Visual Simulation of Rain Cloud Formation Taking into account Cloud Microphysics

楽 詠灝[↑] 岩崎 慶[↓] 陳 炳字^{↑↑} 土橋 宜典^{↓↓} 西田 友是[↑]

Yonghao YUE[†] Kei IWASAKI[‡] Bing-Yu CHEN^{††} Yoshinori DOBASHI^{‡‡} and Tomoyuki NISHITA[†]

E-mail: † {yonghao, nis}@nis-lab.is.s.u-tokyo.ac.jp, ‡ iwasaki@sys.wakayama-u.ac.jp †† robin@ntu.edu.tw, ‡‡ doba@ime.ist.hokudai.ac.jp

1. はじめに

リアルな雲の動きの生成は、コンピュータグラフ ィックス(CG)分野で重要な研究テーマの一つであ る.しかし、従来研究では降雨を伴う雲(雨雲)の形 成は考慮されていない.雨雲は,積雲・積乱雲・乱 層雲などの総称であり, さまざまな気象要因により 生じる.熱帯では主に,強い上昇気流によって雨雲 が形成される.また、日本のような中緯度帯では、 前線などのように、温度分布に変化がある空間中を 大気が主に水平方向に通過することによって雲が形 成される. 例えば, 温暖前線では乱層雲などが雨を もたらし、降雨を経て軽くなった雲がさらに前線面 に沿って上昇することにより, 高い高度に薄い雲が 生成される.これらの気象現象により, 雲の密度分 布・大気中の水蒸気分布や雨滴の大きさの分布は変 化に富み,輪郭が明瞭なものから不明瞭なものまで, さまざまな雲が形成される.このように、降雨を伴 う雲形成では、しばしばダイナミックで印象的な雲 の動きが観測されるので、雨雲形成のビジュアルシ ミュレーションは CG 分野では重要であると考えら れる.

本研究では、気象学の分野で知られている雲微物 理[1,2,3]を用いたモデルにより、降雨を伴う雲の形 成をシミュレーションする.雲粒や雨粒はともに水 滴であるが、雨粒は雲粒に比べて粒径が大きいため 落下速度が速く、大気の流れから逸脱して地上に到 達できる.このような水滴の大きさの違いは、雲微 物理を用いて、凝結・蒸発・衝突などの過程をシミ ュレーションすることで得られる.また、圧縮性の 大気モデルを用いることにより、大気の密度変化や 前線面での速度分布や温度分布などの急激な変化を 扱う.本稿では、写実的なレンダリングする上で重 要なレイリー散乱やミー散乱では、大気や雲の粒子 の大きさや密度によって散乱係数や位相関数が異な る.そのため、シミュレーションにより得られた大 気や水滴などの空間的な分布は写実的なレンダリン グ結果を得る上で役に立つと考えられる.

2. 関連研究と本研究の位置づけ

CG 分野での雲のシミュレーションに関する研究 は、Kajiyaら[4]に始まり、物理ベースの手法として、 セルオートマトンを用いた方法[5]、Coupled Map Lattice を用いた積乱雲のシミュレーション手法[6] や非圧縮性の Navier-Stokes 方程式を解く方法[7,8] が提案されている.しかし、これらの手法では降雨 過程は考慮されていない.

気象学の分野では、雲微物理[1]により雲のダイナ ミクスが記述できることが知られている. 雲微物理 を用いることにより、雲や雨を構成する水滴の挙動 を知ることができる. 具体的には、相転移に伴う水 滴の蒸発や凝結、水滴の大きさによる落下速度の違 いに関する実験式、水滴の衝突におけるダイナミク スが知られている. シミュレーションでは、大気と 水蒸気を格子で扱うのが一般的である. 一方、水滴 を扱う代表的な方法としては、バルク法[9]、ビン法 [10]やモンテカルロ法[11]が知られている.本手法で は、水滴の扱いにおいて近年最も効率のよい方法の 一つである Super droplet 法[12]を用いた.

従来の CG 分野における雲のシミュレーション手 法と比較して,本研究では,雲微物理[1]に基づいて 水滴の成長過程をシミュレーションすることで,降 雨をもたらす雨雲の形成をシミュレーションできる. また,圧縮性大気モデルを用いることで,前線面を 伴う雲形成の過程をシミュレーションできる.

3. 基本的考え方

本手法では、圧縮性気体モデルを用い、空気と水 蒸気を格子ベースのモデルで扱う.また、水滴を粒 子ベースのモデルで扱う(図1左参照).格子には、 Staggered-Grid (図1右参照)を用いる.すなわち、格 子のエッジや面に速度を保存し、格子の中心に空気

の密度,温度,比湿(大気密度に対する水蒸気密度の 割合)を保存する.各水滴はエアロゾルに水蒸気が吸 着して成長を始める.各シミュレーション粒子は物 理的な性質が同じである複数の水滴からなるグルー プを表し,位置,水滴半径,水滴の個数,エアロゾ ルの質量を保存する.また,水分がなくエアロゾル だけからなるグループも考慮する.水滴の成長過程 では,凝結・蒸発のように相転移で起こる現象だけ でなく,水滴同士の衝突を扱うことも重要である. 雨粒のような大きな水滴が凝結過程だけから生じる ことはまれであり,降雨現象を扱うには衝突を考慮 する必要がある.一般に水滴が十分小さい間は凝 結・蒸発過程が支配的で,大きな水滴では衝突過程 が支配的となる.

本手法は、三つのシミュレーションブロックから なり、それらを並行に処理する.一つ目は、格子ベ ースで圧縮性 Navier-Stokes 方程式を解くブロック(4 節)である.二つ目は、水滴の凝結・蒸発・移動を扱 うブロック(5 節)である.三つ目は、水滴の衝突を計 算するブロック(6 節)であり、確率的モデル[12]を用 いる.ブロック間の相互作用は次のとおりである. 一つ目のブロックで計算された大気密度、温度、比 湿をもとに、水滴の凝結・蒸発の計算に用いるパラ メータが決定される.また、水滴の凝結・蒸発の計 算の結果生じる比湿の変化や水滴の質量の変化は一 つ目のブロックにフィードバックされ、比湿や外力 が変化する.三つ目のブロックによって、水滴の半 径が変化し、二つ目のブロックで計算される水滴の 移動速度が変化する.

4. 大気モデル

大気を表す物理量として、大気密度ρ,温度 *T*,比 湿 *q_v*,速度ベクトル **u**を用いると、大気と水蒸気の 支配方程式は下記のように表せる[1].

$$\rho \frac{\partial \mathbf{u}}{\partial t} + \rho (\mathbf{u} \cdot \nabla) \mathbf{u} = -\nabla P + (\rho + \rho_w) \mathbf{g} + \lambda \nabla^2 \mathbf{u}$$
(1)

$$\frac{\partial \rho}{\partial t} + \nabla (\rho \mathbf{u}) = 0 \tag{2}$$

$$\frac{\partial \theta}{\partial t} + (\mathbf{u} \cdot \nabla)\theta = -\frac{L}{c_p \Pi} S_v + \lambda \nabla^2 \theta$$
(3)

$$P = \rho R_d T \tag{4}$$

$$\frac{\partial q_{\nu}}{\partial t} + \left(\mathbf{u} \cdot \nabla\right) q_{\nu} = S_{\nu} + \lambda \nabla^2 q_{\nu}$$
⁽⁵⁾

これらの式は上から順に、運動量方程式、連続の 式、温位の変化、気体の状態方程式、比湿の変化を 表す.式中の定数や変数は次のとおりである.まず、 定数については、 R_d は乾燥大気の気体定数 (287.05[Jkg⁻¹K⁻¹])、Lは蒸発熱(2.5×10⁶[Jkg⁻¹])、 c_p は定圧比熱(1005[Jkg⁻¹K⁻¹])、 Π は Exner 関数、

$$\Pi = \left(P / P_0 \right)^{\left(R_d / c_p \right)}$$

 $P_0=1013hPa$, gは重力(鉛直下向きに $9.8ms^{-2}$), λ は拡散係数(1.5)を表す.次に変数については, Pは圧力, ρ_w は水滴の密度, θ は温位,

$$\theta = T(P_0 / P)^{(R_d / c_p)}$$

Svは凝結・蒸発過程における水蒸気供給量を表す.

変数 ρ_w および S_v は粒子ベースの水滴のシミュレ ーションから与えられる変数である.式(1)中の ρ_w g は,水滴の重さによって大気が鉛直下向きに引きず られる効果(下降流)を表し,式(3)中の(- LS_v /($c_p\Pi$))は 凝結・蒸発過程による温位の変化を表し,式(5)中の S_v は,凝結・蒸発過程によって水蒸気量が変化する 様子を表す.

数値シミュレーションでは,式(1),(2),(3)および(5)中の項を移流項と非移流項にわけ,まず非移流 項について計算した後,Semi-Lagrangeスキームを用 いて移流項を計算した.

5. 水滴の凝結・蒸発・移動

各水滴を球として近似すると,凝結・蒸発におけ る半径の変化率は,水滴の表面張力とエアロゾルの 凝結核効果を考慮して次式で与えられる[1].

$$\frac{dr}{dt} = \left(S - 1 - \frac{a}{r} + \frac{b}{r^3}\right) \frac{1}{r\rho_{water} \left[\left(\frac{L}{R_v T} - 1\right)\frac{L}{k_d T} + \frac{R_v T}{D_v e_s(T)}\right]}$$

ここで, *R*_vは湿潤空気の気体定数(461.51Jkg⁻¹K⁻¹), *D*_vは空気中の水蒸気の拡散係数,

$$D_{\nu} = 2.11 \times 10^{-5} \times (T/273.15)^{1.94} \times (P_o/P)$$

r は水滴の半径, S は飽和比(飽和比湿に対する比湿の割合), a は表面張力効果を表す係数 ($a=2\sigma/(R_v\rho_{water}T)$, σ は表面張力), b はエアロゾルの凝結核効果を考慮した係数($1.33 \times 10^{-4} \times M$, M はエアロ ゾルの質量), k_d は乾燥空気の熱伝導率(0.024),

表1 水滴の落下速度の算出に用いる係数 [1].

b ₀ : -3.18657	5 00015
b1: 0.992696	$c_0: -5.00015$
ha: -0.00153193	c ₁ : 5.23778
b_2 . 0.00130190	c ₂ : -2.04914
	c ₃ : 0.475294
b ₄ : -0.0005/88/8	c ₄ : -0.0542819
b ₅ : 0.0000855176	c5: 0.00238449
b ₆ : -0.00000327815	-

 ρ_{water} は水の密度(1000kgm⁻³)を表し, e_s は飽和蒸気圧を表す.

格子ベースの大気モデルから得られる温度,圧力, 比湿のパラメータを元に,各水滴の半径変化を計算 する.

水滴の落下速度 U (鉛直下向きのスカラー)は,水 滴の半径に応じて変化する.水滴が非常に小さい場 合,空気分子との衝突が無視できず,小さければ小 さいほど抵抗を受ける.また,水滴が雨滴の大きさ に成長すると,水滴底面からの空気抵抗により減速 される.こうした効果を考慮して,半径の大きさに 応じて次の三つの場合に分けて計算できる[1].

a)0.5~10µmの水滴(小さな雲粒):

$$U = C_{sc} \cdot 2r^2 g (\rho_{water} - \rho) / (9\eta_a)$$

ここで、 C_{sc} は空気分子の平均自由行程 λ_a を用いて、 $C_{sc}=1+1.255\lambda_a/r$ と表され、gは重力加速度、 η_a は空気の粘性係数であり、 1.718×10^{-4} [gcm⁻¹s⁻¹]である. **b)10µm~0.5mmの水滴(大きな雲粒,小さな雨滴)**:

 $U = \eta_a N_{R_a} / (2\rho r)$

ここで, N_{Re}はレイノルズ数で,

$$N_{D_a} = 32 \rho (\rho_{water} - \rho) g r^3 / (3 \eta_a^2)$$

により与えられるデービス数を用いて、実験的に

$$N_{R_e} = C_{sc} \exp\left(\sum_{k=0}^{6} b_k (\ln N_{D_a})^k\right)$$

と表せる. 係数 b_k は表 1 を参照されたい. c)0.5mm~3.5mm の水滴(雨滴):

$$U = \eta_a N_{R_e} / (2\rho r)$$

ここで, レイノルズ数 N_{Re}は,

$$N_{B_{\alpha}} = 16(\rho_{water} - \rho)gr^2/(3\sigma)$$

で与えられるボンド数と

$$N_{P} = \sigma^{3} \rho^{2} / \left[\eta_{a}^{4} (\rho_{water} - \rho) g \right]$$

により,実験的に

$$N_{R_{e}} = N_{P}^{1/6} \exp\left(\sum_{k=0}^{5} c_{k} \left[\ln \left(N_{B_{o}} N_{P}^{1/6} \right) \right]^{k} \right)$$

と表せる.係数 ck は表1を参照されたい.

こうして計算される水滴の落下速度と大気の運動 速度の合成方向に各水滴を移動する.水滴の移動に は,3次の TVD-RK (Total Variation Diminishing Runge Kutta)スキームを用いた.

水滴がシミュレーション領域外に出た場合,すな わち,地面に雨滴が落下した場合や自由境界から水 滴が流出した場合,該当するシミュレーション粒子 をシミュレーションから除外する.また,各境界に おいて,シミュレーション粒子の密度が閾値以下に なった場合,エアロゾルのみからなるシミュレーシ ョン粒子を追加して,各境界でのシミュレーション 粒子の密度を一定に保つようにする.

6. 水滴の衝突

水滴同士の衝突をシミュレーションするため、仮 想的な一様グリッドを設定し、各格子内のシミュレ ーション粒子同士の衝突を確率的にシミュレーショ ンする[12].まず、格子内のシミュレーション粒子 の番号をランダムに並べ替え、先頭から二つずつ番 号をとり、次にそれらが衝突するかどうかを次式で 定める確率 P_cに従って判定する.

$$P_{c} = \max(\xi_{j}, \xi_{k})K(r_{j}, r_{k})\frac{\Delta t}{\Delta V}(n_{s}-1)$$

ここで、 ξ_j 、 $\xi_k \ge r_j$ 、 r_k はそれぞれ j 番目と k 番目の シミュレーション粒子の水滴の個数と半径を表し、 Δt はタイムステップ、 ΔV は格子の体積、 n_s は格子 中のシミュレーション粒子の個数であり、K は半径 r_j 、 r_k からなる二つの水滴の衝突カーネル関数であ る. さらに、衝突すると判定された場合、衝突の結 果片側のシミュレーション粒子がもう片側のシミュ レーション粒子に吸収されて半径が増大するか、あ るいは、半径が同じ二つのシミュレーション粒子と なるかを決定する. 詳細は文献[12]を参照されたい.

7. シミュレーションパイプライン

シミュレーションでは, 4,5,6節で説明した三つの ブロック, すなわち,

- 1) 格子ベースの大気モデル
- 2) 水滴の凝結・蒸発・移動
- 水滴の衝突

を並行して行う.ブロック1は,圧縮性の大気モデ ルを安定してとくために,タイムステップを大きく できない.一方,文献[12]によれば,水滴の衝突は 大きなタイムステップで処理しても問題ない.これ らの点を考慮して,各ブロックのタイムステップは, 1)0.04 秒程度,2)0.4 秒程度,3)4.0 秒程度とした.

ブロック1と2の処理は、各格子または各シミュ

図2積雲の形成と降雨.

レーション粒子の処理を簡単に並列化できる.近年 では、GPUの処理性能は CPUより優れているため、 これらのブロックは GPUを用いて処理した.一方、 ブロック3の処理は複雑であり、CPUを用いる実装 のほうが容易である.また他の二つのブロックと比 較してタイムステップが一桁以上大きく、CPUへの 呼び戻しにかかる時間も許容できる.

8. 実験例

実験例について説明する.実験に使用した計算機 は, Intel Core2 Extreme QX9650の CPUと NVIDIA GeForce GTX 295 を搭載した PC である.

積雲からの降雨(三次元)

水平方向 10km、奥行き方向 10km、鉛直方向 5km のシミュレーション領域を設定し,積雲の形成 及び降雨のシミュレーションを行った. 格子の初期 条件を次に示す. 地表面の温度は 305K, 高度 3km までは 6.5K/km の割合で減少し, 高度 3km~5km は, 1.5K/km の割合で減少するように設定した. 地表面 の圧力は1013hPaとした.風は水平方向に平行に吹 くように設定し、地表面から高度 5km までの間で、 風速が 5m から 15m まで線形に変化するように設定 した.湿度は50%とし、地表面付近にさらにランダ ムに水蒸気量を加えた.境界条件は、水平方向と奥 行き方向については周期境界条件、地表面と高度 5km では初期条件に固定した.シミュレーション領 域の解像度は192×96×192とした.また,空間中に 一様に百万個のシミュレーション粒子を配置し、各 シミュレーション粒子が代表する水滴の個数が大気 の初期密度に比例するようにし、地上で10⁷/m³個と

なるように定めた.各水滴の大きさは平均 3µm と なるように,指数分布に応じてランダムに定めた. 実験結果を図 2 に示す.1mm 以上の大きな水滴(雨 滴)を紺色で示した.

前線面での降雨(二次元)

水平方向 80km, 鉛直方向 10km のシミュレーシ ョン領域を設定し,前線面での雲の形成及び降雨の シミュレーションを行った.図3に示すように前線 面を設定し,左側が暖気,右側が寒気となるように 設定した.格子の初期条件の具体的な数値を以下に 示す.地表面の温度は暖気側が305K,寒気側が300K, それぞれ高度 2500m までは 9.5K/km,それ以上は 1.5K/km の割合で減少するように設定した.地表面 の圧力は1013hPaとした.風は水平方向に前線面に 沿って吹くように設定し,地表では風速12m,上空

図4前線面での降雨.

では 30m となるように設定した. 湿度は暖気側 60%, 寒気側 40%とした. なお,境界条件は,左右は自由 境界,地表面と高度 10km では初期条件に固定した.

シミュレーション領域の解像度は 512(水平方向) ×256(鉛直方向),初期状態で 64 万個のシミュレー ション粒子を配置し,各シミュレーション粒子が代 表する水滴の個数および半径は,積雲からの降雨の 実験と同様にした.

図4に示したように,前線面に沿って雲が発達し, 降雨する様子がシミュレーションできている.1mm 以上の大きな水滴(雨滴)を紺色で示した.1250sにお ける大気密度の分布,温度分布,比湿分布,水滴の 大きさの分布を図5に示す.

<u>降雨の効果について</u>

降雨の効果を示すため次の三つの場合を比較した.

- 本手法を用いて降雨をシミュレーションした 場合(図 6 (a)).
- 2) 本手法において, 衝突過程を無視することに

図6降雨の効果に関する比較実験.

より,降雨の効果をオフにした場合(図 6 (b)).

- 3) 降雨のかわりに, 雲を一定の割合で減らした 場合(図 6 (c)).
- 2)では、降雨が起こらないことにより、領域全体に

厚い雲が広がってしまっている.3)では,2)に比べ て雲の量は少ないが,全体的に薄くなってしまって いる.1)では,衝突過程により1mm以上の大きな水 滴(雨滴,紺色)が生成され,降雨が起こっている.雲 が厚い部分と薄い部分が存在し,より現実の雲の分 布に近いと考えられる.

9. まとめと今後の課題

本稿では、気象学で知られている雲微物理を利用 することにより、降雨を伴う雲形成のシミュレーシ ョン法を述べた.実験では、積雲の形成及び降雨, 前線面での雲の形成及び降雨の様子を示した.

今後は、まず前線面での雨雲形成を三次元に拡張 し、次にレイリー散乱およびミー散乱を考慮してレ ンダリングすることが目標となる.レイリー散乱お よびミー散乱の係数は、大気の密度分布・水蒸気分 布・水滴の半径や個数に応じて変化するので、本稿 で述べたシミュレーション手法で得られる分布に基 づいてレンダリングすることにより、写実的なレン ダリング結果が得られると期待される.

謝辞

本研究の一部は,特別研究員奨励費(20・7968)の助 成による.

参考文献

- 高橋 劭, "雲の物理:雲粒形成から雲運動まで," 東京堂出版, 1987.
- [2] 水野 量, "雲と雨の気象学(応用気象学シリーズ),"朝倉書店, 2000.

- [3] 二宮 洸三, "気象がわかる数と式,"オーム社, 2000.
- [4] J.T. Kajiya, B.P.V. Herzen, "Ray tracing volume densities," Proc. SIGGRAPH'84, pp.165-174, 1984.
- [5] Y. Dobashi, K. Kaneda, H. Yamashita, T. Okita, T. Nishita, "A simple, efficient method for realistic animation of clouds," Proc. SIGGRAPH'00, pp.19-29, 2000.
- [6] R. Miyazaki, S. Yoshida, T. Nishita, Y. Dobashi, "A method for modeling clouds based on atmospheric fluid dynamics," Proc. PG'01, pp.363-372, 2001.
- [7] R. Miyazaki, T. Nishita, Y. Dobashi, "Simulation of cumuliform clouds based on computational fluid dynamics," Proc. EG'02 Short Presentations, pp.405-410, 2002.
- [8] M.J. Harris, W.V. Baxter, T. Scheuemann, A. Lastra, "Simulation of cloud dynamics on graphics hardware," In Proc. Graphics Hardware 2003, pp.92-101, 2003.
- [9] E. Kessler, "On the distribution and continuity of water substance in atmospheric circulations", Meteor. Monogr, 10, pp.1-84, 1969.
- [10] E.X. Berry, "Cloud droplet growth by collection," J. Atmos. Sci, 24, pp.688-701, 1967
- [11] D.T. Gillespie, "The stochastic coalescence model for cloud droplet growth," J. Atmos. Sci, 29, pp.1496-1510, 1972.
- [12] S. Shima, K. Kusuno, A. Kawano, T. Sugiyama, S. Kawahara, "Super-Droplet Method for the Numerical Simulation of Clouds and Precipitation: a Particle-Based Microphysics Model Coupled with Non-hydrostatic Model," arXiv: physics/ 0701103

図5物理量の分布.水滴分布は,各シミュレーション粒子の水滴の大きさを表す.白色はエアロゾルのみからなるシミュレーション粒子.青(5.0µm)から赤(0.5mm以上)に向かうにしたがって大きな水滴を表す.