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Figure 1: Comparisons between greedy error minimization (GEM) [Rousselle et al. 2011] and our SURE-based filtering. With SURE, we
are able to use kernels (cross bilateral filters in this case) that are more effective than GEM’s isotropic Gassians. Thus, our approach better
adapts to anisotropic features (such as the motion blur pattern due to the motion of the airplane) and preserves scene details (such as the
textures on the floor and curtains). The kernels of both methods are visualized for comparison.

Abstract

We apply Stein’s Unbiased Risk Estimator (SURE) to adaptive sam-
pling and reconstruction to reduce noise in Monte Carlo render-
ing. SURE is a general unbiased estimator for mean squared error
(MSE) in statistics. With SURE, we are able to estimate error for
an arbitrary reconstruction kernel, enabling us to use more effective
kernels rather than being restricted to the symmetric ones used in
previous work. It also allows us to allocate more samples to areas
with higher estimated MSE. Adaptive sampling and reconstruction
can therefore be processed within an optimization framework. We
also propose an efficient and memory-friendly approach to reduce
the impact of noisy geometry features where there is depth of field
or motion blur. Experiments show that our method produces images
with less noise and crisper details than previous methods.
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1 Introduction

Monte Carlo (MC) integration is a common technique for render-
ing images with distributed effects such as antialiasing, depth of
field, motion blur, and global illumination. It simulates a variety
of sophisticated light transport paths in a unified manner; it esti-
mates pixel values by using stochastic point samples in the integral
domain. Despite its generality and simplicity, however, the MC
approach converges slowly. A complex scene with multiple dis-
tributed effects usually requires several thousand expensive samples
per pixel to produce a noise-free image.

Adaptive sampling and reconstruction (or filtering, used inter-
changeably in the paper) are two effective techniques for reducing
noise. Given a fixed budget of samples, adaptive sampling deter-
mines the optimal sample distribution by concentrating more sam-
ples on difficult regions. To decide which pixels are worth more
effort, we require a robust criterion for measuring errors. Accurate
estimation of errors is challenging in our application because the
ground truth is not available. Reconstruction algorithms, in con-
trast, properly construct smooth results from the discrete samples
at hand. One key issue that reconstruction must resolve is how to
select the filters for each pixel, as the optimal reconstruction kernels
are usually spatially-varying and anisotropic. Recently, approaches
have been developed to address the challenge of spatially-varying
filters [Chen et al. 2011; Rousselle et al. 2011], producing better
results than those that use a single filter across the whole image.
However, these methods are limited to symmetric filters and do
not work well for scenes with anisotropic features such as high-
frequency textures on the floor and curtains in Figure 1.

We here propose an adaptive sampling and reconstruction algorithm
to improve the efficiency of Monte Carlo ray tracing. The core
idea is to adopt Stein’s Unbiased Risk Estimator (SURE) [Stein
1981], a general unbiased estimator for mean squared error (MSE)
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in statistics, to determine the optimal sample density and per-pixel
reconstruction kernels. The advantages of using SURE are twofold.
For one, it provides a means by which to measure the quality
of arbitrary reconstruction kernels – not just those that are sym-
metric (e.g. isotropic Gaussians used in greedy error minimization
(GEM) [Rousselle et al. 2011]). As such, it allows for the use of
more effective filters such as cross bilateral filters and cross non-
local means filters. Another advantage is that the per-pixel errors
estimated by SURE can be used to guide further sample distribu-
tion. Thus more samples can be allocated to difficult regions. In
addition to applying SURE, we propose an efficient and memory-
friendly approach to maintain the quality of cross bilateral filtering
in the presence of noisy geometric features when rendering depth-
of-field or motion blur effects. We propose a normalized distance to
alleviate the impact of noisy features, making the proposed method
more robust to all types of distributed effects. Experiments show
the proposed method provides significant improvements over pre-
vious techniques for adaptive sampling and reconstruction.

2 Related work

Adaptive sampling and reconstruction. The seminal work of
Mitchell [1987; 1991] over twenty years ago laid the foundation
for methods for adaptive sampling and reconstruction. We cate-
gorize these techniques as image space methods, multidimensional
methods, and adaptive filtering.

Image space methods estimate per-pixel errors with various cri-
teria and allocate additional samples to difficult regions. These
approaches usually are more general and can be used for vari-
ous types of effects. Bala et al. [2003] combine edge informa-
tion and sparse point samples to perform edge-aware interpolation.
The quality of their results is highly dependent on the accuracy of
edge detection. Overbeck et al. [2009] proposed adaptive wavelet
rendering (AWR), a general wavelet-based adaptive sampling and
reconstruction framework. They distinguish the sources of vari-
ances as the coarse level for distributed effects and the fine level
for edges. These two types of noise are addressed separately by
sampling the hierarchical wavelet coefficients adaptively; smooth
images are reconstructed by thresholding wavelet coefficients. Re-
cently, several approaches [Chen et al. 2011; Rousselle et al. 2011]
have been proposed to smooth out noise using multi-scale filters.
Chen et al. [2011] focus on depth of field and describe a criterion to
select spatially-varying Gaussian filters from a predefined filterbank
based on the depth map. Rousselle et al. [2011] also use Gaussian
filters to form a filterbank. Although their method uses an error
minimization framework for adaptive sampling and reconstruction,
and is more general, the framework can be used only for symmetric
filters. We apply SURE to estimate MSE for more general filters
and allow the use of more effective filters, which yield significant
improvements.

Other approaches perform adaptive sampling and reconstruction in
a multidimensional space. Hachisuka et al. [2008] distribute more
samples to discontinuities in the high-dimensional space and recon-
struct them anisotropically using structure tensors. Their approach
achieves good quality but becomes less efficient as the number of
dimensions increases. Approaches have also been developed that
are based on transform domain analysis, focusing on specific dis-
tributed effects such as depth of field [Soler et al. 2009], motion
blur [Egan et al. 2009], and soft shadows [Egan et al. 2011]. Re-
cently Lehitinen et al. proposed a novel method for reconstructing
temporal light-field samples [2011], and later extended it to handle
the indirect light field for global illumination [2012]. By reproject-
ing samples along the sample trajectory in the multidimensional
space, expensive samples can be reused. In general, to avoid the
curse of dimensionality, multidimensional approaches usually fo-

cus on only one or two specific effects. These methods are able
to generate better results for the effects they focus on because the
anisotropy of the integrand is taken into account. Our method, how-
ever, is more general, efficient, and memory-friendly.

Some methods focus on reconstruction only. Xu et al. [2005]
proposed smoothing out Monte Carlo noise with a modified bi-
lateral filter with smoothed range values. Segovia et al. [2006],
Dammertz et al. [2010], and Bauszat et al. [2011] focus on interac-
tive global illumination. They exploit geometric properties such as
depths and surface normals to identify edges. Shirley et al. [2011]
use the depth buffer to help filtering, but target defocus and motion
blur. Sen and Darabi [2012] proposed a general adaptive filtering
approach based on information theory. By identifying the depen-
dencies between random parameters on sample colors and scene
features, they reduce the importance of sample values influenced
by MC noise.

Denoising using SURE. Stein [1981] proposed an MSE estimator
called Stein’s Unbiased Risk Estimator (SURE) for estimators on
samples with normal distributions. Donoho and Johnstone [1995]
incorporate the estimator into a Wavelet shrinkage algorithm to
reconstruct functions from noisy inputs. Recently, SURE has re-
ceived much acclaim from the image denoising community and has
been widely used to optimize denoising parameters [Blu and Luisier
2007; Van De Ville and Kocher 2009].

3 Stein’s Unbiased Risk Estimator (SURE)

Monte Carlo ray tracing estimates true pixel colors by randomly
sampling the integral domain and reconstructing from samples. The
unbiased Monte Carlo rendering techniques have a stochastic error
bound which can be estimated using the variance of the estimator.
According to the central limit theorem, if Y is the pixel color esti-
mated by an unbiased Monte Carlo renderer and x is the true color,
as the number of samples n approaches infinity, Y ’s distribution ap-
proximates a normal distribution with mean x and variance σ2/n:

Y
d→ N

(
x,
σ2

n

)
, (1)

where σ2 is the variance of the Monte Carlo samples. Previous in-
vestigations have demonstrated that, for a finite number of samples,
this relationship is still a good approximation [Tamstorf and Jensen
1997; Fiorio 2004; Hachisuka et al. 2010].

Since a Monte Carlo renderer is an estimator, it is often necessary
to estimate its accuracy for applications such as adaptive sampling.
Stein’s Unbiased Risk Estimator (SURE) offers a means for es-
timating the accuracy of a given estimator [Stein 1981; Blu and
Luisier 2007]. SURE states that, if y is a measurement on x with
a normal distribution N(x, σ2

y), and F is a weakly differentiable
function, then the following estimation of error1,

SURE(F (y)) = ‖F (y)− y‖2 + 2σ2
y
dF (y)

dy
− σ2

y, (2)

is an unbiased estimator of the mean square error (MSE) of F(y),
that is,

E[SURE(F (y))] = ‖F (y)− x‖2. (3)

1We followed Blu and Luisier’s SURE formulation [2007], which was
derived from the original SURE [Stein 1981]; their equivalence has been
shown. Since we apply SURE to estimate MSE errors for each color channel
independently, the filter kernel F is a scalar function. Thus, the dimension is
1 and the divergence in the original SURE formulation becomes a derivative.



Equations 2 and 3 indicate that if we can compute σy and
dF (y)/dy, we can estimate the error of an estimator F without
knowing the true underlying value x.

Our goal is to use the above formula to estimate the reconstruction
error of an arbitrary kernel F . As mentioned above, rendering sam-
ples y follow a normal distribution. Thus, SURE can be used as the
estimator for MSE of any filter F if we can compute dF (y)/dy for
the reconstruction kernel (σy can be directly estimated from Monte
Carlo samples). Section 4 describes details of the algorithm, in-
cluding the definition of F , the derivation of dF (y)/dy, and how
to use SURE for optimal filter selection and adaptive sampling.

It is worth noting that Rousselle et al. [2011] attempted to estimate
MSE for the same application. They decomposed the error into
variance and bias and exploited the relation between the biases of
the two filters to estimate the error. However, they used a quadratic
approximation which is valid only for symmetric filter kernels, thus
limiting the effectiveness of their approach. In contrast, our SURE-
based estimation works for arbitrary reconstruction kernels and pro-
vides more flexibility to the choice of kernels.

4 Method

Figure 2 demonstrates the flowchart of the proposed method. Our
method starts by rendering a small number of initial samples for
each pixel and then iterates between filter selection and adaptive
sampling stages until reaching the sample budget. After each sam-
pling phase, we reconstruct a set of images using a filterbank. Each
pixel is filtered multiple times with all candidate filters in the fil-
terbank and the error of each filtered pixel color is estimated by
computing SURE. For each pixel, the filtered color with the least
SURE error is chosen and filled into the reconstructed image. If
more sample budget is available, the adaptive sampling stage is in-
voked and a batch of new samples is distributed to pixels with larger
SURE errors. Details are in the following subsections.

4.1 Initial samples

At the beginning, a small number of initial samples (usually 8 or
16 samples per pixel) are taken to explore the scene. The samples
are generated by low discrepancy sequences and distributed evenly
to each pixel. After rendering with these samples, our method per-
forms the first reconstruction phase with the gathered information.

4.2 Filter selection using SURE

The main advantage of our method over greedy error minimiza-
tion [Rousselle et al. 2011] is its ability to use arbitrary filters.
We have experimented with three different filters: isotropic Gaus-
sian, cross bilateral, and a modified non-local means filter [Buades
et al. 2005] with additional scene feature information (we call this
a “cross non-local means filter”; see Section 5.4). Here, we use the
cross bilateral filter as an example since it offers the best compro-
mise between performance and quality amongst these filters. Algo-
rithms for different filters are the same except that different filters
are used for constructing the filterbank; the derivatives in SURE are
different also.

Cross bilateral filters. Cross bilateral filters have been shown ef-
fective for removing Monte Carlo noise [Dammertz et al. 2010; Sen
and Darabi 2012]. Similar to previous work, auxiliary data includ-
ing surface normals, depths, and texture colors are collected by
caching information after tracing rays. We compute the per-pixel
mean and variance of each feature and store them as feature vec-
tors for cross bilateral filters. For the cross bilateral filter, the filter

Figure 2: An overview of our algorithm, which alternates be-
tween sampling and reconstruction until reaching the sample bud-
get. During sampling, a set of samples collects colors, normals,
textures and depths over the image plane. They are used as the side
information for filters in the reconstruction stage, during which, for
each pixel, a set of filters are performed and the filtered value with
the minimal SURE value is filled into the reconstructed image. In
addition, the minimal SURE value of each pixel is recorded to guide
adaptive sampling. If there are sample budgets left, more samples
are shot for pixels with larger SURE errors.

weight wij between a pixel i and its neighbor j is defined as

exp(−‖pi − pj‖
2

2σs2
) exp(−‖ci − cj‖

2

2σr2
)

m∏
k=1

exp(−D(f̄ik, f̄jk)2

2σfk
2 ),

(4)
where f̄ik is the sample mean of the k-th feature for the pixel i;
σs, σr , and σfk are the standard deviation parameters of the spa-
tial, range (sample color), and feature terms respectively. D is a
distance function used to address noisy scene features for depth of
field and motion blur. It will be discussed later in this section. The
filtered pixel color ĉi of the pixel i is computed as the weighted
combination of the colors cj of all neighboring pixels j:

ĉi =

∑n
j=1 wijcj∑n
j=1 wij

. (5)

Note that the cross bilateral kernels are spatially-varying due to the
range and feature terms. Figure 1 shows examples.

In our current implementation, the filterbank is composed of cross
bilateral filters with different σs, corresponding to different spatial
scales. Other parameters σr and σfk are fixed and their values are
discussed in Section 5.



(a) SIBENIK (b) Depth (c) Depth variance

(d) L2 distance (e) Normalized distance (f) Reference

Figure 3: Comparisons of filtering the SIBENIK scene with depth-
of-field effects using L2 distance and our normalized distance. The
area with strong depth of field has noisy geometry information, pre-
venting us from filtering when using L2 distance between sample
means. By incorporating sample variances, normalized distance
allows us to filter these areas even given noisy geometry informa-
tion. Note that the large depth variances in (c) allow us to filter
areas around the pillars, removing the artifacts exhibited in the re-
sult with L2 distance (d).

Depth of field and motion blur. Sen and Darabi [2012] point out
that when rendering depth of field and motion blur effects, the geo-
metric features (surface normal and depth) can be noisy due to MC
noise. In these situations, as the weighting function is not accurate,
using the features dogmatically for filtering can fail to remove the
noise. They resolve this problem by computing the functional de-
pendency of the MC random parameters and the scene features and
using it to reduce the weight of samples if their features are highly
dependent on the random parameters. Although their method suc-
cessfully handles depth of field and motion blur, it operates at the
sample level. Thus, performance and memory consumption be-
come issues since computing pairwise mutual information between
samples and parameters is not only time-consuming but also re-
quires considerable memory for storing samples.

We propose a more efficient and memory-friendly approach to pre-
vent cross bilateral filters from being affected by noisy scene fea-
tures. Each pixel has a set of samples for feature k. Given two
pixels i and j, to measure their distance with regard to the feature,
the naive metric would be the distance between the sample means,
f̄ik and f̄jk. This, however, completely ignores sample variances.
If we model samples as Gaussians, the distance between two sam-
ple sets should be normalized by their variances. Thus we define
the normalized distance as

D(f̄ik, f̄jk) =

√
‖f̄ik − f̄jk‖2

σ2
ik + σ2

jk

, (6)

where σ2
ik and σ2

jk are sample variances of the k-th feature of pix-
els i and j respectively. Intuitively, for a pixel with strong depth
of field and motion blur, its samples tends to have a large variance
since these samples usually span over a large region in the spatial-
temporal domain. Thus, it tends to have smaller distances and larger
weights even when the geometric features are far apart. In the ex-
treme case that two feature sets are inseparable due to strong depth
of field or fast motion, the cross bilateral filter reduces to a Gaus-
sian filter and does not use the unreliable geometric features. This

(a) sibenik gargoyle (b) Scale selection map

(c) Global bilateral (d) Our (e) Reference
MSE: 0.011718 MSE: 0.002148

Figure 4: Visualization of the scale selection map for σs of our
method. We have also compared our approach to a global cross bi-
lateral filter (which uses the same scale parameter, the largest σs in
the filterbank, for all pixels). It is clear that the global cross bilat-
eral filter produces large bias in the shadow areas. Our approach
adapts better and uses fewer samples in these areas, thus leading to
a smaller error. The sampling rate of the noisy input image is about
32 samples per pixel.

approach allows us to evaluate feature importance at the pixel level
and store only the sample mean and variance of features per pixel.
Figure 3 shows the effect of the proposed distance metric.

Computing SURE and selecting the per-pixel optimal filter. For
each pixel, we need to use the minimal SURE error to determine
the optimal scale for the cross bilateral filters in the filterbank. As
mentioned in Section 3, in calculating SURE, we need to compute
dF (ci)/dci for the cross bilateral filter F defined in Equation 5.
We have obtained its analytic form as

dF (ci)

dci
=

1∑n
j=1 wij

+
1

σ2
r

(F 2(ci)− F (ci)
2), (7)

where

F 2(ci) =

∑n
j=1 wijcj

2∑n
j=1 wij

. (8)

The derivation is in Appendix A. We then compute SURE to esti-
mate the MSE for each filter in the filterbank using Equation 2. For
each pixel, the filter with the least SURE error is selected and its
filtered color is used to update the pixel.

We have observed that computing SURE using MC samples usu-
ally leads to noisy filter selection and thus yields noisy results. This
is because SURE is an unbiased estimator of MSE and has its own
variances. To reduce variances, one can either add more samples or
perform filtering. For the sake of efficiency, we opted to perform
filtering to reduce the variances of SURE. To be more concrete,
we prefilter the estimated MSE image using a cross bilateral fil-
ter with a fixed parameter before SURE optimization. A similar
problem was encountered in the previous method [Rousselle et al.
2011]; they smoothed out the selected scales of filters to deal with
the variance of their estimator.



Sampling density Reconstructed image

Figure 5: Visualizations for the sampling density of our approach.

Figure 4 shows the scale selection map and compares our SURE-
based filtering with a global cross bilateral filter (with the same
scale for each pixel). It is obvious that spatially-varying scale se-
lection yields better results both visually and quantitatively.

4.3 Adaptive sampling

The MSE estimated using SURE can be taken as feedback to the
renderer; the sampling density should be proportional to the es-
timated MSE. However, since our MSE estimation is not perfect
(note that Equation 2 can be negative), a heuristic variance term
is included to ensure that regions with higher variances are allo-
cated more samples. In addition, to guide more samples to darker
areas, we scale our sampling function with the squared luminance
of the filtered color. This strategy was also adopted by a previous
approach [Overbeck et al. 2009] because human eyes are more sen-
sitive to error in dark regions. As a result, the sampling function for
a pixel i is determined by

S(i) =
SURE(F (ci)) + σ2

i

I(F (ci))2 + ε
, (9)

where σ2
i is the variance of samples within the pixel, I(F (ci))

2 is
the squared luminance of the filtered pixel color, and ε is a small
number used to prevent a null denominator (set to 0.001). If the
current sampling budget is m, pixel i receives dmS(i)/

∑
j S(j)e

samples. Figure 5 visualizes the sampling density for two exam-
ples. It is clear that samples concentrate on areas with geometry or
texture details, discontinuities, or more noise.

5 Results and discussions

We implemented the algorithm on top of the PBRT2 system [Pharr
and Humphreys 2010]. All results were generated on a machine
with an Intel dual quad-core Xeon E5420 CPU at 2.5GHz, 32GB
of RAM, and using 8 threads. As mentioned, we mainly used cross
bilateral filters in the proposed SURE-based framework. In Sec-
tion 5.4 we discuss results with other filters.

5.1 Parameter setting

There are a number of parameters for the features in Equation 4.
They were set as σfk = 0.4 for normal, σfk = 0.125 for tex-

ture color, and σfk = 0.3 for depth throughout all experiments.
We did not use σr in our current implementation since in practice
we found the color term in the cross bilateral filter does not help
much. We varied the spatial scale parameter σs to form the filter-
bank. We used σs = 1, 2, 4 to construct the filterbank in inter-
mediate iterations and σs = 1,

√
2, 2, 2

√
2, 4, 4

√
2, 8 for the final

reconstruction. We used fewer filters for intermediate phases as we
found it sufficient and more efficient. Experiments show this set-
ting strikes a good compromise between performance and quality.
For the parameters used in prefiltering before SURE computation,
we set σs = 8, and the same σfk as mentioned above. In practice,
results are not very sensitive to these parameters and a wide range
of parameters work equally well. Although parameters can be fine-
tuned for each scene, this yields only marginal improvements.

5.2 Comparisons

We applied our algorithm on rendering four scenes – SIBENIK
(1024x1024), TEAPOT (800x800), SPONZA (1600x1200) and
TOWN (800x600) – with a variety of effects, including global il-
lumination, motion blur, depth of field, area lighting, and glossy
reflection (Figures 6 to 9). We have also compared our method on
these scenes with the following methods:

• MC: Uniform sample distribution and per-pixel box filter.
This approach is used as the baseline without adaptive sam-
pling and reconstruction.

• GEM: Adaptive sampling and reconstruction using greedy er-
ror minimization [Rousselle et al. 2011]. The results were
produced by the authors’ implementation on the PBRT2 sys-
tem. For all scenes, we set the γ parameter in their algorithm
to 0.2 as the paper suggested.

• RPF: Adaptive filtering using random parameter filtering [Sen
and Darabi 2012]. We implemented their approach on the
PBRT2 system. The σ2 in their algorithm is set to 0.002 ac-
cording to the authors’ suggestion.

The number of samples for each method was carefully adjusted to
make equal-time comparisons. However, since RPF consumes con-
siderable memory and time compared to other methods, its num-
ber of samples was limited to 8 or 16. For very complex scenes,
the time for reconstruction could be negligible if taking samples is
very expensive. To make fair comparisons under such situations,
we also include equal-sample comparisons between RPF and our
method. Finally, we also compared all methods quantitatively with
the relative MSE proposed by Rousselle et al. [2011]. It is defined
as the average of (y− x)2/(x2 + ε), where y is the estimated pixel
color, x is the pixel color in the reference image, and ε is set to 0.01
to prevent division by zero.

Figure 6 compares these algorithms on SIBENIK, a scene with
global illumination and depth of field. The image produced by MC
retains considerable high-frequency noise even in simple areas such
as the floor. GEM eliminates floor noise, while at the same time
oversmoothing the area with textures due to its use of isotropic fil-
ters. Note that, although its relative MSE seems good, GEM tends
to yield oversmoothed images. RPF produces a slightly sharper im-
age than GEM but it is still oversmoothed, especially where there
are depth-of-field effects. Our approach produces an image with
much less noise while faithfully preserving textures.

The TEAPOT scene (Figure 7) demonstrates a challenging case
with very high-frequency bump mapping and glossy reflections.
None of the four methods preserve the bump map on the floor well.
Again, MC produces a very noisy image. It is also worth noting that
RPF fails to reproduce the self-reflection on the teapot. Overall, our
approach still produces an image that is visually more pleasing and
quantitatively more accurate than other methods.



Our MC GEM RPF Our(8spp) Our Reference

SIBENIK 44 spp (140s) 39.86 spp (135s) 8 spp (363s) 8 spp (64.2s) 26.69 spp (140s) 4096spp
relative MSE 0.029946 0.002070 0.006103 0.003100 0.001489

Figure 6: A comparison on the SIBENIK scene with global illumination and depth of field. GEM adapts poorly to the texture on floor and
produces oversmoothed results. RPF detects high dependency between u-v parameters and the color, thus filtering the area heavily and also
producing oversmoothed results. The RPF image noise is from the sampling approximation of the bilateral filter.

Our MC GEM RPF Our Reference

TEAPOT 35 spp (42s) 23.96 spp (44.3s) 8 spp (374.4s) 8 spp (40.4s) 4096spp
relative MSE 0.199485 0.171002 0.233701 0.143123

Figure 7: A scene with a glossy teapot. The floor contains complex texture and bump maps. All methods oversmooth the floor. RPF also
oversmooths the glossy self-reflection of the teapot indicated by the arrow.

The SPONZA scene in Figure 8 contains motion blur effects. As
shown in the first row of insets, the anisotropic pattern produced by
motion of the wing is more vivid in our result than in the others. In
addition, our approach more faithfully preserves the textures on the
floor and the curtains.

Finally the TOWN scene shown in Figure 9 was designed to test
environment lighting, area lights, and motion blur. The scene is
challenging also due to the heavy occlusion between the buildings
and skyscrapers. Despite its strong MSE, GEM fails to reconstruct
all the textures in the scene, which are preserved well in our results.
RPF, on the other hand, produces a very noisy image. This could
be related to the sampling procedure in their bilateral filtering com-
putation. Our approach outperforms the others by producing less
noise and crisper details.

5.3 Discussions

GEM performs adaptive sampling and selects per-pixel filters in an
attempt to minimize MSE. From the results, it does achieve lower
relative errors compared to MC and RPF (and comparable to our
approach). However, as mentioned, GEM is limited to symmetric
filters and does not adapt well to high-frequency textures and de-

tailed scene features. In all our test scenes, the results produced
by GEM exhibit obviously oversmoothed artifacts. In addition, the
GEM adaptive sampling criterion tends to send very few rays to the
regions where most of the samples carry null radiance (for exam-
ple, the right pillar of SPONZA in Figure 8). Our approach signif-
icantly alleviates these problems by using cross-bilateral filters and
prefiltering MSE before SURE optimization.

RPF adjusts the weights of cross-bilateral filters by using mutual
information and adapts well to scene features in most cases. It also
removes the noise produced by few samples when rendering depth-
of-field or motion blur effects. However, its multi-pass reconstruc-
tion algorithm can produce slightly oversmoothed results, such as
the texture on the floor in SIBENIK (Figure 6), the disappeared
shadows in SPONZA (Figure 8), and the glossy reflection on the
teapot in TEAPOT (Figure 7). Another severe limitation of this ap-
proach is that the mutual information must be computed at the sam-
ple level, making the computation inefficient in both performance
and memory consumption. To render one high-quality image at the
1920x1080 full HD resolution with 64 samples per pixel, it takes up
to 13 GB to store the samples (108 bytes per sample as described in
the paper). Finally, RPF is designed for reconstruction and does not
have a feedback mechanism to the renderer for adaptive sampling.



MC GEM RPF Our(16spp) Our Reference
68spp 63.84spp 16spp 16spp 63.24spp 8192spp
890.5s 906.2s 1676.1s 273.3s 896s

0.133096 0.017605 0.031972 0.020549 0.012097

Figure 8: Comparisons on a complex scene SPONZA with global
illumination and motion blur. The image on the top is our result.
Insets show that GEM does not preserve details with symmetric fil-
ters, while RPF tends to oversmooth the shadows.

Our method does away with the limitations of both GEM and RPF.
At one end, we adopt SURE to estimate the error of an arbitrary
reconstruction kernel. This allows us to optimize over a discrete
set of cross bilateral filters for each pixel and determine the optimal
sample distribution. Also, we propose a memory-friendly method
to detect noisy geometric features when rendering depth of field and
motion blur. As a result, our method successfully eliminates MC
noise for a wide range of effects while preserving high-frequency
textures and fine geometry details.

5.4 Other filters

To demonstrate the flexibility of the proposed framework with re-
spect to different filters, in addition to cross bilateral filters, we
have also experimented with isotropic Gaussian filters and cross
non-local means filters. For isotropic Gaussians, we compare the
results with GEM [2011] which is specifically designed for opti-
mizing over an isotropic Gaussian filterbank. To be fair, we filter
the SURE-estimated MSE using an isotropic Gaussian filter with-
out using scene feature information. As shown in Figure 10, results
of both methods are comparable and the scale selection maps are
similar. This means that our SURE optimization is comparable to
the specifically-designed GEM for the isotropic case.

The non-local means filter [Buades et al. 2005] is a popular method
for image denoising. It assigns filter weights based on the similarity
between pixel neighborhoods. In the context of rendering, we can

MC GEM RPF Our(8spp) Our Reference
82 spp 51.82 spp 8 spp 8 spp 39.79 spp 4096 spp
59.9s 61.8s 272.4s 20s 60.9s

0.029797 0.018352 0.057937 0.034708 0.018023

Figure 9: Comparisons on the TOWN scene with an environment
light, an area light, and heavy occlusion. GEM fails to adapt to
textures, and RPF does not obtain enough samples to reconstruct
the scene within the given time. Also, RPF contains heavy noise due
to its sampling bilateral filtering approach. Our method adaptively
samples the dark noisy area and preserves details well.

further utilize scene features for better results. Thus, the cross non-
local mean filter assigns the weight wij between two pixels i and j
as

exp

(
−
∑
n∈N ‖ ci+n − cj+n ‖

2

2|N |σr2

)
m∏
k=1

exp

(
−D(f̄ik, f̄jk)2

2σfk
2

)
,

(10)
whereN is the neighbourhood (N = {(x, y)|−2 <= x, y <= 2}
in our implementation). Other symbols are the same as defined
in Section 4.2. Note that we use the patch-based distance only
for color information, since patch-based distance for scene features
tends to smooth out features. The filtered pixel color ĉi of pixel
i is computed as the weighted combination of the colors cj of all
neighboring pixels j within a 41× 41 neighborhood.

To demonstrate the utility of SURE-based filter selection, we ap-
plied cross non-local means filters in two settings. For the first set-
ting – the global cross non-local means filter – we used the same
range parameter σr across the whole image. For the second one
– the SURE cross non-local means filter – we constructed a cross
non-local means filterbank by varying σr and used SURE to se-
lect best filters and shot samples. Figure 11 shows the comparisons
between the two. It is clear that the SURE-based framework signif-
icantly alleviates the over-smoothness problem of the global filter,
especially in shadows and in the motion blur of the moving car.
From our experiments, filtering with cross non-local means filters



GEM (MSE: 0.000287) Our (MSE: 0.000356)

Figure 10: The proposed SURE-based framework incorpo-
rated with an isotropic Gaussian filterbank and compared with
GEM [Rousselle et al. 2011]. The results and scale selection maps
generated by both methods are similar.

sometimes generated slightly better results than cross bilateral fil-
ters. However, it is about 10 times slower than the cross bilateral
filter. As a compromise between quality and performance, we opted
to use cross bilateral filters for most results in the paper.

5.5 Limitations

The TEAPOT scene (Figure 7) reveals a limitation of our approach.
The bump mapped floor contains a large number of very high-
frequency textures. At the same time, it suffers from a large amount
of MC noise due to the environment lighting and glossy reflection.
With a low sample budget, our approach does not preserve all the
details well. In addition, as with most reconstruction approaches,
our method was susceptible to oversmoothing.

6 Conclusion and Future Work

We have presented an efficient adaptive sampling and reconstruc-
tion algorithm for reducing noise in Monte Carlo rendering by us-
ing Stein’s Unbiased Risk Estimator (SURE) in the error estimation
framework. For reconstruction, the use of SURE enables us to mea-
sure the reconstruction quality for arbitrary filter kernels. It does
away with the limitation of using only symmetric kernels imposed
by previous work. This freedom to use non-symmetric kernels sig-
nificantly improves the effectiveness of the framework. When per-
forming adaptive sampling, SURE can be used to determine the
sampling density. Another contribution of this paper is an efficient
and memory-friendly approach to detect noisy geometric features
when rendering depth of field and motion blur. As a result, the
proposed adaptive sampling and reconstruction method efficiently
eliminates MC noise while preserving the vivid details of a scene.
Experiments show the proposed method offers significant improve-
ment over state-of-the-art approaches.

Global cross non-local means SURE cross non-local means
MSE:0.085032 MSE:0.012010

Global SURE Reference Global SURE Reference

Figure 11: Comparison of cross non-local means filters without
and with SURE-based framework. Compared to the global cross
non-local means filter, our SURE-based optimization largely alle-
viates the oversmoothing problem. The sampling rate of the noisy
input image is about 41 samples per pixel.

One possible future direction is to implement the proposed algo-
rithms on GPUs for interactive applications. We also would like
to extend the SURE-based framework to animation rendering. In
the current algorithm, as there is no built-in mechanism specifically
designed for temporal data, temporal coherence cannot be guaran-
teed. In practice, we have experimented with a naive approach that
renders each frame independently. The results look good enough
with only very subtle temporal flicking. However, a better way to
handle animation would be to consider temporal samples and per-
form filtering in the spatial-temporal domain. Finally, it would also
be interesting to adapt SURE to other rendering applications that
require error estimation.

A Derivatives for filters

To compute SURE for reconstruction filters, we must calculate their
derivatives dF (ci)/dci and substitute into Equation 2. For the cross
bilateral filter, from Equation 5, we have (note that wii = 1 accord-
ing to the definition in Equation 4)

F (ci) =

∑n
j=1 wijcj∑n
j=1 wij

=

∑
j 6=i wijcj + ci∑n

j=1 wij
. (11)

Let Wi =
∑n
j=1 wij . After applying the quotient rule of deriva-

tives, we have

dF (ci)

dci
=

(
d(

∑
j 6=i wijcj+1)

dci
)− dWi

dci
F (ci)

Wi
. (12)

After substituting dwij

dci
=

(cj−ci)
σ2
r

wij into Equation 12, and after
some manipulations, we obtain

dF (ci)

dci
=

1

Wi
+

1

σ2
r

(F 2(ci)− F (ci)
2), (13)

where

F 2(ci) =

∑n
j=1 wijcj

2∑n
j=1 wij

.



For the cross non-local means filter, its dF (ci)/dci is

dF (ci)

dci
=

1

Wi
+

1

|N |σ2
r

(F 2(ci)− F (ci)
2)+

1

|N |σ2
rWi

∑
n∈N

wi,i−n(ci − ci+n)(F (ci)− ci−n),
(14)

where Wi and F 2(ci) are defined similarly as above. Similar
derivations can be found in Van De Ville and Kocher’s paper [2009].
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