6. This problem analyzes a hashing method called **uniform hashing**. We store the \(n \) keys in an array with \(m \) slots. We also have a sequence of hash functions, \(h_1, h_2, \ldots, h_m \). For all keys \(y \), the hash addresses \(h_1(y), h_2(y), \ldots, h_m(y) \) form a permutation of \(\{1, 2, \ldots, m\} \). To search for a key \(y \):

1. Set \(i \leftarrow 1 \).
2. Examine slot \(h_i(y) \). If nothing is there, then insert \(y \) there and \textbf{STOP [unsuccessful search]}.
3. Otherwise, if slot \(h_i(y) \) contains \(y \), \textbf{STOP [successful search]}. Else, increment \(i \) by 1 and return to Step 2.

The number of \textit{probes} in a search is the number of slots that are examined. This is the number of times Step 2 is executed.

The best known hashing method is called **linear probing**: it is a special case of uniform probing. In linear probing, we only have to compute the first hash function \(h_1(y) \). The search for \(y \) starts at slot \(h_1(y) \) and proceeds cyclically through the table. That is, the other hash functions are defined implicitly by:

\[
h_{i+1}(y) = \begin{cases}
h_i(y) - 1 & \text{if } h_i(y) > 1; \\
\frac{m}{h_i(y)} & \text{if } h_i(y) = 1.
\end{cases}
\]
This method is hard to analyze, because the hash functions \(h_2, h_3, \ldots \), are not independent of \(h_1 \). Instead, we will analyze a simpler model: We assume that for each key \(y \), the order in which we probe the table \(h_1(y), h_2(y), \ldots, h_m(y) \) is a random permutation of \(\{1, 2, \ldots, m\} \).

Let \(Y_n \) be the random variable describing the number of probes per unsuccessful search (or insertion) when there are \(n \) keys already in the hash table. For any given configuration of the \(n \) keys, we have

\[
p_{nk} = \Pr\{Y_n = k\}
= \Pr\{\text{slots } h_1(y), \ldots, h_{k-1}(y) \text{ are occupied and slot } h_k(y) \text{ is not occupied}\}.
\]

Let \(S \) be the set of locations of the \(n \) inserted keys. Then

\[
p_{nk} = \frac{1}{m!} \left(\# \text{ permutations s.t. } \{h_1(y), \ldots, h_{k-1}(y)\} \subset S \text{ and } h_k(y) \notin S \right)
= \frac{1}{m!} (n(n-1) \cdots (n-k+2)(m-n)(m-k)!) \]
= \frac{1}{m!} n^{k-1} (m-n)(m-k)!
= \frac{n^{k-1}}{m^k} (m-n).
\]

(a) For \(n < m \), compute

\[
E(Y_n) = \sum_{1 \leq k \leq n+1} kp_{nk}
\]
using the techniques of Chapter 5. (As a check, your final answer should be \((m+1)/(m-n+1)\); don’t use induction.)

(b) Let \(X_n \) be the random variable for the number of probes per successful search when there are \(n \) inserted keys. Using the same argument that we used in class for the analysis of the separate chaining hashing scheme, a successful search for a key \(y \) takes the same number of probes as when it was inserted (after a prior unsuccessful search). Hence, the average number of probes in a successful search is the average of the expected number of probes for each of the \(n \) unsuccessful searches (insertion); that is,

\[
E(X_n) = \frac{1}{n} \sum_{1 \leq k \leq n} E(Y_{k-1}).
\]

Compute \(E(X_n) \) using part (a).