Homework #9
Due Date:
Reading Assignment: 9.1–9.4
Problems:
1. 8–31
2. 9–2
3. 9–13
4. 9–14
5. 9–34
6. Let Y_n be the random variable describing the number of the probes for unsuccessful search on a binary search tree that contains n keys. The purpose of this problem is to compute $E(Y_n)$ and $Var(Y_n)$ using generating functions. The generating function for Y_n is defined by

$$G_n(Z) = \sum_k p_{nk} z^k,$$

where $p_{nk} = \Pr(Y_n = k)$, the probability that k probes are needed to do an unsuccessful search in an n-key tree. The sample space for Y_n is

$$S = \{(x_1, \ldots, x_{n-1}, x_n; y)\},$$

where each $(x_1, \ldots, x_{n-1}, x_n; y)$ is one of the $(n + 1)!$ permutations of $1, 2, \ldots, n + 1$. Here x_1, \ldots, x_n represents the n keys already inserted, and y is the key that will be searched for unsuccessfully.

We want to develop a recurrence for p_{nk} by deriving a relationship between Y_n and Y_{n-1}. To do this, we use the model described in class: Another way to think of $s = (x_1, \ldots, x_{n-1}, x_n; y)$ is to regard $s' = (x_1, \ldots, x_{n-1}; y)$ as one of the $n!$ permutations of $1, 2, \ldots, n$, and to regard x_n as one of the $n + 1$ fractions $\frac{1}{2}, \frac{3}{2}, \ldots, (n + \frac{1}{2})$.

1
(a) Show that
\[Y_n(s) = \begin{cases}
Y_{n-1}(s') + 1 & \text{when } x_n = y \pm \frac{1}{2}, \\
Y_{n-1}(s') & \text{when } x_n \text{ is one of the other } n - 1 \text{ values.}
\end{cases} \]
(This isn’t hard if you think about it.) Using this key fact, we have
\[p_{nk} = \Pr(Y_{n-1} = k - 1 \text{ and } (x_n = y - \frac{1}{2} \text{ or } x_n = y + \frac{1}{2})) \]
\[+ \Pr(Y_{n-1} = k \text{ and } x_n \text{ is one of the other } n - 1 \text{ values}). \]

(b) Using independence, derive a recurrence for \(p_{nk} \) in terms of \(p_{n-1,k} \) and \(p_{n-1,k-1} \). Add the appropriate \(\delta \) term to make the recurrence hold for all values of \(n \) and \(k \) and substitute the recurrence into the definition of \(G_n(z) \). Compute \(E(Y_n) \) and \(Var(Y_n) \). As a check, the variance is
\[Var(Y_n) = 2H_{n+1} - 4H_{n+1}^{(2)} + 2. \]

(c) Express \(E(Y_n) \) and \(Var(Y_n) \) in the form \(f(n) + c + g(n) + O(1/n) \), where \(c \) is a constant and \(f(n) \) and \(g(n) \) are some elementary functions. (e.g., \(n \), \(e^n \), \(\log n \), \(\log n/n \)).