Describable Visual Attributes for Face Verification and Image Search

Kumar, Berg, Belhumeur, Nayar.
PAMI, 2011.

Ryan Lei
2011/05/05
Course aMMAI
Outline

• Title explanation
• Introduction
• Related work
• Creating labeled image datasets
• Learning visual attributes
• Application to face verification
• Application to face search
• Possible improvements
Title Explanation

• Describable visual attributes:
 • *Labels* that can be given to an image to describe its appearance.
 • Examples: gender, age, skin color, hair style, smiling.

• Goal 1 - Face verification (authentication):
 a. Determine whether two faces are of the same individual.
 b. Knowing the identity, judge if the query face image is the same person.

• Goal 2 - Image Search:
 • Attribute-based image search system. Sample query: “smiling Asian man with glasses”.
Introduction (1)

• Traditional face recognition research:
 • Use of low-level image features to *directly* train classifier for the classification task.
 • Examples: color (histogram, GCM), texture (Gabor), intensity (Haar, LBP), gradient (SIFT, HOG).
 • The feature representations are often high dimensional, and are in an abstract space.

• Proposal - attribute-based representation:
 a. Describable visual attributes (*“attributes”* in this slide)
 b. *Similes*: similarities to reference faces.
Recap: semantic concept detection (course MMAI).
Concept space for faces -- (a): attributes
Concept space for faces -- (b): similes
Introduction (2)

- Advantages of attribute-based representation:
 - A mid-level representation bridging the “semantic gap”.
 - Dimensionality reduction & manifold discovery.
 - *Flexible*, *generalizable*, *efficient*.

- Flexible: various levels of specificity.
 - “white male” → a set of people.
 - “… + “brown-hair green-eyes scar-on-forehead” → a specific person.
 - “… + “smiling lit-from-above seen-from-left” → a particular image of that person.
Introduction (3)

• Generalizable:
 • Learn a set of attributes from a large image collection, and then apply them in arbitrary combinations to the recognition of unseen images.

• Efficient:
 • k binary attributes can identify up to 2^k categories.
 • Requires a much smaller labeled dataset to achieve comparable performance on recognition tasks.
Introduction (4)

- Contributions of this paper:
 1. Introduce attribute & simile classifiers, and face representation using these results.
 2. Application to face verification and face search.
 3. Releases two large public datasets: *FaceTracer* and *PubFig*.

- Previous work:
Creating Labeled Datasets (1)

• Steps 1 & 2:
 • Download from a variety of online resources, such as Yahoo! Images and Flickr.
 • Using a commercial face detector (Omron OKAO), detect faces, pose angles, and fiducial points.
 • Using the yaw angle, flip the face so it always faces left.
 • Align faces using linear least square regression.
Creating Labeled Datasets (1)

- **Steps 1 & 2:**
 - Download from a variety of online resources, such as Yahoo! Images and Flickr.
 - Using a commercial face detector (Omron OKAO), detect faces, pose angles, and fiducial points.
 - Using the yaw angle, flip the face so it always faces left.
 - Align faces using *linear least square regression*.
Review of linear least square regression

• Basics (1-dimensional-output case):
 • Given a vector \mathbf{x}, when want to predict its output y.
 • Prepare a training set of N data: $\{\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_N\}$.
 • Introduce M basis functions $\Phi_j(.)$, e.g., Gaussian, such that y is a linear combination of M basis components:

$$ y = \sum_{j=1}^{M} w_j \cdot \phi_j(\mathbf{x}) = \mathbf{w}^T \phi(\mathbf{x}) $$

• Goal: learn the weight vector \mathbf{w}.
• Prediction: $y_{new} = \mathbf{w}^T \phi(\mathbf{x}_{new})$
Review of linear least square regression

• Formulation:
 - N Overdetermined systems: \(\sum_{j=1}^{M} \phi_j(x_i) \cdot w_j = y_i, \quad i = 1, 2, \ldots, N \)

\[
X = \begin{pmatrix}
\phi_1(x_1) & \phi_2(x_1) & \cdots & \phi_M(x_1) \\
\phi_1(x_2) & \phi_2(x_2) & \cdots & \phi_M(x_2) \\
\vdots & \vdots & \ddots & \vdots \\
\phi_1(x_N) & \phi_2(x_N) & \cdots & \phi_M(x_N)
\end{pmatrix}, \quad y = \begin{pmatrix}
y_1 \\
y_2 \\
\vdots \\
y_N
\end{pmatrix} \quad \Rightarrow \quad Xw = y
\]

• Solve the normal equations for \(w \):

\[
X^T X w = X^T y \quad \Rightarrow \quad w = (X^T X)^{-1} X^T y
\]
Review of linear least square regression

- **Extension to D-dimensional-output case:**

\[
W = \begin{pmatrix}
w_{11} & w_{12} & \cdots & w_{1D} \\
w_{21} & w_{22} & \cdots & w_{2D} \\
& \cdots & \ddots & \cdots \\
w_{M1} & w_{M2} & \cdots & w_{MD}
\end{pmatrix},
Y = \begin{pmatrix}
y_{11} & y_{12} & \cdots & y_{1D} \\
y_{21} & y_{22} & \cdots & y_{2D} \\
& \cdots & \ddots & \cdots \\
y_{N1} & y_{N2} & \cdots & y_{ND}
\end{pmatrix}
\]

\[
X^T X W = X^T Y \Rightarrow W = (X^T X)^{-1} X^T Y
\]

- Given 6 fiducial points, predict 6 new coordinates.
- In our case, \(W \) matrix is an *affine transformation*.
Creating Labeled Datasets (2)

• Step 3: Crowd-sourcing part.
 • They chose Amazon Mechanical Turk, a service that matches workers to online jobs created by requesters.
 • Quality control by requiring confirmation of results by several workers, or minimum worker experience, etc.
 • After verification, they collected 145,000 attribute labels, at the cost of USD$6,000.
Amazon Mechanical Turk

Worker

Requester
Creating Labeled Datasets (3)

• FaceTracer – attribute labels:
 • 15,000 faces with 5,000 labels. (0.33 labels per image)
 • Researchers still need to train their own attribute classifiers to transform the faces into attribute space.
 • http://www.cs.columbia.edu/CAVE/databases/facetracer/

• PubFig – identity labels:
 • 58,797 images of 200 public figures.
 • Development set: 60 people. (for training simile classifiers)
 • Evaluation set: 140 people. (same purpose as LFW)
 • http://www.cs.columbia.edu/CAVE/databases/pubfig/

• What if jointly labeling identities and attributes?
of faces of this person.

(a) PubFig Development set (60 individuals)

(c) All 170 images of Steve Martin
Attributes labeled in the FaceTracer dataset

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>gender</td>
<td>male, female</td>
</tr>
<tr>
<td>race</td>
<td>asian, white, black</td>
</tr>
<tr>
<td>age</td>
<td>baby, child, youth, middle_aged, senior</td>
</tr>
<tr>
<td>hair_color</td>
<td>blond, not_blond</td>
</tr>
<tr>
<td>eye_wear</td>
<td>none, eyeglasses, sunglasses</td>
</tr>
<tr>
<td>mustache</td>
<td>true, false</td>
</tr>
<tr>
<td>expression</td>
<td>smiling, not_smiling</td>
</tr>
<tr>
<td>blurry</td>
<td>true, false</td>
</tr>
<tr>
<td>lighting</td>
<td>harsh, flash</td>
</tr>
<tr>
<td>environment</td>
<td>outdoor, indoor</td>
</tr>
</tbody>
</table>

However, all attribute classifiers in this work are binary.
Learning Visual Attributes (1)

• Definitions:
 • Consider the attribute “gender” and the qualitative labels “male” and “female”.
 • An Attribute can be thought of as a function that maps an image I to a real value r_i.

- Female - 0 - Male

• Large positive (negative) values of r_i indicate the present (absent) of the i-th attribute.

• Core part in this work:
 • Feature selection, though still an open problem in machine learning.
Learning Visual Attributes (2)

- Low-level features options:
 a) Region of face. [10]
 b) Type of pixel value. [5]
 c) Normalization to apply. [3]
 d) Level of aggregation to use. [3]
 - A total of 10*5*3*3 = 450 combinations.
Learning Visual Attributes (3)

- Complete feature pool:
 - However, not all possible combinations are valid, e.g., normalization of hues.

\[\hat{x} = \frac{x}{\mu} \]

\[\hat{x} = \frac{x - \mu}{\sigma} \]

<table>
<thead>
<tr>
<th>Pixel Value Types</th>
<th>c) Normalizations</th>
<th>d) Aggregation</th>
</tr>
</thead>
<tbody>
<tr>
<td>RGB</td>
<td>None</td>
<td>None (concat)</td>
</tr>
<tr>
<td>HSV</td>
<td>Mean Normalization</td>
<td></td>
</tr>
<tr>
<td>Image Intensity</td>
<td>Energy Normalization</td>
<td></td>
</tr>
<tr>
<td>Edge Magnitude</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Edge Orientation</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
• **Forward feature selection** – in each iteration:
 1. Train all possible classifiers by *concatenating* one feature option with the current feature set.
 2. Evaluate the performances by cross-validation.
 3. Feature(s) with highest CV accuracy → added.
 4. Drop the lowest-scoring 70% of features.
 5. Keep adding until the accuracy stops improving.
Learning Visual Attributes (5)

- Classifiers used:
 - SVMs with RBF kernel. (tool: libSVM)
 - Seems to be only one final classifier.
 - ECCV 2008: Boosting approach.

- Thought:
 - Features A and B work well individually. Will they work well together?
Typically range from 80% to 90%.

Analysis shows that all regions and feature types are useful: the power of feature selection.
Learning Visual Attributes (6)

- Simile classifiers:

<table>
<thead>
<tr>
<th>Simile</th>
<th>Positive Examples</th>
<th>Negative Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference Person 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eyebrows</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eyes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mouth</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reference Person 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eyebrows</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eyes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mouth</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Learning Visual Attributes (6)

- Simile classifiers:
 - 60 reference people.
 - 8 manually selected face regions. (Similes are component-based by definition.)
 - 6 manually selected combinations of [pixel value type, normalization, aggregation], *without automatic selection*. (Could have done so.)
 - Yield a total of $60 \times 8 \times 6 = 2,880$ simile classifiers, each being an SVM with RBF kernel.
• Now we have these attributes and similes as mid-level representation.

• How do we apply them in high-level classification / retrieval problems?
Application to Face Verification (1)

• Problem:
 • “Are these two faces of the same person?”

• Existing methods:
 • Very early work & early work:
 • Compare L2 distance in PCA-reduced space.
 • Improved by the supervised LDA.
 • Early work used well-known low-level features directly.
 • Often make *avoidable* mistakes: men being confused for women, young people for old, Asians for Caucasians.
 • From this observation, they claim that the attribute and simile classifiers can avoid such mistakes.
Application to Face Verification (2)

- Many steps have been explained in previous sections.
- Goal here: the verification classifier.
Application to Face Verification (3)

- Verification classifier:
 - Train a verification classifier \(V \) that compares attribute vectors \(C(I_1) \) and \(C(I_2) \) of two face images \(I_1 \) and \(I_2 \), and returns the decision \(v(I_1, I_2) \).
 - Define \(a_i = C_i(I_1) \) and \(b_i = C_i(I_2) \), subscript \(i \) meaning the \(i \)-th attribute (simile) value. \(i = 1, 2, \ldots, n \).
 - Use both the absolute difference and product.
 1) \(|a_i - b_i| \): Observation that \(a_i \) and \(b_i \) should be close if they are of the same individual.
 2) \(a_i * b_i \): Observation that \(a_i \) and \(b_i \) should have the same sign if they are of the same individual.
Application to Face Verification (4)

- Verification classifier (cont.):
 - Concatenate them in tuple \(p_i \), then concatenate for all \(i \):
 \[
 p_i = \langle |a_i - b_i|, a_i b_i \rangle \quad v(I_1, I_2) = V(\langle p_1, \ldots, p_n \rangle)
 \]
 - \(\langle p_1, \ldots, p_n \rangle \) is the training input to the classifier.
 - Again, they use SVM with RBF kernel.

- Experiment:
 - Performed on datasets LFW and PubFig.
 - Even the *individuals* are disjoint in training / testing sets.
 - In other words, machine never sees the same pair of people in its model. Rely solely on attributes / similes.
Fig. 10. Face verification performance on LFW
How well can attributes potentially do?

- Attributes obtained by machine learning: 81.57%.
- Attributes obtained by human labeling: 91.86%.
- Face verification entirely by human: 99.20%.
Application to Face Search

• FaceTracer search engine:
 • For details, refer to the work in ECCV 2008.
 • Demo video on YouTube: http://www.youtube.com/watch?v=20UJ7JL7RNs
 • Text-based query. Remember that we have bridged the semantic gap by those mid-level classifiers.
 • For each attribute, search results are ranked by confidences.
 • Convert confidences into probabilities in $[0,1]$ by Gaussian.
 • For multiple query terms, just combine them by taking the product (AND) of those probabilities.
• Indexing: basic inverted index? Not mentioned.
What about the *user gap*?
To accurately capture user’s search intention:

- **Sketch-based**
 - Example: A couple, Sunset, Mountain, Sea

- **Concept-based**
 - Example: Jeep, Grass

- **People-attribute-based**
 - Example: Icons of people with attributes
Possible Improvements

• Go beyond binary classifiers for attributes.
 • Regressors are good for quantitative attributes like “age”.

• Use feature selection in training the Simile classifiers.

• Automatic (Dynamic) selection of attributes.

• Image search:
 • Product of probabilities can’t prevent outlier scores.
 • TF-IDF approach for ranking the “word frequencies”?
 • Combine identity information?
 • Combine location and size, even sketch?
Thank You!

Q & A