Outline

- Data security
- Cryptography basics
- Cryptographic systems
- DES
- RSA
Cryptography

- Cryptography is the science of secret writing.
 - A cipher is a secret method of writing, where by plaintext (cleartext) is transformed into a ciphertext.
 - The process of transforming plaintext into ciphertext is called encipherment or encryption.
 - The reverse process of transforming ciphertext into plaintext is called decipherment or decryption.
 - Encryption and decryption are controlled by cryptographic keys.
Secret Writing

Encryption

Decryption

Plaintext

Key

Ciphertext
Attacks against Ciphers

- Cryptanalysis is the science and study of methods of breaking ciphers.
- A cipher is breakable if it is possible to determine the plaintext or key from the ciphertext, or to determine the key from plaintext-ciphertext pairs.
- Attacks
 - Ciphertext-only attack
 - Known-plaintext attack
 - Chosen-plaintext attack
A cryptographic system has five components:
- A plaintext message space, M
- A ciphertext message space, C
- A key space, K
- A family of enciphering transformations $E_k : M \rightarrow C$
- A family of deciphering transformations $D_k : C \rightarrow M$
Cryptographic Systems (cont.)

\[D_k(E_k(m)) = m \text{, for a key } k \]

- Cryptosystem requirements:
 - Efficient enciphering/deciphering
 - Systems must be easy to use
 - The security of the system depends only on the keys, not the secrecy of E or D
Secure Cipher

- **Unconditionally secure**
 - A cipher is unconditionally secure if no matter how much ciphertext is intercepted, there is not enough information in the ciphertext to determine the plaintext uniquely.

- **Computationally secure**
 - A cipher is computationally infeasible to break.
Secrecy Requirements

- It should be computationally infeasible to systematically determine the deciphering transformation D_k from intercepted c, even if corresponding m is known.

- It should be computationally infeasible to systematically determine m from intercepted c.

```
M → $E_k$ → C → $D_k$ → M
```

- Disallowed
- Protected

C. H. HUANG IN CML
Authenticity requirements

- It should be computationally infeasible to systematically determine the enciphering transformation given c, even if corresponding m is known.
- It should be computationally infeasible to systematically find c' such that $D_k(c')$ is a valid plaintext in M.

$$M \xrightarrow{E_k} C \xrightarrow{D_k} M$$

- protected
- disallowed
Key-distribution cryptosystem

- Encrypting & decrypting are closely tied together.
- The sender and the receiver must agree on the use of a common key before any message transmission takes place.
- A safe communication channel must exist between sender and receiver.
In a public key cryptosystem, each participant is assigned a pair of inverse keys E and D.

- Different functions are used for enciphering and deciphering, one of the two keys can be made public, provided that it is impossible to generate one key from the other.
- E can be made public, but D is kept secret.
- The normal key transmission between senders and receivers can be replaced by an open directory of enciphering keys, containing the keys E for all participants.
Using Public-Key Cryptosystem to Transfer Messages Secretly

- When a person A wishes to send a message to a person B, the receiver’s enciphering key E_B is used to generate the ciphertext $E_B(m)$. Since the key E_B is freely available, anyone can then encipher a message destined for B. However, only the receivers B with access to the decipher key D_B can regenerate the original text by performing the inverse transform $D_B(E_B(m))$.
Digital Signature

- Guaranteeing authenticity.
- Let B be the recipient of a message m signed by A. Then A’s signature must satisfy:
 1. B must be able to validate A’s signature on m.
 2. It must be impossible to forge A’s signature.
 3. If A disavows signing a message, a third party must be able to resolve the dispute.
Using Public-key Systems to Implement Digital Signatures

1. A signs m by computing $c = D_A(m)$
2. B validates A’s signature by checking $E_A(c) = m$
3. A dispute can be judged by checking whether $E_A(c)$ restores M in the same ways as B.

➤ Requirements:

- $D_k(E_k(m)) = E_k(D_k(m)) = m$
Secrecy and Authenticity in A Public-Key System

\[E_A(D_B(C)) = E_A(D_B(E_B(D_A(M))))) = E_A(D_A(M)) = M \]
Reference

- Cryptography and Data Security, D. Elizabeth and R. Denning, Purdue University, 1998
- FAQ about Today’s Cryptography, RSA Laboratory, (found in www.rsa.com)
- The reference listed in course handout.
Conventional Cryptosystems

- Using substitution transform and permutation transform
 - Substitution Ciphers
 - Running Key Ciphers
 - Transposition Ciphers
 - (Permutation ciphers)
 - Stream Ciphers
Substitution Ciphers

- Replace bits, characters, or blocks of characters with substitutes.
 - Example: Caesar cipher
 - which shift each letter in the English forward by K positions (shifts past Z cycle back to A)
- A simple substitution cipher is easy to solve by performing a frequency analysis.
Running Key Ciphers

- The security of a substitution cipher generally increases with the key length. In a running key cipher, the key length is equal to the plaintext message. (not using a fixed key alphabet)
 - E.g. use the text in a book as the key sequence.
- The cipher may be breakable by Friedman’s method based on the observation that both plaintext and key letters are high frequency ones in natural language.
Permutation Ciphers

- Rearrange bits or characters in the data.

INFORMATION TECHNIQUES FOR IPR

IRITNERENOMTOEHIUSOIR

FANCQFP

IRITNERENOMTOEHIUSOIRFANCQFP

- What is the key?

- Attacks: frequency analysis of characters.
A product cipher is the composition of functions F_1, \ldots, F_t, where each F_i may be a substitution or permutation.

Examples of product ciphers
- DES
Data Encryption Standard (DES)

- The National Bureau of Standards announced DES to be used in unclassified U.S. Government applications.
- DES enciphers 64-bit blocks with a 56-bit key.
An input block T is first transposed under an initial permutation IP, giving $T_0 = IP(T)$.

- E.g. $t_1 t_2 \ldots t_{64} \rightarrow t_{58} t_{50} \ldots t_7$

Then T_0 is passed through 16 iterations of function f.

Finally, it is transposed under the inverse permutation IP^{-1} to give the final result.
DES (cont.)

- Let T_i denote the result of the ith iteration, and let L_i and R_i denote the left and right halves of T_i. Then

 \[L_i = R_{i-1} \]
 \[R_i = L_{i-1} \oplus f(R_{i-1}, K_i) \]

 where \oplus is the exclusive-or operation and K is a 48-bit key.

- After the last iteration, the left and right halves are not changed, but instead passed to IP^{-1}.
Calculate the function $F(R_{i-1}, K_i)$:

1. Using bit-selection Table E to expand 32-bit R_{i-1} to a 48-bit block $E(R_{i-1})$. (Similar to permutation)
2. Calculate the exclusive-or of $E(R_{i-1})$ and K_i. Then break the result into 8 6-bit blocks B_1, \ldots, B_8.
3. Use each 6-bit $B_j b_1b_2b_3b_4b_5b_6$ as input to a selection (substitution) and return a 4-bit block $S_j(B_j)$.

\[
\begin{align*}
 b_1b_6 & \rightarrow \text{row} \\
 b_2b_3b_4b_5 & \rightarrow \text{column}
\end{align*}
\]
Key calculation

- Each iteration \(i \) uses a different 48-bit key \(K_i \) derived from the initial key \(K \), which is input as a 64-bit block with 8 parity bits in positions 8, 16, ..., 64.
- PC-1 discards the parity bits and transposes the remaining 56-bit bits to obtain PC-1(\(K \)).
- PC-1(\(K \)) is then split to \(C \) and \(D \) of 28-bits each, and circular shifted by LS.
- \(C_i = LS_i(C_{i-1}) \), \(D_i = LS_i(D_{i-1}) \)
- \(K_i = PC-2(C_iD_i) \).
DES (cont.)

- Deciphering
 - The same algorithm is used, except that the order of key for each iteration is reversed. E.g. K_{16} is used in 1st iteration, K_{15} is used in 2nd iteration....
Disputes about DES

- 56-bit key length should be doubled?
 - A special purpose machine containing a million LSI chips could try 2^{56} keys in 1 day. The cost of this machine is about 20 million. Amortized over 5 years, the cost per day would be $10,000$.
 - The same level of security could be obtained using multiple encryption scheme.

- The S-box may have hidden trapdoors.
 - The analysis is still classified.
Stream Ciphers

- A random number generator (typically LFSR) may be used to generate a stream of key characters, each character of the key being added to a character of the input stream to produce an output character.
Cipher Based on Computationally Difficult Problems

- One-way function: $C = f(P)$

 f: computationally simple

 f^{-1}: computationally difficult except in special cases when supplementary information (keys) is available

 - exponentiation and logarithm
 - multiplication/factoring
 - review of number theory

- NP-complete problems

 - A systematic deterministic solution is likely to require exponential time in the number of inputs.
Diffie Hellman’s public-key cryptosystem

- Each user i in the system has a pair of keys X_i and Y_i, where
 $Y_i = \alpha^{X_i} \mod q$, $1 \leq X_i \leq q-1$, $1 \leq \alpha \leq q-1$, q: prime number
 X_i is kept secret, but Y_i is made public.

- Sender i generates the key
 $K_{ij} = Y_j^{X_i} \mod q = \alpha^{X_iX_j} \mod q$
 from receiver j’s public key Y_j and his own private key X_i.

- Receiver j obtains K_{ij} similarly from Y_i and X_j.
Security of Diffie Hellman’s System

- To generate the key K_{ij}, one of the private keys X_i or X_j must be known.

- To generate the K_{ij} from Y_i and Y_j, a form of logarithm below must be computed:

 $$K_{ij} = Y_i^{(log Y_j)} \mod q$$

 which is computationally difficult.
The RSA Algorithm

- Each user selects two large prime numbers P and Q at random, and multiplies them to obtain \(N = P \times Q \).
 - \(N \) should be about 200 digits long and can be made public.
 - \(P \) and \(Q \) are kept secret.
Using P and Q, the user computes the Euler totient function $\Phi(N)$, representing the number of positive integers relatively prime to N.

\[\Phi(N) = \Phi(P) \Phi(Q) = (P-1)(Q-1) \]

The user then chooses a quantity E less than N and relatively prime to $\Phi(N)$. The quantity E is made public.
The RSA Algorithm (cont.)

- Given a message M to be enciphered, M is broken down into a sequence of quantities M_1, M_2, \ldots, M_p, where each component M_i is represented by an integer between 0 and $N-1$. The enciphering is now done separately on each block M_i using the public information E and N to generate a cryptogram C_i as
 - $C_i = M_i^E \mod N$
 - at most $2 \cdot \log_2(N)$ multiplications are required
Using the secret information $\Phi(N)$, the user can easily compute a quantity D such that $E \cdot D = 1 \mod \Phi(N)$ (deciphering key). I

- $E \cdot D = 1 \mod \Phi(N) = K \Phi(N) + 1$
- $D = K \Phi(N) + 1/E$.
The RSA Algorithm (cont.)

- By Fermat’s theorem: \(M^{\Phi(N)} \mod N = 1 \mod N \), or \(M^{K\Phi(N)+1} \mod N = M \mod N \).

- Deciphering procedure:
 \[
 C_i^D \mod N \\
 = M_i^{ED} \mod N \\
 = M_i^{K\Phi(N)+1} \mod N \\
 = M_i \mod N \\
 = M_i
 \]
Using RSA

- Suppose user A want to send a message m to user B. User A creates the ciphertext c by $c = m^E \mod N$, where E and N are user B’s public key.
- User A sends c to user B.
- User B decrypts c by calculate $m = c^D \mod N$. The relation between D and E ensures that B correctly recovers m.
- Since only B knows D, only B can decrypt the message.
Attacks against RSA

- Attacks to recover all messages for a given key
 - Factor the public modulus N to P and Q. With P, Q, and E, the attacker can easily compute D.

- Attacks to recover a message
 - Guessed-plaintext attacks.
 - This attacks can be defeated by appending random bits.
Security of RSA

- The size of a key in the RSA algorithm typically refers to the size of the modulus N. The two primes P and Q should be roughly equal length.
- The longer the key size, the greater the security, but also the slower the RSA algorithm.
- The 512-bit RSA-155 was factored in seven month during 1999.
- The RSA lab currently recommends key sizes of 1024 bits for corporate use.