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ABSTRACT
This paper presents CyclopsRing, a ring-style fisheye imag-
ing wearable device that can be worn on hand webbings to en-
able whole-hand and context-aware interactions. Observing
from a central position of the hand through a fisheye perspec-
tive, CyclopsRing sees not only the operating hand, but also
the environmental contexts that involve with the hand-based
interactions. Since CyclopsRing is a finger-worn device, it
also allows users to fully preserve skin feedback of the hands.
This paper demonstrates a proof-of-concept device, reports
the performance in hand-gesture recognition using random
decision forest (RDF) method, and, upon the gesture recog-
nizer, presents a set of interaction techniques including on-
finger pinch-and-slide input, in-air pinch-and-motion input,
palm-writing input, and their interactions with the environ-
mental contexts. The experiment obtained an 84.75% recog-
nition rate of hand gesture input from a database of seven
hand gestures collected from 15 participants. To our knowl-
edge, CyclopsRing is the first ring-wearable device that sup-
ports whole-hand and context-aware interactions.
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INTRODUCTION
Designing wearable interfaces for hand-based interactions is
an intriguing challenge. Previous research has demonstrated
interfaces in various wearable forms worn at various body
positions, such as accessories set on heads [29], chests [3],
shoulders [12] or hands [17]. The two key measures for as-
sessing these interfaces, which should be considered simulta-
neously, are their forms and emerging interactions.

Ring wearables are generally considered both attractive and
challenging, because of their miniature forms as well as their
aim to augment the most powerful interface - human hands.
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Figure 1. By supporting whole-hand and context-aware interactions,
CyclopsRing allows users to interact with real-world objects such as the
smart lamp by pinch-and-motion input.

Unfortunately, most existing ring wearables were exclusively
designed for augmenting the wearing fingers, lowering the
opportunity to take the full advantages of the hands.

CyclopsRing
This paper presents CyclopsRing, a ring-style fisheye imag-
ing wearable device worn on the hand webbing. By ob-
serving from a central position of the hand through the
hand-centric fisheye perspective, CyclopsRing can capture
the whole frontal skin region of the hand. Thus, this region
of the hand becomes a useful interactive surface and allows
for performing hand gesture recognition. A further benefit
of its extremely wide field of view is that CyclopsRing can
incorporate environmental contexts into hand-based interac-
tions. Finally, the form factor of CyclopsRing is a ring, which
preserves skin haptic feedback of the hands.

Figure 1 illustrates a scenario in which CyclopsRing is used
to control a smart lamp by pinch-and-motion input. The
proof-of-concept prototype demonstrated the feasibility of
gesture recognition using RDF-based algorithms, and a set
of interactive techniques combining whole-hand and context-
aware interactions. In the experiment, RDF-based pixel clas-
sification achieved a 84.75% recognition rate for hand gesture
input from a database of seven hand gestures collected from
15 participants, which indicated the effectiveness of the fish-
eye images for rich hand-based interactions.

Contribution
The main contribution of this paper is the concept of using a
fisheye hand-centric view of the hand to enable whole-hand
and context-aware interactions. This work (1) developed a
proof-of-concept prototype, (2) demonstrated the effective-
ness of CyclopsRing for hand gesture input using random de-
cision forest (RDF) method, and (3) presented a set of whole-
hand and context-aware interactions.



RELATED WORK
This paper is related to wearable interfaces for hand-based
interactions, particularly those in which a finger ring is used
as the interface.

Hand-Based Interactions Through Body Wearables
Because they can detect interactions at a distance, cameras
can be mounted on different body locations to enable hand-
based interactions. Depending on the mounting position (e.g.,
heads [6, 20, 29], chests [3, 11, 18, 19], shoulders [12], foot
[1] and wrists [17, 24]), hand-based interactions have differ-
ent benefits. For example, head-mounted cameras can poten-
tially augment any objects under users’ perspectives with in-
teractive functions, including users’ hands, but require users’
visual attentions. Chest- and shoulder-mounted cameras re-
quire users moving and facing the operating hands to the
camera’s field-of-view. Wrist-mounted cameras are generally
considered effective for hand-based interactions because they
are near the hands. However, the limitation is occlusion at
the angles of wrists. CyclopsRing avoids this limitation, but
limits to gestures where sufficient parts of fingers are visible
to the camera.

Unlike cameras, low-level sensing approaches are benefited
from direct contact with the skin. The wrist is a common
location for implementing such sensing techniques. Acous-
tic sensors [14, 21], for example, have been used to detect
tapping positions on the hand. Hand gestures can be rec-
ognized by swept frequency capacitive sensing [26], fore-
arm electromyography [25], and by measuring wrist contours
[10] or pressures made to the wrist [8]. Low-level sensing
techniques are beneficial for lightweight power and computa-
tional consumption but suffer from limited input capabilities
(e.g., discrete input), particularly when the devices are worn
and designed in ring-like forms [23]. In contrast, the selected
form factor for CyclopsRing is a finger ring to allow rich and
continuous hand-based interactions.

Hand-Based Interaction Through Finger Wearables
Finger wearables are attractive forms, but their challenge is
the limited area for implementing functions. Thereby, the
inputs for most existing finger wearables are exclusively
associated with the instrumented fingers. For example, iRing
[23] detected tapping on the body of the ring. Using magnetic
localization, Abracadabra [13] enabled around-device input
with the magnet-instrumented finger, uTrack [5] enabled
touch interaction on the palm, and FingerPad [4] turned
fingertips into touch interface. LightRing [16] enabled the
instrumented fingers to perform touch interaction on any
surface. MagicFinger [15] and EyeRing [22] proposed
camera-instrumented fingers to interact with environmental
contexts that are in association with the finger through the
camera view. In comparison, CyclopsRing demonstrates the
potentials to augment the whole hand of the instrumented
finger and support context-aware interactions.

HARDWARE PROTOTYPE
The main component of CyclopsRing is a miniature fisheye
camera mounted on a ring capable of observing the entire
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Figure 2. (a) CyclopsRing comprises a miniature 185-degree fisheye
camera mounted on the edge of a 3D printed ring. (b) Wearing it on
fingers can position the device at certain hand webbings.

frontal skin region of the user’s hand. Here, we demonstrate
the components of our hardware prototype, and present the
variation of wearing the device at different hand webbings
and the benefits of our choice to wear it in index finger.

Fisheye Ring Devices
Figure 2 shows that the hardware prototype consists of a
miniature camera with a mini-fisheye lens, which has a focal
length of 1.2 mm and an aperture of F1.8 to enable a 185-
degree field-of-view. The camera is 14 mm in diameter and
15 mm in height. A 1/3” SONY CCD sensor was used to
acquire 640 × 480 images at 30 fps. A special ring was fab-
ricated to hold the fisheye camera by the edge such that the
fisheye camera is positioned at a hand webbing while users
wearing it as shown in Figure 2b.

The prototype acquired this unusual design to compensate for
the relatively large body of the fisheye lens (i.e., 14 mm in di-
ameter) while allowing the lens to be positioned as close as
possible to a central location of the hand. The size of the
fisheye lenses is expected to decrease with future advances
in camera optics, which will compensate for design compro-
mises in the prototype. For reference, the NanEye camera
manufactured by AWAIBA1, despite does not provide the re-
quired viewing angles, provides 120-degree field-of-view and
measures 1.0 mm × 1.0 mm × 1.7 mm in three dimensions.

Placement of the ring device
Figure 3 displays the observed images of a user performing
two gestures taken from different hand webbings by wear-
ing the ring on the thumb, index finger, middle finger, and
ring finger. Different webbings obtain considerably different
views of the same hand gestures.

For the PINCH gesture (Figure 3a), for example, the views
from the index, middle, and ring fingers clearly reveal the cir-
cle formed by the index finger and thumb at various distances,
but the straight fingers are barely visible. In comparison, the
device at the thumb cannot view the circle but can clearly
view the straight fingers as if it could count the fingers for
knowing the gesture types. In the GUN gesture (Figure 3b),
the device at the middle and ring fingers are mostly occluded
by the curling fingers. The views from the index finger and
thumb are also very different.

1http://www.awaiba.com/product/naneye/
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Figure 3. Placement of the ring in different hand webbings.

The current implementation still requires an excessively large
area (e.g., 1 square cm) to accommodate the device on the
fingers. The device is positioned on the webbing of the index
and middle fingers by wearing the device on the index finger
(Figure 2b) because the index finger is more flexible to yield a
space in the webbing for the device without preventing users
from performing gestures.

RECOGNIZING HAND GESTURES
To perform gesture recognition, the images captured by the
fisheye camera were first cropped by a 480 × 480 window
to exclude some irrelevant regions. For efficiency, the im-
ages were further resized to 60 × 60 to extract the skin color
regions. The binary mask images were then used for RDF
gesture recognizer training and testing.

Foreground Extraction Using Skin Color
The foreground region was extracted by using the method
described in [32] to detect skin color. The observed im-
age is first converted into YCbCr color space, and a skin
color pixel is extracted if its Cr and Cb values fall into the
ranges [145, 185] and [85, 115], respectively. Small back-
ground noises are removed by morphological operations.

Owing to the unique placement of CyclopsRing, the real hand
regions always correspond to blobs of skin colors that pene-
trate the peripheral boundary of the fisheye image. Specifi-
cally, the “floating” components in the central region of the
image may be filtered out to obtain a clean mask of hand re-
gions. Notably, the blobs other than hand regions may still
correspond to relevant contextual objects, e.g., human faces.
CyclopsRing also retains these blobs for context-aware inter-
action. Figure 4 illustrates an example of skin color detection
and the corresponding binary mask.

Random Decision Forest for Gesture Classification
The RDF is a generic data-driven learning algorithm that is
widely used for computer vision [7, 27]. Recent HCI research
has also used RDF methods for gesture recognition (e.g., in-
air hand gestures [28] and hand gestures on and above key-
boards [30]) and for full body posture recognition via a chest-
mounted fisheye camera [3].

As described in [27], hand gesture recognition is formulated
as a pixel classification problem by using RDF classifiers.
Similar to [3, 30], the RDF classifiers are trained from inten-
sity difference features derived from pairs of randomly gener-
ated offset vectors from the signature images. Instead of the
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Figure 4. Foreground Extraction Using Skin Color.

motion history images (MHIs) used in previous works, this
study directly employed binary images obtained by perform-
ing skin color detection in static gestural images (Figure 4c).
Unlike [3], additional sensor data are not used to facilitate the
recognition tasks. More details of RDFs are referred to the
relevant works.

Evaluation: 84.75% Rate of Hand Gesture Input

Experimental Settings
As presented in Figure 5, the experiment included seven hand
gestures, including four pinch gestures and three application-
related gestures. Notably, each pinch gesture includes two
tapping positions: one at the fingertip and the other at the
middle of the finger.

Participants
Fifteen participants (7 females) were recruited from our de-
partment. They were aged between 23 and 27. We attempted
to recruit participants with widely varying height (mean =
167cm, std = 7.6) to increase the variance in palm size. The
length of their hands from the tip of the middle finger to the
wrist were recorded (mean = 17.79 cm, std = 1.21 cm). All
participants were right handed.

Training Data Acquisition
Data were acquired in two sessions with a 3-day interval.
After helping the participants put on the device, the experi-
menter explained the gestures to be performed. The experi-
menter then asked the participants to practice making all ges-
tures to ensure that they fully understood the details. During
the study, a monitor prompted the participants with a photo-
graph of each trial gesture. Each participant performed four
rounds of the entire gesture set. Each participant performed
28 labeled gesture images (7 gestures × 4 repetitions). Fi-
nally, we recorded a short video of non-gesture hand motions
by asking users to casually stretch or curl their fingers.

Performance Evaluation
A technical evaluation was performed to determine the recog-
nition rates achieved by applying RDF classifier. Parameter
settings are summarized as follows: tree number T = 3 and
maximal depth D = 19; for each training image, 2000 pixels
were randomly sampled as data points; 2000 candidate fea-
tures and 50 candidate thresholds were evaluated for splitting
an intermediate node. Leave-one-person-out cross-validation
was performed in the evaluation. The RDF classifier achieves
the recognition rates to nearly 84.75% for hand gesture recog-
nition. Figure 5c shows the confusion matrices. Generally,
the gesture classifier worked well for most classes. The cases
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Figure 5. Experimental results of hand gesture recognition using RDF
method. (a) Seven hand gestures could be recognized. (b) Examples of
the skin foreground region. (c) Confusion matrix of gesture recognition.

of false recognition mainly come from the two handgun ges-
tures, which are visually similar in their binary representa-
tions and thus difficult to be distinguished from each other.

LIMITATIONS
While the fisheye view allows a rich set of hand gestures,
CyclopsRing cannot differentiate gestures in which the dis-
similar parts of the gestures are beyond its field of view. For
example, experiments showed that CyclopsRing has difficulty
using the thumb to recognize GUN and GUNFIRE gestures.

This limitation can be resolved by wearing multiple Cyclop-
sRings. For example, an alternative fisheye view from the
thumb with a second CyclopsRing considerably complements
the field of view of the first CyclopsRing. In addition, our
current implementation only adopted color information. A
future version of CyclopsRing with depth sensing capability
will further improve recognition of natural hand interactions.

INTERACTION TECHNIQUES
The hand gesture recognition capability of CyclopsRing was
further exploited by implementing other interaction tech-
niques, including on-finger, on-palm touch interactions, and
hand gesture interaction with real-world objects. Each inter-
action technique is realized by applying heuristics for hand-
centric fisheye images.

The interaction design included a activation/deactivation ges-
ture framework to enable users to switch among various in-
teraction techniques. By detecting pre-defined hand gestures,
CyclopsRing activates a specific interaction technique and ei-
ther applies the corresponding heuristics or disengages from
the current interaction. The deactivation gesture OPENHAND
was selected because it is naturally performed when users
complete an input and relax. To avoid accidental inputs, Cy-
clopsRing switches to a new interaction technique only when
it is in inactive state.

On-Finger Pinch-and-Slide Input
Users transform their fingers into functional sliders by first
pinching a finger (on either fingertips or the middle of the fin-
ger) to trigger and then sliding along the specific finger. The
four PINCH gestures and OPENHAND are exploited activate
and deactivate the interaction, respectively.
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Figure 6. The state transition of on-finger pinch-and-slide input. From
left, the user performs the interaction on the index finger (from inactive
to active state) and then releases the pinch (return to inactive state).
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Figure 7. Interaction with multiple on-finger sliders by varying the size
of the closed area formed by a pinch gesture. Effects of (a) decreasing
the value of the ring-finger slider, and (b) increasing the value of the
index-finger slider.

Figure 6 illustrates the state transition of the pinch-and-slide
interaction performed with the index finger. When Cyclop-
sRing is in inactive state (OPENHAND), it continuously de-
tects the occurrence of pinch gestures. When it detects a
pinch gesture, it activates the slider associated with the corre-
sponding fingers. In this example, the interaction is triggered
on the index finger as shown in Figure 6b. In active state (Fig-
ure 6c), finger-slider input is enabled by finding the relatively
large enclosed component formed by the pinch gesture in the
fisheye images. The variation in the component area is used
to alter the slider values (Figure 7). When the user releases
the pinch gesture, the slider corresponding to the index finger
is deactivated. CyclopsRing then detects the next activation
gesture (Figure 6d).

Palm-Writing Input
The fisheye view enables partial observation of the skin re-
gion of the palm in the flat hand posture and full observation
of that in the half-curved hand posture. The palm can then
be used as a touchpad for writing with fingers or pens. This
interaction involves one activation gesture: the user bends his
thumb to enable writing input mode.

Figure 8 illustrates the state transition of palm-writing input.
Typically, the index finger of one hand is the input device
used to write on the palm of the other hand. Therefore, after
entering the active state, CyclopsRing takes the first captured
image as the reference image and extracts the skin color re-
gion as background.

Figure 9 shows that, in active state, the finger or a color-
capped pen can be used to write on the palm. We exploit the
well-known Viola-Jones object detector [31] to localize the
fingernail (Figure 9a-d) or color blob extraction and tracking
to identify the cap of the pen (Figure 9e-h) so as to estimate
the stroke trajectory. The fingernail detector was trained with
800 positive and 1600 negative training samples. False posi-
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Figure 8. The state transition of palm-writing input. From left, the user
bends his thumb to activate the interaction, and relaxes his thumb to
end the interaction.

a 

h g f 

c d b 

e 

Figure 9. Palm-writing input. (a) The user writes on the palm with the
index finger. (c) The user writes in different colors using color pens.

tive results were filtered out by excluding windows detected
outside of the background region. Size/temporal coherence
was also considered when determining the most likely results
(Figure 9c). The lowest part of the foreground skin color re-
gion (Figure 9d) was then used to cue the selection of the final
detection window.

The strokes entered by the user were reconstructed by ex-
ploiting the following heuristic to map the positions of the
detected fingernails or color blobs to a local coordinate sys-
tem (x-y) defined on the palm of the user. The X coordinates
of the detected fingernails or color blobs in the fisheye image
are mapped to the x coordinates by simply applying a scaling
function. The y coordinates are obtained by using a map-
ping function, which is inversely proportional to window size
or blob area. Intuitively, as the fingernail or pen cap moves
closer to the camera, the perceived window size or blob area
increases, which decreases the Y coordinate.

In-Air Pinch-and-Motion Input
Figure 10 shows how CyclopsRing uses finger pinch gestures
for in-air pinch-and-motion input. This interaction is enabled
by four activation gestures: the thumb touches the tip of one
of the four fingers. Notably, pinching with different fingers
increases the input modality.

Figure 11 shows that, once CyclopsRing activates the inter-
action, motion input is enabled by estimating hand move-
ments from displacements of matched SURF features [2] in
the consecutive undistorted fisheye images. A robust estima-
tion of global camera motion is obtained by discarding the
motion vectors of outliers that are too far from the mean mo-
tion vector in magnitude or orientation. The motion trajectory
is formed by concatenating all the mean motions until the user
releases the pinch gesture.

Context-aware Interaction Techniques
The fisheye camera enables CyclopsRing to perceive the en-
vironment and enables the user to interact with real world
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Figure 10. The state transition of in-air pinch-and-motion input. Start-
ing from the left, the user performs pinch gesture (from inactive to active
state), moves to draw an in-air stroke, and releases the pinch (return to
inactive state) to complete the interaction.
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Figure 11. Interaction using in-air pinch-and-motion input. (a) The user
performs the pinch gesture on the index finger. (b) SURF features are
computed in the undistorted image. (c) The displacements of matched
features from the last frame.

objects such as smart appliances visible to the fisheye images
during interaction. The interaction with real world objects
can be realized by common computer vision techniques such
as object and face recognition.

Pinch-and-motion input with object recognition
Figure 12a shows how the user performs the pinch-and-
motion technique described above to interact with a smart
lamp. In this example, the user triggers the selection of de-
vice by performing a pinch gesture on the smart lamp. Cy-
clopsRing then detects the device type by recognizing the AR
tag [9] on the lamp, which is visible in the fisheye image. To
turn on the lamp, the user performs a corresponding operation
(e.g., drawing a tick in the air) and then releases the pinch to
issue the command. For object recognition, feature matching
techniques such as SURF can be used instead of the AR tag.

Human interaction with face recognition
Combining face detection and recognition enable the use of
pinch gestures to interact with nearby users. Figure 12b
shows a possible scenario in which CyclopsRing sends digital
files from one user to another user. When the user triggers a
selection action by performing a pinch gesture, CyclopsRing
detects faces in its field of view.

From a head-mounted display, the user sees an undistorted
version of CyclopsRings view in which the detected faces are
highlighted. The cross displayed at the center of the image
helps the user to aim at a face when moving his hand with the
pinch gesture. When the face of the receiving user is verified,
the sending user releases the pinch gesture, and the digital
content is delivered.

Finger copy functions
Another interesting capability is bridging the physical and cy-
ber worlds by digitizing physical content. For example, Fig-
ure 13 shows how CyclopsRing can be used to copy a printed
image by dragging the index finger across the image. The in-
dex finger is used to specify the region of interest and Cyclop-
sRing perform “scan and copy” operations. This interaction
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Figure 12. Additional context related functions can be incorporated with
in-air pinch-and-motion input. (a) Direct interaction with a smart lamp
through an AR tag. (b) Pick-and-drop interaction with a person via face
detection.

is realized by using a simple heuristic to identify the tip of
the index finger. The consistent spatial relationship of fingers
with respect to the fisheye camera simplifies the search for
the pixel of the greatest x coordinate in the skin region of the
left-upper quarter in the undistorted images (Figure 13cd).

The next step is to determine the finger stroke on the pa-
per. For this purpose, homography transformations between
every two consecutive undistorted images (Figure 13e) are
computed by identifying at least four pairs of SURF fea-
tures therein. In this case, a global homography is sufficient
to model the projective transformation between two images
since the physical object being scanned is of a planar surface.
The homographies are then used to re-project all the fingertip
positions onto the first undistorted image where the stroke is
initiated to form the stroke trajectory (Figure 13f).

While the stroke roughly captures the diagonal line of the
content-of-interest, we can not simply take the rectangle de-
fined by the diagonal line unless the CyclopsRing perpendic-
ularly looks at the paper. We thus rectify the image by ap-
plying a predefined homography transformation Ho, to cal-
ibrate the relative orientation between the CyclopsRing and
the scanned object, which is assumed to be a planar surface
(e.g., a catalog in this example). Given that users perform the
interaction with similar inclined angles, Ho can be estimated
once by reorienting the image to an upright angle. Figure 13g
shows an example of orientation rectification and Figure 13h
is the corresponding cropped region by using the stroke as the
diagonal of a minimal bounding box.

EXAMPLE APPLICATIONS
In this section, we demonstrate several applications to show-
case the capability of CyclopsRing to realize a variety of
whole-hand and context-aware interactions.

Whole-hand interactions
Gestural interaction for virtual reality
Hand gestures in VR gaming allow players to perform various
hand gestures that are metaphorically related functions. In the
first-person shooting game in Figure 14a, the player performs
a GUN gesture to switch weapon to the pistol barrel. Bending
down the thumb fires the gun, pinching with the thumb and
index finger retrieves a grenade. Interactivity is enhanced by
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Figure 13. Finger copy of an image on the physical paper. (a) Photo-
graph taken from third-person view. (b) The raw fisheye image. (c)
Undistorted image. (d) Fingertip position. (e) Matched SURF features.
(f) The finger stroke. (g) Rectified image. (h) Cropped image.

augmenting CyclopsRing with a 6 DOF IMU to aim a pistol
or to detect a grenade being thrown.

Single-handed interaction for smart watches
Touch interaction on smart watches is subject to the display
size, yet the touch interaction requires users’ both hands. On-
finger pinch-and-slider input (Figure 14b) can be used to sup-
port single-handedly interaction with smart watches.

Palm-Touch Interaction for head-mounted displays
CyclopsRing transforms the palm of the hand into a remote
touch pad for glass displays. Instead of pressing buttons on
the glasses or relying on an external touch pad for input, the
user simply writes on the palm to perform touch control of the
head-mounted displays. Figure 14c shows how palm-writing
input is used to navigate and to reply to messages.

Context-aware interactions
Cyber-world Clipboard
The cyber-world clipboard of CyclopsRing allows to digitize
physical content. In Figure 14d, the user drags an index finger
across the region of interest, e.g., a photo on an actual piece of
paper, the content of the specified region is digitized and di-
rectly passed to the neighboring tablet. Here, this interaction
is implemented with finger-copy functions.

Pinch into the Context
For contextual interactions, CyclopsRing quickly determines
the intention of the user because its camera is typically aimed
at the object with which the user is interacting. Therefore,
CyclopsRing enables intuitive interaction with real-world ob-
jects by pinch gestures. For example, in a smart home, users
may select a smart device with the pinch gesture and issue a
command by drawing in-air strokes (Figure 14e). Figure 14f
shows another example of file sharing with other users. A
pinch gesture is used to pick up digital content in the smart
phone. The content is then dropped by releasing the pinch
gesture, which triggers the send command.

CONCLUSION
This study presented CyclopsRing, which is the first finger
ring device that supports both whole-hand and context-aware
interactions. Hand gesture recognition experiments showed
84.75% accuracy in recognizing seven hand gestures across
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Figure 14. Examples of applications of CyclopsRing for gestural interaction in virtual reality, hand based input for smart devices and various context-
aware interactions.

15 participants. Built upon gesture recognition, this work
demonstrated a set of hand-based interactions including on-
finger slider input, in-air pinch-and-motion input, and palm-
writing input, and their interactions with the environmen-
tal context. In future works, we will investigate the use of
RDF methods for continuous tracking of hand skeletons. Ad-
ditional objectives include using micro lens technology to
miniaturize CyclopsRing and increasing the field of view by
accommodating multiple miniaturized wide-angle lens in the
design for a single finger ring.
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