Deep Video Frame Interpolation using Cyclic Frame Generation

Yu-Lun Liu^{1,2,3}, Yi-Tung Liao^{1,2}, Yen-Yu Lin¹, Yung-Yu Chuang^{1,2}

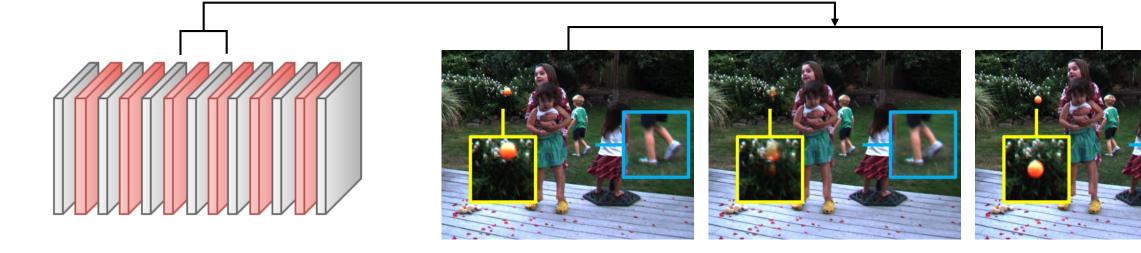
¹Academia Sinica, ²National Taiwan University, ³MediaTek

Code Available at: https://github.com/alex04072000/CyclicGen

AAAI-19: Thirty-Third AAAI Conference on Artificial Intelligence January 27 – February 1, 2019, Hilton Hawaiian Village, Honolulu, Hawaii, USA

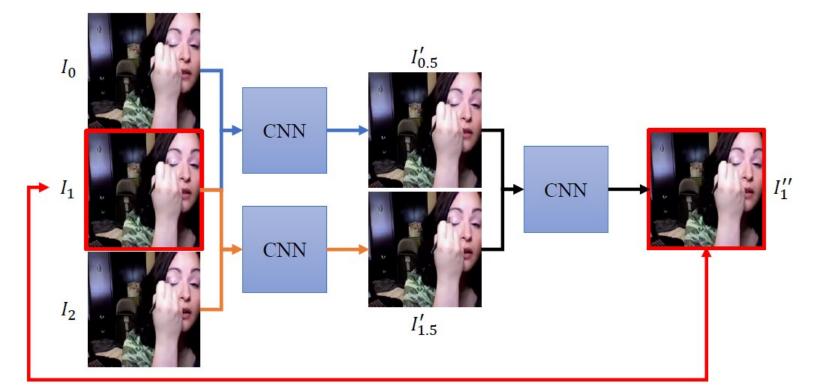
Introduction

- Goal:
 - Predict the intermediate frame between two consecutive frames



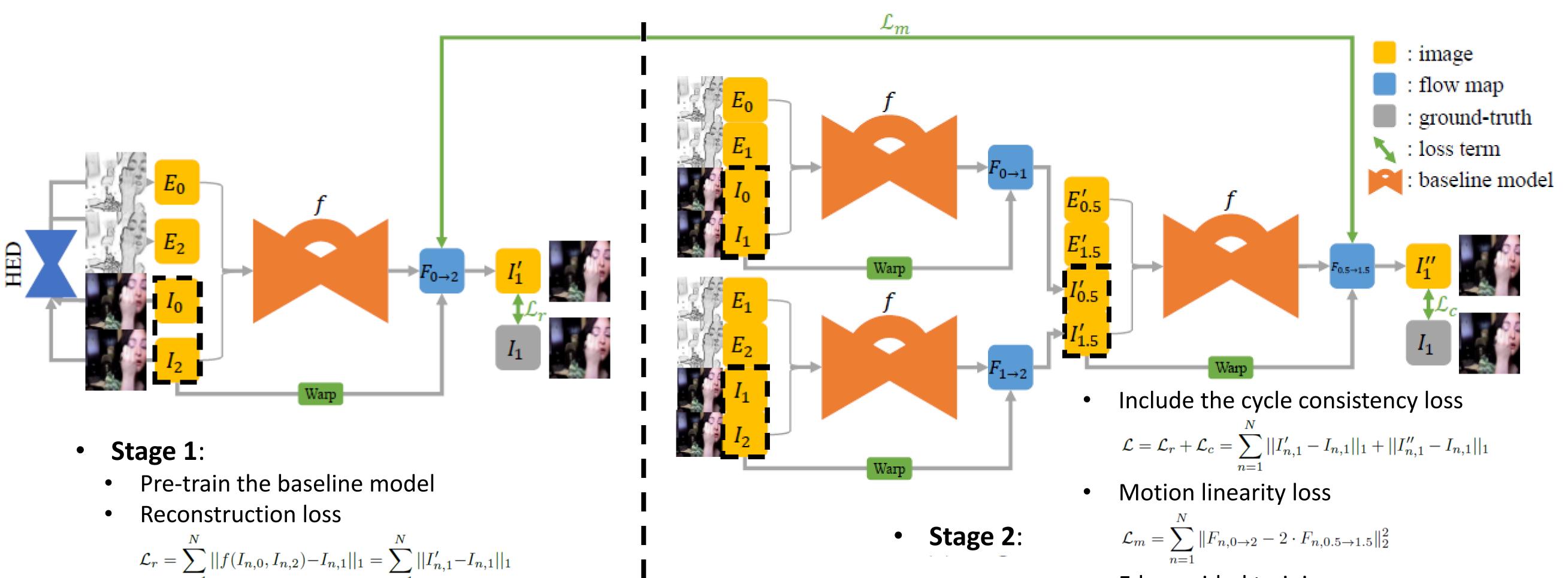
Solution: Enforcing cycle consistency

- Observation:
 - Over-smoothed frames or frames with artifacts cannot well reconstruct the original frames



- Challenges:
 - Conventional methods → computationally expensive
 - CNN-based methods \rightarrow artifacts and over-smoothed results

A two-stage training procedure



• Edge-guided training

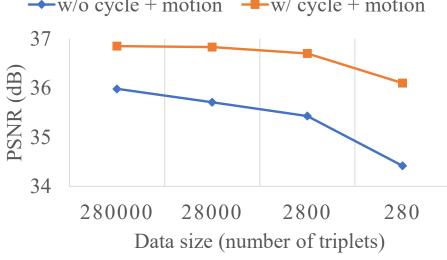
Ablation studies on UCF dataset

• The introduced components help video interpolation

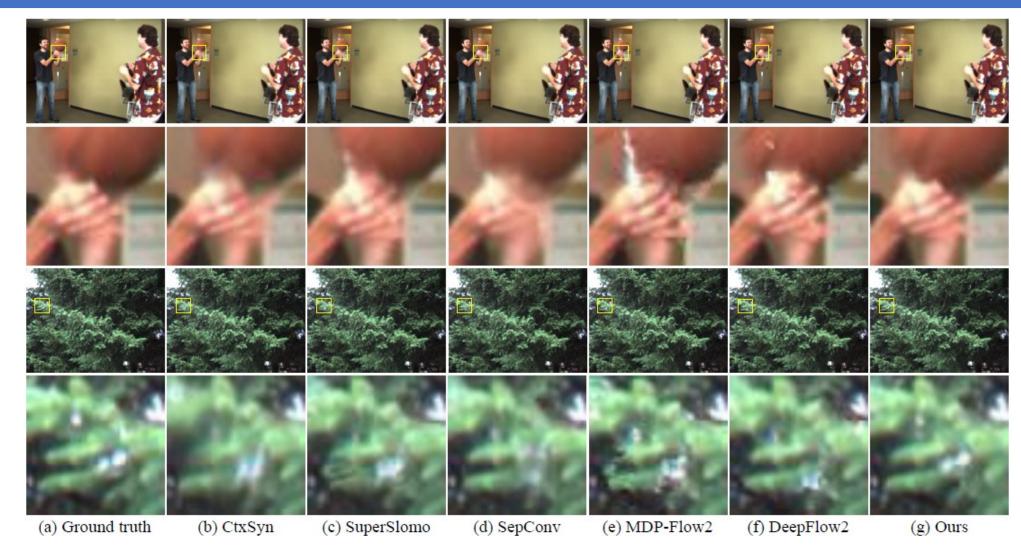
	PSNR	SSIM
Baseline (DVF)	35.89	0.945
+ Cycle	36.71 (+0.82)	0.950 (+0.005)
+ Cycle + Motion	36.85 (+0.96)	0.950 (+0.005)
+ Cycle + Edge	36.86 (+0.97)	0.952 (+0.007)
full model	36.96 (+1.07)	0.953 (+0.008)

 Cycle consistency loss improves the robustness to few training data

Training size	Baseline (DVF)	Ours $(\mathcal{L}_c + \mathcal{L}_m)$
1	35.98	36.85
1/10	35.71 (-0.27)	36.83 (-0.02)
1/100	35.43 (-0.55)	36.70 (-0.15)
1/1000	34.42 (-1.56)	36.10 (-0.75)



Visual comparisons



Comparison with SoTAs

• On UCF-101 dataset and a high-quality video See You Again

	UCF	F101	See You Again		
	PSNR	SSIM	PSNR	SSIM	
DVF	35.89	0.945	40.15	0.958	
SepConv	36.49	0.950	41.01	0.968	
Ours	36.96	0.953	41.67	0.968	

• On Middlebury dataset

	AVERAGE	Mequon	Schefflera	Urban	Teddy	Backyard	Basketball	Dumptruck	Evergreen
	all disc. unt.	all disc. unt.	all disc. unt.	all disc. unt.	all disc. unt.	all disc. unt.	all disc. unt.	all disc. unt.	all disc. unt.
Ours	4.20 6.16 1.97	2.26 3.32 1.42	3.19 4.01 2.21	2.76 4.05 1.62	4.97 5.92 3.79	8.00 9.84 3.13	3.36 5.65 2.17	4.55 9.68 1.42	4.48 6.84 1.52
CtxSyn	5.28 8.00 2.19	2.24 3.72 1.04	2.96 4.16 1.35	4.32 3.42 3.18	4.21 5.46 3.00	9.59 11.9 3.46	5.22 9.76 2.22	7.02 15.4 1.58	6.66 10.2 1.69
SuperSlome	5.31 8.39 2.12	2.51 4.32 1.25	3.66 5.06 1.93	2.91 4.00 1.41	5.05 6.27 3.66	9.56 11.9 3.30	5.37 10.2 2.24	6.69 15.0 1.53	6.73 10.4 1.66
SepConv	5.61 8.74 2.33	2.52 4.83 1.11	3.56 5.04 1.90	4.17 4.15 2.86	5.41 6.81 3.88	10.2 12.8 3.37	5.47 10.4 2.21	6.88 15.6 1.72	6.63 10.3 1.62
MDP-Flow2	2 5.83 9.69 2.15	2.89 5.38 1.19	3.47 5.07 1.26	3.66 6.10 2.48	5.20 7.48 3.14	10.2 12.8 3.61	6.13 11.8 2.31	7.36 16.8 1.49	7.75 12.1 1.69
DeepFlow	5.97 9.79 2.05	2.98 5.67 1.22	3.88 5.78 1.52	3.62 5.93 1.34	5.39 7.20 3.17	11.0 13.9 3.63	5.91 11.3 2.29	7.14 16.3 1.49	7.80 12.2 1.70

Conclusion

- We present a novel loss, the cycle consistency loss, which
 - can be integrated with existing video frame interpolation methods and trained end-to-end
 - synthesizes more plausible frames possessing similar characteristics with the original frames
- We propose two extensions, motion linearity loss and edge guided training, that

References:

- Liu, Z.; Yeh, R.; Tang, X.; Liu, Y.; and Agarwala, A. 2017. Video frame synthesis using deep voxel flow. In Proceedings of IEEE ICCV.
 Niklaus, S.; Mai, L.; and Liu, F. 2017b. Video frame interpolation via adaptive separable convolution. In Proceedings of IEEE ICCV.
 Niklaus, S., and Liu, F. 2018. Context-aware synthesis for video frame interpolation. In Proceedings of IEEE CVPR.
- - regularize the training procedure
 - further improve model performance
- The proposed approach better utilizes the training data, not only enhancing the interpolation results, but also reaching better performance with less training data.

• Jiang, H.; Sun, D.; Jampani, V.; Yang, M.-H.; Learned-Miller, E.; and Kautz, J. 2018. Super slomo: High quality estimation of multiple intermediate frames for video interpolation. In Proceedings of IEEE CVPR.