1. Convert 4096_{10}, -2047_{10}, and -2000000_{10} into 32-bit two’s complement binary numbers, respectively, and convert the following two’s complement binary numbers to be decimal numbers:

 a. 1111 1111 1111 1111 1111 1111 0000 0110\text{two};
 b. 1111 1111 1111 1111 1111 1111 1110 1111\text{two};
 c. 0111 1111 1111 1111 1111 1111 1110 1111\text{two}.

2. Suppose that all of the conditional branch instructions except \textit{beq} and \textit{bne} were removed from the MIPS instruction set along with \textit{slt} and all of its variants (\textit{slti}, \textit{sltu}, \textit{sltui}). Show how to perform

 \begin{verbatim}
 slt $t0, $s0, $s1
 \end{verbatim}

 using the modified instruction set in which \textit{slt} is not available. (Hint: It requires more than two instructions.)

3. The ALU supported set on less than (\textit{slt}) using just the sign bit of the adder. Let’s try a set on less than operation using the values -7_{10} and 6_{10}. To make it simpler to follow the example, let’s limit the binary representations to 4 bits: 1001_{two} and 0110_{two}.

 $1001_{two} - 0110_{two} = 1001_{two} + 1010_{two} = 0011_{two}$

 This result would suggest that $-7_{ten} > 6_{ten}$, which is clearly wrong. Hence we must factor in overflow in the decision. Modify the 1-bit ALU in the following figures to handle \textit{slt} correctly.

![Figure 1: A 1-bit ALU that performs AND, OR, and addition on a and b or b'.](image-url)
Figure 2: A 1-bit ALU for the most significant bit.

4. Add $2.85_{ten} \times 10^3$ to $9.84_{ten} \times 10^4$ and add $3.63_{ten} \times 10^4$ to $6.87_{ten} \times 10^3$, respectively, assuming that you have only three significant digits, first with guard and round digits and then without them.

5. Show the IEEE 754 binary representation for the floating-point numbers 20_{ten}, 20.5_{ten}, 0.1_{ten}, and $-5/6$, respectively.