
Adaptive Solid Texturing for Web Graphics

Bing-Yu Chen and Tomoyuki Nishita∗
The University of Tokyo

1 Introduction

Solid texturing [Peachey 1985; Perlin 1985] has become a well-
known computer graphics technology since it was first presented
more than fifteen years ago. However, solid texturing still remains
problems today, because it consumes too much time and has a very
high memory requirement. Although some methods have recently
been proposed to solve these problems, almost all of them need the
support of hardware accelerators. Hence, these methods could not
be applied to all kinds of machines, especially the low-cost ones
available over the Internet. Therefore, we present a new method
for procedural solid texturing in this paper. Our approach could
almost render an object with procedural solid texturing in real-time
using only a software solution. The basic idea of this approach
is similar to the cache mechanism used for main memory control.
Furthermore, to demonstrate that our approach is widely applicable
we choose pure Java for it’s implementation, since this could not
receive any benefit from the hardware and could be executed on the
Internet directly.

2 Cache Access Storage Methodology

Basically, in order to cache the calculated texture data of a textur-
ing function in memory, a ”cache cube” is used, as other 3D-texture
mapping methods require. The cache cube is empty initially, since
there is no texture data has been calculated. When rendering an
object with procedural solid texturing, the system checks the cache
cube first to see if there is already any corresponding texture data
for the drawing pixel, which is contained in a voxel. If the voxel
does exist, the pixel is rendered using it, otherwise the desired tex-
ture data is calculated and stored into the cache cube as a voxel
at its corresponding position. The pixel is then rendered with the
calculated data.

Since the required texture data is calculated on demand, it is not
necessary to generate a cache cube before implementing the raster
process. Moreover, if the cache cube is pre-generated, even if we
assume it is a low-resolution one containing just 128 x 128 x 128
voxels, it still costs an un-compressed file size of more than 8MB.
This kind of huge data size is difficult to transmit through the nar-
row Internet bandwidth and requires a lot of memory to store, and
it cannot even offer good quality visual effects as Fig. 1 left.

Figure 1: System diagram and results of different cache cube size.

Fortunately, when rendering an object, the visible area is only a
small part of the whole shape, because the back and inside faces

∗e-mail:{robin, nis}@is.s.u-tokyo.ac.jp

is obviously not rendered. This rule is independent of the object’s
complexity, the number of polygons, and the calculation of the tex-
turing function. Therefore, there is only a relatively small amount
of texture data needed to be calculated and stored in the cache cube,
i.e. the rest of the cache cube remains empty. To store the calculated
texture data in the sparse cache cube, we separate each texture co-
ordinate into two parts, one of which is global index, and the other
is local index. Therefore, the sparse cache cube is subdivided into
several cells due to the global index. Each cell is classified as ei-
ther a cache cell or just as an empty cell if there is no voxel located
within it. To make the retrieval of the voxel efficient, we take the
size of the sparse cache cube to the power of two as the requirement
for some graphics libraries such as OpenGL. Therefore, we can use
some efficient algorithms, like Hashtable, to store the cache cells
by using the converted global index, to get good performance for
insertion and traversal, as shown in Fig. 1 right. Morefore, accord-
ing to the LOD (Level-of-Detail) parameter, which is based on the
well-known definition of MIP-Mapping [Williams 1983], the sys-
tem could provide the most suitable levels of several sparse cache
cubes for the pixel on the screen. Additionally, since there are sev-
eral low-cost machines over the Internet, we also provide a mech-
anism to control the resolution of the cache cube automatically in
accordance with the capability of the client machine.

Figure 2: The results rendered with our approach.

3 Conclusion

In this paper, we have proposed a method to render an object with
procedural solid texturing for almost all kinds of machines over the
Internet1. The results are shown in Fig. 2. Although the implemen-
tation only uses pure Java, the user could also achieve an almost
real-time interactive response. Our approach could be applied to
arbitrary models and even their inner surface due to clipping, since
it is a general solution for solid texturing, and the capability of the
client machine is detected before rendering for Internet heteroge-
neous environment.

References

PEACHEY, D. R. 1985. Solid texturing of complex surfaces.Com-
puter Graphics (Proceedings of SIGGRAPH 85) 19, 3, 279–286.

PERLIN, K. 1985. An image synthesizer.Computer Graphics
(Proceedings of SIGGRAPH 85) 19, 3, 287–296.

WILLIAMS , L. 1983. Pyramidal parametrics.Computer Graphics
(Proceedings of SIGGRAPH 83) 17, 3, 1–11.

1http://nis-lab.is.s.u-tokyo.ac.jp/∼robin/jST/


