jGL
and jVL using pure Java and the experimentation for
portin

un
ilding models as shown in Fig. 10 (b). Each build-

ing model has 5,273 polygons with 12 different material
properties as shown in Fig. 10 (a). By using the desktop
PC as shown in Table 2, the run-time performances of all
of them are about 2 seconds per frame.

presented the implem

g jGL onto the i-αppli platform. From our com-
parisons, although Java 3D uses OpenGL or DirectX as
its graphics engine, the performance of jGL is not worse
for a simple model. Hence, jGL seems more suitable for
small 3D models on the Web, since the user does not
need to install any run-time library before using the pro-
gram which is developed with it. Since we offer jGL onto
our Web server, many people around the world are using
it to provide their previous OpenGL works to be
Web-enabled versions or to teach and learn the computer

graphics algorithms. In order to get the feedbacks from
the users, we make a questionnaire of jGL and mail to 50
users around the world. The result is shown in Table 5.
Most of the users thought that jGL is easy to use and has
good reliability.

(a)

(b)

Fig. 10. The model used to compare the performances.
(a) The rendering a 3D building model. (b)

Al he run-time performance of jVL is not

so good, because it provides an API for programming, to
chang

 of
An example to repeat the same model as (a) 100
times.

though t

e the light source and the activities of the 3D
model is possible. Moreover, since it has the same ad-
vantages as jGL, it is possible to use jVL to develop pro-
grams on the Web3D platform. Hence, the development
of 3D graphics applications on the Internet is easier than
before by using jGL and jVL. The run-time performance
is still the great challenge for jGL and jVL. We expect

that the performance will be improved by better Java
interpreters and compilers, and will be greatly improved
by new Java chips and faster CPUs.

Table 5. The questionnaire result of jGL.
 excellent good bad very bad

easy t o use 5 45 0 0
relia lity bi 8 42 0 0

REFERENCES

1. Arvo J. Gra emic Press, Inc.;
1991.

Virtual Reality Modeling Language

3.

4.

5. razier C., Ho P., Liu Z., and Smith K. P.

6. ghes

7. ems. Academic Press,

8. J. The OpenGL Utility Toolkit (GLUT)

9. s III. Academic Press, Inc.;

10. oCoMo, Inc. i-mode Java Contents Devel-

11. GL® Graphics

12. th K., and Deering M. The

13. ., Neider J., Davis T., and Shreiner D.

AUTHORS (from left to right)

phics Gems II. Acad

2. Carey R., Bell G., and Marrin C. ISO/IEC 14772-1:
1997
(VRML97). VRML Consortium, Inc.; 1997.
Chen B.-Y. and Nishita T. The development of 3D
graphics and VRML libraries for Web3D platform
by using Java. IEICE Trans Information and Sys-
tems 2002; J85-D-II(6): 1047-1054. (in Japanese)
Chen B.-Y., Yang T.-J., and Ouhyoung M. JavaGL
- A 3D graphics library in Java for Internet brows-
ers. IEEE Trans Consumer Electronics 1997;43(3):
271-278.

Chin N., F
The OpenGL® Graphics Systems Utility Library
(Version 1.3). Silicon Graphics, Inc.; 1998.
Foley J. D., van Dam A., Feiner S. K., and Hu
J. F. Computer Graphics: Principles and Practice in
C. Addison-Wesley; 1996.
Glassner A. S. Graphics G
Inc.; 1990.
Kilgard M.
Programming Interface API Version 3. Silicon
Graphics, Inc.; 1996.
Kirk D. Graphics Gem
1992.

 NTT D
opment Guide; 2001. (in Japanese)

 Segal M. and Akeley K. The Open
Systems: A Specification (Version 1.4). Silicon
Graphics, Inc.; 2002.

 Sowizral H., Rushfor
Java 3D� API Specification. Addison-Wesley;
2000.

 Woo M
OpenGL® Programming Guide, Version 1.2. Addi-
son-Wesley; 1999.

Bing-Yu Chen received the B.S. and M.S. degrees in Computer Science and Information Engineering from the
Natio

Tomoyuki Nishita received the B.S., M.S., and Ph.D. degrees in Electrical Engineering from the Hiroshima Uni-
versit

nal Taiwan University, Taipei, in 1995 and 1997, respectively, and received the Ph.D. degree in Information Sci-
ence from the University of Tokyo, Japan, in 2003. He worked for the GHQ of the Taiwan Army from 1997 to 1999. He
is currently an assistant researcher in the Department of Computer Science of the University of Tokyo. His research
interest is mainly for Web Graphics. He is a member of ACM and IEEE.

y, Japan, in 1971, 1973, and 1985, respectively. He worked for Mazda Motor Corp. from 1973 to 1979. He has
been a lecturer at the Fukuyama University since 1979, then became an associate professor in 1984, and later became a
professor in 1990. He moved to the Department of Information Science of the University of Tokyo as a professor in
1998 and now is a professor at the Department of Complexity Science and Engineering of the University of Tokyo since
1999. His research interest is mainly for Computer Graphics. He is a member of IEICE, IPSJ, ACM, and IEEE.

