
JavaGL and Its Applications for Web3D Platform
Bing-Yu Chen Tomoyuki Nishita

University of Tokyo

ABSTRACT

This paper proposes a new platform for the 3D graphics on the
Internet (or for Web3D as a new platform recently). To develop
3D graphics programs on the Internet is not very easy, because
there is no good enough tool, like OpenGL, to be used. For this
purpose, we have developed a 3D graphics library, called JavaGL,
by using pure Java since the end of 1996. At that time, we ignored
some functions, such like texture mapping, because these
functions are too complex to be realized on low-cost machines,
even on the fastest machine three years ago. JavaGL is a general-
purpose 3D graphics library, and its application-programming
interface is defined in a manner quite similar to that of OpenGL.
Today, the hardware is better, but the network bottleneck is still
the same as before, so we almost re-wrote all the code to enhance
its capabilities and performance and minimized its code size to
make it more suitable for running on the Internet.

Moreover, to display or play a 3D model or scene on the
Internet, people would like to use the VRML file format to
describe it, and use the VRML browser plug-in of the Internet
browsers to view it, because VRML is a standard 3D graphics file
format and very popular. Unfortunately, besides the Microsoft
Windows and SGI workstation environments, the supports for
showing VRML file format are not enough. Hence, we also
develop a real platform independent VRML browser applet by
using JavaGL, so it could be used on any Java enabled Internet
browsers. It is also a good example for JavaGL.

Keywords

OpenGL, VRML, Web3D, Java.

1. Introduction
The Internet is getting more and more popular since the end of
20th century. More and more people use the services on the
Internet everyday, like WWW and E-Mail. To fulfill the contents
and enhance the abilities of the Internet, people have noticed the
3D graphics recently. Although there is many 3D graphics
applications could be used on the Internet, but the main problem
is that they must offer several versions for different platforms,
since the Internet itself is a heterogeneous network environment.
Observing the development of the Internet, we believe that “pay-
per-use” software will be realized in the near future. Under this
new paradigm, we may need to distribute applications from
servers to clients in different platforms. Therefore, we decide to
develop a 3D graphics library that is platform independent. Java is
chosen as our programming language for its hardware-neutral
features, and wide availability on many hardware platforms, even
for embedded systems, such as mobile phone or PDA (personal
data assistant).

To develop 3D graphics applications on a stand-alone computer,
people always hope to use a powerful 3D graphics library, like
OpenGL, for the detail rendering works. But, to develop such
applications on the Internet by using Java, there is only Java3D,
which provided by Sun Microsystems Inc., only supports few
systems, and has its own API (application-programming interface).
People who want to write some 3D graphics programs by using
Java3D may pay much time to learn how to use it. So that, we also
desire that this 3D graphics library is easy to be learn and used.
Therefore, we define the API of JavaGL in a manner quite similar
to that of OpenGL, since OpenGL is an industry standard, and
many programmers are familiar with OpenGL's API.

Unless other commercial products; JavaGL does not need any
native codes or pre-installed libraries, it is developed with only
pure Java. Users run any programs developed with it do not need
to install any packaged before using them, all the necessary codes
will be down-loaded at the run time.

We released the first version of JavaGL in the end of 1997. In
that version, we could only do the basic rendering routines, but
lack of some complex functions, such like texture mapping. That
is because those functions are time wasting and could not be
realized on a low-end machine, even the machine is the best one
at that time. But today, the hardware is much better than before,
and more and more fancy applications have been needed on the
Internet. Hence, we decided to enhance the capabilities of JavaGL.
Unfortunately, when the hardware is getting faster and faster day-
by-day, the network bandwidth is still the same as, or even worse
then before. To increase the capabilities of JavaGL may make the
code to be too large to be not suitable for the Internet transmission.
To enhance the capabilities and minimize the code size at the
same time, we decided to re-write the kernel to fulfill the requests.

Besides the 3D graphics library, to be a platform for Web3D
used, we also need a 3D object and scene browsers. Hence, we
also develop a VRML browser applet by using JavaGL, since
people would like to use the VRML file format to display or play
a 3D model or scene on the Internet. More than that, since we use
JavaGL for the 3D graphics rendering, the VRML browser applet
is also a good example for proving the capability of JavaGL.

2. JavaGL - A 3D Graphics Library in Java
JavaGL is a 3D graphics library for Java virtual machine. Unlike
Java3D or other libraries, JavaGL does not need to be pre-
installed; all the necessary codes will be downloaded at run time.
JavaGL is written by pure Java, so it is really platform
independent, and could be executed on any Java enabled machine.
Since OpenGL is so famous and known by almost all 3D
programmers, we follow the specifications of it to develop
JavaGL. Therefore programmers who want to use JavaGL to
develop their own 3D programs on the Internet do not need to
learn how to use the new library, they can find a one-to-one
mapping function in JavaGL as they call it in OpenGL. E-mail: {robin, nis}@is.s.u-tokyo.ac.jp

Web: http://nis-lab.is.s.u-tokyo.ac.jp/~{robin, nis}/

We began to develop JavaGL since the end of 1996, and
released several versions in 1997. At that time, the performance is
just 4 times slower than the Mesa-3D, which is developed by
using the C language. Although the performance is not too bad,
we still skipped some issues, which need heavy calculations, such
as texture mapping. We began to re-develop the JavaGL since the
summer of 1999, almost all the codes have been re-written. The
class inheritance tree structures of JavaGL have also been re-
designed again.

As the development experience of JavaGL, we find that the
performance is not the most important problem, but the code size
is. Within the four years, the performance of the computer
hardware is improved several times, but the network bandwidth is
still the same. For example, four years ago, we use the PC with
Intel Pentium 200MHz as our best testing platform and use
100BaseT as our Ethernet line, and 57600bps modem for dialing-
up accesses. Now, we are using the PC with Intel PentiumIII
1.13GHz as our best testing platform, but the Ethernet line and
modem are the same. Hence, we tried to develop JavaGL with the
minimum code size.

2.1 OpenGL vs. JavaGL
Functions of OpenGL can be divided into two main categories:

OpenGL Utility Library (GLU) and OpenGL (GL) as shown in
Figure 1(a). JavaGL follows the same function hierarchy as shown
in Figure 1(b).

(a) (b)
Figure 1 The hierarchy of (a) OpenGL and (b) JavaGL modules.

GL implements a powerful but small set of drawing primitive
3D graphics operations, including rasterization, clipping, etc.
GLU provides higher-level OpenGL commands to programmers
by encapsulating these OpenGL commands with a series of GL
functions. Besides these two main interfaces, there is an OpenGL
Programming Guide Auxiliary Library, called AUX or GLAUX,
which is not an official part of OpenGL API, but is widely used
and familiar for the programmers. For this reason, we also include
GLAUX in our JavaGL package. Recently, GLUT has been
widely used by programmers also, but we have not implemented
this part yet.

The implementation of JavaGL is mainly based on the
specifications of OpenGL, while the GLAUX library is
implemented according to the OpenGL Programming Guide.
Besides GL, GLU, and GLAUX, which are just interfaces for the
programmers, there is an underlying graphics context, which is
transparent to programmers, and people cannot use this part
directly. Hence, to enhance the performance and minimize the
code size, we rewrite all the codes in the graphics context several
times.

2.2 Implementation of Graphics Context
To reduce the code size and keep or enhance the performance of
JavaGL, we utilize the class inheritance characteristic to re-design
the system hierarchy of graphics context as Figure 2.

Figure 2 The graphics context of JavaGL.
The graphics context of JavaGL can be divided into two parts.

One part is for display list, all the commands from the GL will not
be executed and just stored as a sequence of rendering commands.
The other part is for real graphics context, all the commands from
the GL will be executed immediately.

The commands that will be executed in the real graphics
context also can be categorized into two types. One type is just for
changing some information stored in the graphics context. For
example, when the users call the glClearColor command, the
color value for clear the display will just be stored, no really clear
actions will be occurred. Once the users call the glClear command
(with GL_CLEAR_COLOR_BIT), the real clear action will be
executed by using the clear color value, which has been stored
before.

The other type is like the previous glClear command. The
commands in this type will occur some actions and make
something changed. Since JavaGL is defined as a state machine as
OpenGL, we utilize the class inheritance to avoid the frequently
checks here. The states of JavaGL have been classified into
several states; include selection or not, flat or smooth shading,
with depth test or without, texture mapping enabled or disabled,
clipping for clip-plane or not. Therefore, running in different
states will need different clipping, geometry and rendering
routines.

2.3 Performance Enhancement Issues
Performance is a great challenge for both 3D graphics and Java,
hence is also a great challenge for JavaGL. Moreover, JavaGL is
designed to operate over the Internet, where network bandwidth
affects the overall performance significantly. Since we want to
upgrade the capabilities and minimize the code size without
making the run-time performance worse, these considerations
make the implementation of JavaGL complex.

According to our experiences, we develop the following
policies to speed up the performance and minimize the code size
of JavaGL.
Utilize class inheritance to avoid “if-then-else” statements

OpenGL is a state machine, and it is usually necessary to
determine if some status is enabled or not, which takes time to

3D Application

GL

Native Windows Systems

GLU

GLUT AUX
 GL

Graphics Context

3D Java Applet

Java Virtual Machine

GLU

GLUT GLAUX

Abstract Interface

Display List Graphics Context

Attribute State Pointer

GL user’s view

under user’s view

check. We utilize class inheritance to avoid these frequent checks.
After deciding which status is enabled, we realize an object to its
proper class type; so rendering commands followed will be routed
to proper functions automatically without any further checks.

Divide a routine into several smaller ones
 If a routine was very large and would be called in several

situations, this routine must have some useless code segments for
some states, while it is just called for a simple situation. So, it is
worth to divide this routine into several smaller ones.

For example, to fill a polygon, we must do color interpolation if
the polygon is filled using smooth shading. However if the
polygon only requires constant shading, color interpolation would
be unnecessary. Therefore, we divide the shading routines into
two smaller ones.
Use function overriding to minimize code size

Once we divided some routines into several smaller ones, the
total code size will be larger than before, because there are too
many duplicated codes. Although we have utilized class
inheritance to avoid “if-than-else” statements, here we also use
this method to structure all the small routines to be some
hierarchy relationships, then use function-overriding feature to
reduce the duplicated codes.

Figure 3 The example of using function overriding.
The same example as the above, since we have divided the

shading routines into two smaller ones, one for flat shading and
the other for smooth shading. Because all of them need polygon
scan procedure to fill the polygon, we can make the two routines
as parent and child classes, and use the same code base to do the
polygon scan. The difference between the two small routines is
just for interpolation. In the flat shading, we only need to
interpolate the point positions in the polygon, but in the smooth
shading, we also need to calculate the color interpolation.
Therefore, the function-overriding example is like Figure 3.

3. VRML Browser Applet by Using JavaGL
To test the capabilities of JavaGL, we also develop a VRML
browser applet by using JavaGL, since VRML is also a standard
for modeling 3D models and scenes on the Internet, and used by
most people. Moreover, to provide the solutions for Web3D, we
will not only need to deliver the JavaGL, but also a testing
platform, such as this VRML browser applet.

To provide such a browser applet by using pure Java is not very
easy, but fortunately we have JavaGL to be our 3D graphics
engine, and programming with JavaGL is almost the same as with
OpenGL. Since VRML itself is object oriented, following the

development policies of JavaGL to design the VRML browser
applet by using Java is not too difficult, but the performance and
code size problems are still the huge problems for it.

3.1 System Hierarchy
We follow the specification of VRML to develop the VRML
browser applet. There are two main parts, which are nodes and
fields, in the VRML specification. The 3D models or scenes are
associated with several nodes with a tree structure, and the
parameters of the nodes are stored in some fields.

Since VRML is object oriented, we could use class inheritance
to construct the fields to be a class tree. For the nodes, since there
are several differences between the nodes, we could only classify
all the nodes into 6 main categories, and 4 sub-categories, and
also make the nodes to be a class tree.

The system hierarchy of the VRML browser applet is as Figure
4, and the Node and Field are the two main parts as the above. We
isolate the rendering routines (the Render Interface in the Figure)
as a stand-alone class located between the VRML browser applet
and the JavaGL, hence we can enhance the rendering performance
with only this one class.

Figure 4 The system hierarchy of VRML browser applet.
The Browser and Parser as its class name are for all browser

and parser functions. The Parser will be called only when loading
the VRML file, and is used to parse the VRML file format and
store all the information into Fields of Nodes.

3.2 Performance Enhancement Issues
From the experiences of developing JavaGL, we also utilize class
inheritance and function overriding to minimize the code size and
enhance the performance. Besides these, we also use the following
policies.

Use display list mechanism of JavaGL
Programming with OpenGL, to use a display list to store the

rendering commands is reasonable. Because JavaGL has the same
mechanism as OpenGL, we could utilize display list of JavaGL as
programming with OpenGL.
Pre-process the constant parameters

Since almost all the parameters of nodes will not be changed
while re-drawing, we could pre-process or pre-calculate all the
non-changed information and store as parameters of the nodes to
enhance the performance.

Child class

private do_interpolation() {
 super.do_interpolation();
 calculate color value;
}

Parent class

private do_interpolation() {
 calculate x ,y, and z;
}

public polygon_scan() {
 scan per line;
 do_interpolation ();
 draw the line;
}

VRML Applet

Browser Parser

Node

Field

JavaGL Render Interface

Combine arbitrary geometric mesh data
The arbitrary geometric mesh data is more important than other

nodes, since there are only few primitive geometric nodes
supported by VRML. Most people do not like to use the well-
defined primitive geometric nodes, instead of using an arbitrary
geometric mesh node to satisfy their desire. Therefore, to display
an arbitrary geometric mesh data efficiently is more important.

Within VRML, to show an arbitrary geometric mesh data with
different materials, we must use several Shape nodes with
IndexedFaceSet nodes to construct it. Hence, there will be a huge
branch in the 3D scene tree. Therefore, we combine such nodes to
be just one node.

For example, if there is an arbitrary geometric mesh as Figure 5,
we could use only one node instead of using such a huge tree.

Group {
children [

Shape { # shape with first material
}
Shape { # shape with second material
}
Transform {

children [
Shape { # shape in other group
}
Shape { # shape in other group with other material
}

]
}
Transform {

children [
Shape { # shape in other group
}
Shape { # shape in other group with other material
}

]
}

]
}
Figure 5 An arbitrary geometric mesh with different materials in

VRML format. Since there are several materials, there
will be several Shape nodes to make the tree huge.

4. Results

4.1 JavaGL - A 3D Graphics Library in Java
Currently, we have implemented over than 220 OpenGL functions
in JavaGL, including functions of GLAUX, GLU, and GL. These
functions include 2D/3D transformation, 3D projection, depth
buffer, smooth shading, lighting, material, display list, selection,
texture-mapping, mip-mapping, evaluators, NURBS, and stippled
geometry, etc. Functions not supported so far are mainly for anti-
aliasing.

To test the capabilities of JavaGL, we have provided 26
examples on our JavaGL web page1. These examples are selected
from the OpenGL Programming Guide and can be executed
directly on Java-enabled Internet browsers. To evaluate the
performance of JavaGL, we used a test program that renders 12
spheres with different materials, where each sphere contains 256

1 Http://nis-lab.is.s.u-tokyo.ac.jp/~robin/JavaGL

polygons, as shown in Figure 6. The performance of the test
program was measured on both a SUN Ultra-10 workstation and
an Intel PentiumIII-1G PC. The results are listed in Table 1. This
test program is also an example in the OpenGL Programming
Guide.

Figure 6 Twelve spheres are rendered to measure performance.
Each sphere contains 256 polygons and has different
material. This program is an example in OpenGL
Programming Guide (code from Listing 6-3, pp. 183-
184, Plate 16). This figure is rendered with JavaGL.

Environment Rendering
Time (ms) Platform

219
Intel PentiumIII-1GHz,
512MB memory,
Microsoft Windows NT 4.0

Sun JDK 1.3

1061
Sun Ultra-10 360MHz,
256MB memory,
Sun Solaris 7

Table 1 The performance comparison of JavaGL on a PC and a
workstation. The test result is shown in Figure 6.

Environment Rendering
Time (ms) Platform

Sun JDK 1.3 219
Intel PentiumIII-1GHz,
512MB memory,
Microsoft Windows NT 4.0

Sun JDK 1.2.2
Sun HotSpot 1.0.1 16,700

Symantec Café 1.5.1
Symantec JIT 2.0b3 4,070

Intel Pentium-200Hz,
64MB memory,
Microsoft Windows 95

Table 2 A performance comparison on two different PCs. The two
PCs are the most hi-end ones today and three years ago.
The test program is using the same program as shown in
Figure 6.

To do the migration testing, we also use the same testing
program as more than two years ago. Table 2 lists the results
measured on two different PCs. One is Intel PentiumIII-1G PC,
and the other is Intel Pentium-200 PC, both of them are the most
hi-end PCs today and three years ago. Besides the migrations of
the hardware and the Java compiler (also including the just-in-

time compiler), JavaGL has also been improved several times. As
the result, the newest version of JavaGL using SUN JDK 1.3 is
much faster than the old version of JavaGL on an old machine
even using JIT (just-in-time) compiler.

Figure 7 shows a simple Java applet that draws a rectangle
using JavaGL, which is similar to the simple example in the
OpenGL Programming Guide (Listing 1-2, pp. 13, Figure 1-1),
which is an official programming guide of OpenGL.

import java.applet.Applet;
import java.awt.*;

// must import packages of JavaGL.
import javagl.GL;
import javagl.GLAUX;

public class simple extends Applet {
 GL myGL = new GL();
 GLAUX myAUX = new GLAUX(myGL);

 public void init() {
 myAUX.auxInitPosition(0, 0, 500, 500);
 myAUX.auxInitWindow(this);
 }

 public void paint(Graphics g) {
 myGL.glXSwapBuffers(g, this);
 }

 public void start() {
 myGL.glClearColor(0.0f, 0.0f, 0.0f, 0.0f);
 myGL.glClear(GL.GL_COLOR_BUFFER_BIT);
 myGL.glColor3f(1.0f, 1.0f, 1.0f);
 myGL.glMatrixMOde(GL.GL_PROJECTION);
 myGL.glLoadIdentity();
 myGL.glOrtho(-1.0f, 1.0f, -1.0f, 1.0f, -1.0f, 1.0f);
 myGL.glBegin(GL.GL_POLYGON);
 myGL.glVertex2f(-0.5f, -0.5f);
 myGL.glVertex2f(-0.5f, 0.5f);
 myGL.glVertex2f(0.5f, 0.5f);
 myGL.glVertex2f(0.5f, -0.5f);
 myGL.glEnd();
 myGL.glFlush();
 }
}
Figure 7 A simple example of JavaGL to show a white rectangle.

Figure 8 A simple example to render a simple cube with different

colors for comparing the performance of JavaGL and

Java3D. This model is an example (HelloUnverse) in the
package of Java3D. This figure is rendered with JavaGL.

For comparing with Java3D, we write a program to draw a cube
with different colors as the HelloUniverse example in the package
of Java3D, as shown in Figure 8, and test on the same machine
with Intel PentiumIII-1G CPU and a high-end display card. The
result shows both of them are real-time.

Compare with the previous version of JavaGL, the byte-code
size has been decreased 26.49%, and the performance has been
only decreased 8.86%.

4.2 VRML Browser Applet by Using JavaGL
Now, we have implemented over than 70% VRML nodes in our
VRML browser applet. Besides the nodes, route and event
transmission mechanisms have also been implemented.

To evaluate the performance of this VRML browser applet, we
use a test model that renders a table with different colors for the
legs and top, which is selected from the Virtual Reality Modeling
Language (VRML 97), the specification of VRML. This model
contains 204 polygons, as shown in Figure 9. The performance of
the test file was also measured on both a SUN Ultra-10
workstation and an Intel PentiumIII-1G PC. The results are listed
in Table 3.

Figure 9 A simple table is rendered to measure performance. It
contains 204 polygons and has two different colors for
the legs and top. This model is an example in Virtual
Reality Modeling Language (VRML97) (code pp. 211-
213, Figure D.3). This figure is rendered with JavaGL.

Environment Rendering
Time (ms) Platform

15
Intel PentiumIII-1GHz,
512MB memory,
Microsoft Windows NT 4.0

Sun JDK 1.3

23
Sun Ultra-10 360MHz,
256MB memory,
Sun Solaris 7

Table 3 The performance comparison of VRML browser applet
on a PC and workstation.

To test the performance enhancement of arbitrary geometric
mesh data, we use a large arbitrary geometric mesh data with

5,273 polygons and 12 kinds of materials as shown in Figure 10,
and the results are shown in Table 4. The testing platform is also
Intel PentiumIII-1GHz, 512MB memory, Microsoft Windows NT
4.0, Sun JDK 1.3.

Figure 10 This arbitrary geometric mesh model contains 5,273

polygons with 12 kinds of materials in VRML format.

Rendering Methods Rendering Time (ms)

Show as original VRML format 447
After performance enhancement 375

Table 4 The performance enhancement comparison.

4.3 3D Human Head Texture Mapping
To test the performance of texture mapping, we also develop a 3D
human head texture mapping and build it with JavaGL. To do this,
we use a 3D human head model with 2,185 polygons, and a
512× 512 human face image as shown in Figure 11.

(a) (b)

Figure 11 The data for the 3D human head texture-mapping (a)
the 3D human head model, and (b) the human face
image.

Environment Rendering
Time (ms) Platform

187
Intel PentiumIII-1GHz,
512MB memory,
Microsoft Windows NT 4.0

Sun JDK 1.3

434
Sun Ultra-10 360MHz,
256MB memory,
Sun Solaris 7

Table 5 The performance testing of 3D human head texture
mapping on a PC and a workstation.

Since the entire source codes are written with pure Java, and so
is JavaGL, the program could be run on all kinds of Java-enabled
platform directly from our web page. The performance testing is
as Table 5. The result is shown in Figure 12.

Figure 12 The result of 3D human head texture mapping.

5. Conclusions and Future Work
Since we upload JavaGL to our web server, there are many people
around the world have visited our web page. We also received
dozens of e-mails concerning the use of JavaGL. Some would like
to collaborate with us, and some want to use JavaGL to develop
their applications. This encourages us to further improve JavaGL.

Sun Microsystems, Inc. has combined its Java2D into Java2,
and released the newest version of Java3D in the summer of 1999.
Because Java2D is part of Java core packages, it can benefit from
hardware acceleration, though this will need many efforts on
porting it to each platform. By using Java2D or Java3D to be the
base of JavaGL may be a solution of the performance problem.

From our comparison, although Java3D uses OpenGL or
DirectX as its graphics engine, the performance of JavaGL is not
very worse for the simple model. Hence, JavaGL seems more
suitable for small program or model on Web3D platform, since
the user side does not need to install the run-time library before
using the program.

As our experiences of developing JavaGL and its other
applications on the Internet, the run time performance is so far not
the main problem for the Java applications, since the machine’s
performance is getting better and better day by day. But the code
size problem is still the large problem, no mater for byte code size
or the model data size, since the network bandwidth is still very
narrow.

At this moment, JavaGL is being applied to develop a VRML
browser applet and other Java-based project in our laboratory. The
goal of the Java-based projects is to provide users all the
necessary functions from servers, so that users do not have to
install additional hardware or software for 3D graphics
applications. JavaGL meets this requirement because it is
implemented purely by Java, which is designed for the Internet.

Performance is still the great challenge for any Java
applications. We expect that the performance will be improved by

better Java interpreters and compilers, and will be greatly
improved by new Java chips and faster CPUs.

Since the network bandwidth is the most important problem for
the 3D graphics on the Internet, after minimizing the code size of
JavaGL and our VRML browser applet, we will try to minimize
the size of the model or use the progressive refinement
technologies for such issue.

We have developed JavaGL for almost four years, to make it to
be an open-source project is also our future work. Java and all
Java based mark is registered trademarks of Sun Microsystems,
Inc., so we will change the name of JavaGL in the near future.

6. Acknowledgements
We would like to appreciate to Prof. Ming Ouhyoung, who
supported the development of JavaGL since 1996, and always
gives us many suggestions for developing it. We would also need
to appreciate Mr. Hideki Mori, who made our testing models. The
Graphics Group of Communication and Multimedia Lab.,
National Taiwan University creates the model of 3D human head
texture mapping, thanks for all the members of that group.

7. References
[1] “The Source for Java™ Technology,” Sun Microsystems,

Inc., 2000. http://java.sun.com.
[2] “OpenGL – High Performance 2D/3D Graphics,” OpenGL,

Org., 2000. http://www.opengl.org.

[3] Rikk Carey, Gavin Bell, and Chris Marrin, “ISO/IEC 14772-
1:1997 Virtual Reality Modeling Language (VRML97),”
The VRML Consortium Incorporated, 1997.

[4] Bing-Yu Chen, “The JavaGL 3D Graphics Library & JavaNL
Network Library,” Master Thesis, Dept. of Computer Science
and Information Engineering, National Taiwan University,
1997.

[5] Bing-Yu Chen, Tzong-Jer Yang, and Ming Ouhyoung,
“JavaGL - a 3D Graphics Library in Java for Internet
Browsers,” in IEEE Trans. on Consumer Electronics, p.271 –
p.278, Vol. 43, No. 3, 1997.

[6] Brian Guenter, Cindy Grimm, Daniel Wood, Henrique
Malvar, and Fredrick Pighin, “Making Faces,” in Computer
Graphics (SIGGRAPH 98 Proceedings), pp. 55-66, 1998.

[7] Hugues Hoppe, “Efficient Implementation of Progressive
Meshes,” in Computer & Graphics, Vol. 22, No. 1, pp. 27-36,
1998.

[8] Hugues Hoppe, “Progressive Meshes,” in Computer
Graphics (SIGGRAPH 96 Proceedings), pp. 99-108, 1996.

[9] Jackie Neider, Tom Davis, and Mason Woo, “OpenGL
Programming Guide,” Addison-Wesley, 1993.

[10] JavaSoft, “The Java 3D API Specification,” Sun
Microsystems, Inc., 2000.

[11] Mark Segal, and Kurt Akeley, “The OpenGL Graphics
Systems: A Specification (Version 1.1),” Silicon Graphics,
Inc., 1996.

