Mathematical Analysis of Algorithms

Homework #4
Due Date:
Reading Assignment: Chapter 4
Problems:

1. Prove that \(\sum_{k|m} \frac{1}{k} \sum_{d|k} \mu(\frac{k}{d})c^d = \frac{1}{m} \sum_{d|m} \varphi(d)c^{\frac{m}{d}} \)

2. 4–29

3. 4–38

4. 4–41

5. The object of this problem is to determine the average execution time of the Insertion Sort algorithm. Suppose we want to sort \(n \) integers stored in an array \(X[0..n] \). We assume that \(X[0] \) contains garbage and that the \(n \) integers are stored as \(X[1], X[2], \ldots, X[n] \).

Insertion sort is the method commonly used by people to sort bridge hands: consider the integers one at a time and insert each in its proper place among those already considered. The following program does exactly that.

```
#times executed

n for i := 2 to n do begin
    n - 1 value := X[i];
    n - 1 place := i - 1;
    A_n + n - 1 while (place \geq 1 and X[place] \geq value) do begin
        A_n X[place + 1] := X[place];
        A_n place := place - 1;
    end;
    n - 1 X[place + 1] := value;
end;
```

Then number of times each statement is executed is given in the left column. Assume each statement takes one time unit to execute, except
for the `while` statement. It takes two time units to execute, because there are two logical expressions to evaluate. The total running time of this algorithm is just

\[4A_n + 6n - 5. \]

To find the average running time, it suffices to find the average value of \(A_n \), the number of times the inner loop is executed.

Assume that the \(n \) integers are \{1, 2, \ldots, n\} and that all \(n! \) permutations of the \(n \) integers are equally likely. The average (or expected) value of \(A_n \) is \(E(A_n) = B_n/n! \), where

\[
B_n = \sum_{\text{each permutation } X[1], X[2], \ldots, X[n] \text{ of } \{1, 2, \ldots, n\}} \left(\text{value of } A_n \text{ when the program is run on input } X[1], \ldots, X[n] \right).
\]

For example, when \(n = 3 \), assume that we want to sort the integers \{1, 2, 3\}. For the 3! possible permutations, we get

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

Therefore, \(B_3 = 0 + 1 + 1 + 2 + 2 + 3 = 9 \), so \(E(A_3) = 9/3! = 3/2 \).

(a) Find a simple expression for \(E(A_n) \) in terms of \(n \). Do that by deriving a recurrence relation for \(B_n \) in terms of \(B_{n-1} \), then solving it by using the appropriate “summation factor.” Compute the average running time \(4(E(A_n)) + 6n - 5 \).

(b) One way to speed up the algorithm is to get rid of the “place \(\geq 1 \)” expression, since it is seldom needed. To do that, we must initialize \(X[0] \) to \(-\infty \). Now the “`while`” statement takes only one time unit to execute. Does this alteration affect the value of \(A_n \)? Why or why not? What is the resulting average running time of the algorithm?
(c) Is this algorithm \textit{stable}? If not, can you modify the algorithm to make it stable? A sorting method is \textit{stable} if equal keys remain in the same relative order in the sorted sequence as they were in originally.