
Computer
Networking: A Top
Down Approach

A note on the use of these Powerpoint slides:
We’re making these slides freely available to all (faculty, students, readers).

They’re in PowerPoint form so you see the animations; and can add, modify,

and delete slides (including this one) and slide content to suit your needs.

They obviously represent a lot of work on our part. In return for use, we only

ask the following:

▪ If you use these slides (e.g., in a class) that you mention their source

(after all, we’d like people to use our book!)

▪ If you post any slides on a www site, that you note that they are adapted

from (or perhaps identical to) our slides, and note our copyright of this

material.

Thanks and enjoy! JFK/KWR

All material copyright 1996-2016

J.F Kurose and K.W. Ross, All Rights Reserved

7th Edition, Global Edition
Jim Kurose, Keith Ross
Pearson
April 2016

Chapter 3
Transport Layer

Transport Layer 2-1

Transport Layer 3-2

Chapter 3: Transport Layer

our goals:
▪ understand principles

behind transport
layer services:

• multiplexing,
demultiplexing

• reliable data transfer

• flow control

• congestion control

▪ learn about Internet
transport layer protocols:

• UDP: connectionless
transport

• TCP: connection-oriented
reliable transport

• TCP congestion control

Transport Layer 3-3

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP
• segment structure

• reliable data transfer

• flow control

• connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-4

Transport services and protocols

▪ provide logical communication
between app processes
running on different hosts

▪ transport protocols run in
end systems

• send side: breaks app
messages into segments,
passes to network layer

• rcv side: reassembles
segments into messages,
passes to app layer

▪ more than one transport
protocol available to apps

• Internet: TCP and UDP

application
transport
network
data link
physical

application
transport
network
data link
physical

Transport Layer 3-5

Transport vs. network layer

▪ network layer: logical
communication
between hosts

▪ transport layer:
logical
communication
between processes
• relies on, enhances,

network layer
services

12 kids in Ann’s house sending
letters to 12 kids in Bill’s
house:

▪ hosts = houses
▪ processes = kids
▪ app messages = letters in

envelopes
▪ transport protocol = Ann

and Bill who demux to in-
house siblings

▪ network-layer protocol =
postal service

household analogy:

Transport Layer 3-6

Internet transport-layer protocols

▪ reliable, in-order
delivery (TCP)

• congestion control

• flow control

• connection setup

▪ unreliable, unordered
delivery: UDP

• no-frills extension of
“best-effort” IP

▪ services not available:
• delay guarantees

• bandwidth guarantees

application
transport
network
data link
physical

application
transport
network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

Transport Layer 3-7

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP
• segment structure

• reliable data transfer

• flow control

• connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-8

Multiplexing/demultiplexing

process

socket

use header info to deliver
received segments to correct
socket

demultiplexing at receiver:handle data from multiple
sockets, add transport header
(later used for demultiplexing)

multiplexing at sender:

transport

application

physical

link

network

P2P1

transport

application

physical

link

network

P4

transport

application

physical

link

network

P3

Transport Layer 3-9

How demultiplexing works

▪ host receives IP datagrams
• each datagram has source IP

address, destination IP
address

• each datagram carries one
transport-layer segment

• each segment has source,
destination port number

▪ host uses IP addresses &
port numbers to direct
segment to appropriate
socket

source port # dest port #

32 bits

application
data

(payload)

other header fields

TCP/UDP segment format

Transport Layer 3-10

Connectionless demultiplexing

▪ recall: created socket has
host-local port #:
DatagramSocket mySocket1
= new DatagramSocket(12534);

▪ when host receives UDP
segment:

• checks destination port #
in segment

• directs UDP segment to
socket with that port #

▪ recall: when creating
datagram to send into UDP
socket, must specify

• destination IP address

• destination port #

IP datagrams with same
dest. port #, but different
source IP addresses
and/or source port
numbers will be directed
to same socket at dest

Transport Layer 3-11

Connectionless demux: example

DatagramSocket
serverSocket = new
DatagramSocket

(6428);

transport

application

physical

link

network

P3
transport

application

physical

link

network

P1

transport

application

physical

link

network

P4

DatagramSocket
mySocket1 = new
DatagramSocket
(5775);

DatagramSocket
mySocket2 = new
DatagramSocket

(9157);

source port: 9157
dest port: 6428

source port: 6428
dest port: 9157

source port: ?
dest port: ?

source port: ?
dest port: ?

Transport Layer 3-12

Connection-oriented demux

▪ TCP socket identified
by 4-tuple:

• source IP address

• source port number

• dest IP address

• dest port number

▪ demux: receiver uses all
four values to direct
segment to appropriate
socket

▪ server host may support
many simultaneous TCP
sockets:

• each socket identified by
its own 4-tuple

▪ web servers have
different sockets for
each connecting client

• non-persistent HTTP will
have different socket for
each request

Transport Layer 3-13

Connection-oriented demux: example

transport

application

physical

link

network

P3
transport

application

physical

link

P4

transport

application

physical

link

network

P2

source IP,port: A,9157
dest IP, port: B,80

source IP,port: B,80
dest IP,port: A,9157

host: IP
address A

host: IP
address C

network

P6P5
P3

source IP,port: C,5775
dest IP,port: B,80

source IP,port: C,9157
dest IP,port: B,80

three segments, all destined to IP address: B,
dest port: 80 are demultiplexed to different sockets

server: IP
address B

Transport Layer 3-14

Connection-oriented demux: example

transport

application

physical

link

network

P3
transport

application

physical

link

transport

application

physical

link

network

P2

source IP,port: A,9157
dest IP, port: B,80

source IP,port: B,80
dest IP,port: A,9157

host: IP
address A

host: IP
address C

server: IP
address B

network

P3

source IP,port: C,5775
dest IP,port: B,80

source IP,port: C,9157
dest IP,port: B,80

P4

threaded server

Transport Layer 3-15

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP
• segment structure

• reliable data transfer

• flow control

• connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-16

UDP: User Datagram Protocol [RFC 768]

▪ “no frills,” “bare bones”
Internet transport
protocol

▪ “best effort” service, UDP
segments may be:

• lost

• delivered out-of-order
to app

▪ connectionless:

• no handshaking
between UDP sender,
receiver

• each UDP segment
handled independently
of others

▪ UDP use:
▪ streaming multimedia

apps (loss tolerant, rate
sensitive)

▪ DNS

▪ SNMP

▪ reliable transfer over
UDP:
▪ add reliability at

application layer

▪ application-specific error
recovery!

Transport Layer 3-17

UDP: segment header

source port # dest port #

32 bits

application
data

(payload)

UDP segment format

length checksum

length, in bytes of
UDP segment,

including header

▪ no connection
establishment (which can
add delay)

▪ simple: no connection
state at sender, receiver

▪ small header size

▪ no congestion control:
UDP can blast away as fast
as desired

why is there a UDP?

Transport Layer 3-18

UDP checksum

sender:
▪ treat segment contents,

including header fields,
as sequence of 16-bit
integers

▪ checksum: addition
(one’s complement sum)
of segment contents

▪ sender puts checksum
value into UDP checksum
field

receiver:
▪ compute checksum of

received segment

▪ check if computed checksum
equals checksum field value:

• NO - error detected

• YES - no error detected.
But maybe errors
nonetheless? More later
….

Goal: detect “errors” (e.g., flipped bits) in transmitted
segment

Transport Layer 3-19

Internet checksum: example

example: add two 16-bit integers

1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 0
1 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1

wraparound

sum

checksum

Note: when adding numbers, a carryout from the most
significant bit needs to be added to the result

* Check out the online interactive exercises for more

examples: http://gaia.cs.umass.edu/kurose_ross/interactive/

Transport Layer 3-20

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP
• segment structure

• reliable data transfer

• flow control

• connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-21

Principles of reliable data transfer
▪ important in application, transport, link layers

• top-10 list of important networking topics!

▪ characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

Transport Layer 3-22

▪ characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

Principles of reliable data transfer
▪ important in application, transport, link layers

• top-10 list of important networking topics!

Transport Layer 3-23

▪ characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

▪ important in application, transport, link layers
• top-10 list of important networking topics!

Principles of reliable data transfer

Transport Layer 3-24

Reliable data transfer: getting started

send

side
receive

side

rdt_send(): called from above,

(e.g., by app.). Passed data to
deliver to receiver upper layer

udt_send(): called by rdt,

to transfer packet over
unreliable channel to receiver

rdt_rcv(): called when packet

arrives on rcv-side of channel

deliver_data(): called by

rdt to deliver data to upper

Transport Layer 3-25

we’ll:

▪ incrementally develop sender, receiver sides of
reliable data transfer protocol (rdt)

▪ consider only unidirectional data transfer
• but control info will flow on both directions!

▪ use finite state machines (FSM) to specify sender,
receiver

state
1

state
2

event causing state transition

actions taken on state transition

state: when in this
“state” next state

uniquely determined
by next event

event

actions

Reliable data transfer: getting started

Transport Layer 3-26

rdt1.0: reliable transfer over a reliable channel

▪ underlying channel perfectly reliable
• no bit errors

• no loss of packets

▪ separate FSMs for sender, receiver:
• sender sends data into underlying channel

• receiver reads data from underlying channel

Wait for

call from

above packet = make_pkt(data)

udt_send(packet)

rdt_send(data)

extract (packet,data)

deliver_data(data)

Wait for

call from

below

rdt_rcv(packet)

sender receiver

Transport Layer 3-27

▪ underlying channel may flip bits in packet
• checksum to detect bit errors

▪ the question: how to recover from errors:
• acknowledgements (ACKs): receiver explicitly tells sender

that pkt received OK
• negative acknowledgements (NAKs): receiver explicitly tells

sender that pkt had errors
• sender retransmits pkt on receipt of NAK

▪ new mechanisms in rdt2.0 (beyond rdt1.0):
• error detection
• receiver feedback: control msgs (ACK,NAK) rcvr-

>sender

rdt2.0: channel with bit errors

How do humans recover from “errors”
during conversation?

Transport Layer 3-28

▪ underlying channel may flip bits in packet
• checksum to detect bit errors

▪ the question: how to recover from errors:

• acknowledgements (ACKs): receiver explicitly tells sender
that pkt received OK

• negative acknowledgements (NAKs): receiver explicitly tells
sender that pkt had errors

• sender retransmits pkt on receipt of NAK

▪ new mechanisms in rdt2.0 (beyond rdt1.0):
• error detection
• feedback: control msgs (ACK,NAK) from receiver to

sender

rdt2.0: channel with bit errors

Transport Layer 3-29

rdt2.0: FSM specification

Wait for

call from

above

sndpkt = make_pkt(data, checksum)

udt_send(sndpkt)

extract(rcvpkt,data)

deliver_data(data)

udt_send(ACK)

rdt_rcv(rcvpkt) &&

notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&

isNAK(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) &&

corrupt(rcvpkt)

Wait for

ACK or

NAK

Wait for

call from

belowsender

receiver
rdt_send(data)

L

Transport Layer 3-30

rdt2.0: operation with no errors

Wait for

call from

above

snkpkt = make_pkt(data, checksum)

udt_send(sndpkt)

extract(rcvpkt,data)

deliver_data(data)

udt_send(ACK)

rdt_rcv(rcvpkt) &&

notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&

isNAK(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) &&

corrupt(rcvpkt)

Wait for

ACK or

NAK

Wait for

call from

below

rdt_send(data)

L

Transport Layer 3-31

rdt2.0: error scenario

Wait for

call from

above

snkpkt = make_pkt(data, checksum)

udt_send(sndpkt)

extract(rcvpkt,data)

deliver_data(data)

udt_send(ACK)

rdt_rcv(rcvpkt) &&

notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&

isNAK(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) &&

corrupt(rcvpkt)

Wait for

ACK or

NAK

Wait for

call from

below

rdt_send(data)

L

Transport Layer 3-32

rdt2.0 has a fatal flaw!

what happens if
ACK/NAK corrupted?

▪ sender doesn’t know
what happened at
receiver!

▪ can’t just retransmit:
possible duplicate

handling duplicates:
▪ sender retransmits

current pkt if ACK/NAK
corrupted

▪ sender adds sequence
number to each pkt

▪ receiver discards (doesn’t
deliver up) duplicate pkt

stop and wait
sender sends one packet,
then waits for receiver
response

Transport Layer 3-33

rdt2.1: sender, handles garbled ACK/NAKs

Wait for

call 0 from

above

sndpkt = make_pkt(0, data, checksum)

udt_send(sndpkt)

rdt_send(data)

Wait for

ACK or

NAK 0 udt_send(sndpkt)

rdt_rcv(rcvpkt) &&

(corrupt(rcvpkt) ||

isNAK(rcvpkt))

sndpkt = make_pkt(1, data, checksum)

udt_send(sndpkt)

rdt_send(data)

rdt_rcv(rcvpkt)

&& notcorrupt(rcvpkt)

&& isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&

(corrupt(rcvpkt) ||

isNAK(rcvpkt))

rdt_rcv(rcvpkt)

&& notcorrupt(rcvpkt)

&& isACK(rcvpkt)

Wait for

call 1 from

above

Wait for

ACK or

NAK 1

L
L

Transport Layer 3-34

Wait for

0 from

below

sndpkt = make_pkt(NAK, chksum)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&

not corrupt(rcvpkt) &&

has_seq0(rcvpkt)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)

&& has_seq1(rcvpkt)

extract(rcvpkt,data)

deliver_data(data)

sndpkt = make_pkt(ACK, chksum)

udt_send(sndpkt)

Wait for

1 from

below

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)

&& has_seq0(rcvpkt)

extract(rcvpkt,data)

deliver_data(data)

sndpkt = make_pkt(ACK, chksum)

udt_send(sndpkt)

rdt_rcv(rcvpkt) && (corrupt(rcvpkt)

sndpkt = make_pkt(ACK, chksum)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&

not corrupt(rcvpkt) &&

has_seq1(rcvpkt)

rdt_rcv(rcvpkt) && (corrupt(rcvpkt)

sndpkt = make_pkt(ACK, chksum)

udt_send(sndpkt)

sndpkt = make_pkt(NAK, chksum)

udt_send(sndpkt)

rdt2.1: receiver, handles garbled ACK/NAKs

Transport Layer 3-35

rdt2.1: discussion

sender:

▪ seq # added to pkt

▪ two seq. #’s (0,1) will
suffice. Why?

▪ must check if received
ACK/NAK corrupted

▪ twice as many states
• state must
“remember” whether
“expected” pkt should
have seq # of 0 or 1

receiver:

▪ must check if received
packet is duplicate

• state indicates whether
0 or 1 is expected pkt
seq #

▪ note: receiver can not
know if its last
ACK/NAK received
OK at sender

Transport Layer 3-36

rdt2.2: a NAK-free protocol

▪ same functionality as rdt2.1, using ACKs only

▪ instead of NAK, receiver sends ACK for last pkt
received OK

• receiver must explicitly include seq # of pkt being ACKed

▪ duplicate ACK at sender results in same action as
NAK: retransmit current pkt

Transport Layer 3-37

rdt2.2: sender, receiver fragments

Wait for

call 0 from

above

sndpkt = make_pkt(0, data, checksum)

udt_send(sndpkt)

rdt_send(data)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&

(corrupt(rcvpkt) ||

isACK(rcvpkt,1))

rdt_rcv(rcvpkt)

&& notcorrupt(rcvpkt)

&& isACK(rcvpkt,0)

Wait for

ACK

0

sender FSM
fragment

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)

&& has_seq1(rcvpkt)

extract(rcvpkt,data)

deliver_data(data)

sndpkt = make_pkt(ACK1, chksum)

udt_send(sndpkt)

Wait for

0 from

below

rdt_rcv(rcvpkt) &&

(corrupt(rcvpkt) ||

has_seq1(rcvpkt))

udt_send(sndpkt)

receiver FSM
fragment

L

Transport Layer 3-38

rdt3.0: channels with errors and loss

new assumption:
underlying channel can
also lose packets (data,
ACKs)

• checksum, seq. #,
ACKs, retransmissions
will be of help … but
not enough

approach: sender waits
“reasonable” amount of
time for ACK

▪ retransmits if no ACK
received in this time

▪ if pkt (or ACK) just delayed
(not lost):

• retransmission will be
duplicate, but seq. #’s
already handles this

• receiver must specify seq
of pkt being ACKed

▪ requires countdown timer

Transport Layer 3-39

rdt3.0 sender

sndpkt = make_pkt(0, data, checksum)

udt_send(sndpkt)

start_timer

rdt_send(data)

Wait

for

ACK0

rdt_rcv(rcvpkt) &&

(corrupt(rcvpkt) ||

isACK(rcvpkt,1))

Wait for

call 1 from

above

sndpkt = make_pkt(1, data, checksum)

udt_send(sndpkt)

start_timer

rdt_send(data)

rdt_rcv(rcvpkt)

&& notcorrupt(rcvpkt)

&& isACK(rcvpkt,0)

rdt_rcv(rcvpkt) &&

(corrupt(rcvpkt) ||

isACK(rcvpkt,0))

rdt_rcv(rcvpkt)

&& notcorrupt(rcvpkt)

&& isACK(rcvpkt,1)

stop_timer

stop_timer

udt_send(sndpkt)

start_timer

timeout

udt_send(sndpkt)

start_timer

timeout

rdt_rcv(rcvpkt)

Wait for

call 0from

above

Wait

for

ACK1

L

rdt_rcv(rcvpkt)

L

L

L

Transport Layer 3-40

sender receiver

rcv pkt1

rcv pkt0

send ack0

send ack1

send ack0

rcv ack0

send pkt0

send pkt1

rcv ack1

send pkt0

rcv pkt0
pkt0

pkt0

pkt1

ack1

ack0

ack0

(a) no loss

sender receiver

rcv pkt1

rcv pkt0

send ack0

send ack1

send ack0

rcv ack0

send pkt0

send pkt1

rcv ack1

send pkt0

rcv pkt0
pkt0

pkt0

ack1

ack0

ack0

(b) packet loss

pkt1
X

loss

pkt1
timeout

resend pkt1

rdt3.0 in action

Transport Layer 3-41

rdt3.0 in action

rcv pkt1
send ack1

(detect duplicate)

pkt1

sender receiver

rcv pkt1

rcv pkt0

send ack0

send ack1

send ack0

rcv ack0

send pkt0

send pkt1

rcv ack1

send pkt0

rcv pkt0
pkt0

pkt0

ack1

ack0

ack0

(c) ACK loss

ack1
X

loss

pkt1
timeout

resend pkt1

rcv pkt1
send ack1

(detect duplicate)

pkt1

sender receiver

rcv pkt1

send ack0
rcv ack0

send pkt1

send pkt0

rcv pkt0
pkt0

ack0

(d) premature timeout/ delayed ACK

pkt1
timeout

resend pkt1

ack1

send ack1

send pkt0
rcv ack1

pkt0

ack1

ack0

send pkt0
rcv ack1 pkt0

rcv pkt0
send ack0ack0

rcv pkt0

send ack0
(detect duplicate)

Transport Layer 3-42

Performance of rdt3.0

▪ rdt3.0 is correct, but performance stinks

▪ e.g.: 1 Gbps link, 15 ms prop. delay, 8000 bit packet:

▪ U sender: utilization – fraction of time sender busy sending

U
sender =

.008

30.008
= 0.00027

L / R

RTT + L / R
=

▪ if RTT=30 msec, 1KB pkt every 30 msec: 33kB/sec thruput
over 1 Gbps link

▪ network protocol limits use of physical resources!

Dtrans =
L
R

8000 bits

109 bits/sec
= = 8 microsecs

Transport Layer 3-43

rdt3.0: stop-and-wait operation

first packet bit transmitted, t = 0

sender receiver

RTT

last packet bit transmitted, t = L / R

first packet bit arrives

last packet bit arrives, send ACK

ACK arrives, send next

packet, t = RTT + L / R

U
sender =

.008

30.008
= 0.00027

L / R

RTT + L / R
=

Transport Layer 3-44

Pipelined protocols

pipelining: sender allows multiple, “in-flight”, yet-
to-be-acknowledged pkts

• range of sequence numbers must be increased

• buffering at sender and/or receiver

▪ two generic forms of pipelined protocols: go-Back-N,
selective repeat

Transport Layer 3-45

Pipelining: increased utilization

first packet bit transmitted, t = 0

sender receiver

RTT

last bit transmitted, t = L / R

first packet bit arrives

last packet bit arrives, send ACK

ACK arrives, send next

packet, t = RTT + L / R

last bit of 2nd packet arrives, send ACK
last bit of 3rd packet arrives, send ACK

3-packet pipelining increases

utilization by a factor of 3!

U
sender =

.0024

30.008
= 0.00081

3L / R

RTT + L / R
=

Transport Layer 3-46

Pipelined protocols: overview

Go-back-N:
▪ sender can have up to

N unacked packets in
pipeline

▪ receiver only sends
cumulative ack

• doesn’t ack packet if
there’s a gap

▪ sender has timer for
oldest unacked packet

• when timer expires,
retransmit all unacked
packets

Selective Repeat:
▪ sender can have up to N

unack’ed packets in
pipeline

▪ rcvr sends individual ack
for each packet

▪ sender maintains timer
for each unacked packet

• when timer expires,
retransmit only that
unacked packet

Transport Layer 3-47

Go-Back-N: sender

▪ k-bit seq # in pkt header

▪ “window” of up to N, consecutive unack’ed pkts allowed

▪ ACK(n): ACKs all pkts up to, including seq # n - “cumulative
ACK”
• may receive duplicate ACKs (see receiver)

▪ timer for oldest in-flight pkt

▪ timeout(n): retransmit packet n and all higher seq # pkts in
window

Transport Layer 3-48

GBN: sender extended FSM

Wait
start_timer

udt_send(sndpkt[base])

udt_send(sndpkt[base+1])

…

udt_send(sndpkt[nextseqnum-1])

timeout

rdt_send(data)

if (nextseqnum < base+N) {

sndpkt[nextseqnum] = make_pkt(nextseqnum,data,chksum)

udt_send(sndpkt[nextseqnum])

if (base == nextseqnum)

start_timer

nextseqnum++

}

else

refuse_data(data)

base = getacknum(rcvpkt)+1

If (base == nextseqnum)

stop_timer

else

start_timer

rdt_rcv(rcvpkt) &&

notcorrupt(rcvpkt)

base=1

nextseqnum=1

rdt_rcv(rcvpkt)

&& corrupt(rcvpkt)

L

Transport Layer 3-49

ACK-only: always send ACK for correctly-received
pkt with highest in-order seq #

• may generate duplicate ACKs

• need only remember expectedseqnum

▪ out-of-order pkt:
• discard (don’t buffer): no receiver buffering!

• re-ACK pkt with highest in-order seq #

Wait

udt_send(sndpkt)

default

rdt_rcv(rcvpkt)

&& notcurrupt(rcvpkt)

&& hasseqnum(rcvpkt,expectedseqnum)

extract(rcvpkt,data)

deliver_data(data)

sndpkt = make_pkt(expectedseqnum,ACK,chksum)

udt_send(sndpkt)

expectedseqnum++

expectedseqnum=1

sndpkt =

make_pkt(expectedseqnum,ACK,chksum)

L

GBN: receiver extended FSM

Transport Layer 3-50

GBN in action

send pkt0
send pkt1
send pkt2
send pkt3

(wait)

sender receiver

receive pkt0, send ack0
receive pkt1, send ack1

receive pkt3, discard,
(re)send ack1rcv ack0, send pkt4

rcv ack1, send pkt5

pkt 2 timeout
send pkt2
send pkt3
send pkt4
send pkt5

Xloss

receive pkt4, discard,
(re)send ack1

receive pkt5, discard,
(re)send ack1

rcv pkt2, deliver, send ack2
rcv pkt3, deliver, send ack3
rcv pkt4, deliver, send ack4
rcv pkt5, deliver, send ack5

ignore duplicate ACK

0 1 2 3 4 5 6 7 8

sender window (N=4)

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

Transport Layer 3-51

Selective repeat

▪ receiver individually acknowledges all correctly
received pkts

• buffers pkts, as needed, for eventual in-order delivery
to upper layer

▪ sender only resends pkts for which ACK not
received

• sender timer for each unACKed pkt

▪ sender window
• N consecutive seq #’s

• limits seq #s of sent, unACKed pkts

Transport Layer 3-52

Selective repeat: sender, receiver windows

Transport Layer 3-53

Selective repeat

data from above:
▪ if next available seq # in

window, send pkt

timeout(n):
▪ resend pkt n, restart timer

ACK(n) in [sendbase,sendbase+N]:

▪ mark pkt n as received

▪ if n smallest unACKed pkt,
advance window base to
next unACKed seq #

sender
pkt n in [rcvbase, rcvbase+N-1]

▪ send ACK(n)

▪ out-of-order: buffer

▪ in-order: deliver (also
deliver buffered, in-order
pkts), advance window to
next not-yet-received pkt

pkt n in [rcvbase-N,rcvbase-1]

▪ ACK(n)

otherwise:
▪ ignore

receiver

Transport Layer 3-54

Selective repeat in action

send pkt0
send pkt1
send pkt2
send pkt3

(wait)

sender receiver

receive pkt0, send ack0
receive pkt1, send ack1

receive pkt3, buffer,
send ack3rcv ack0, send pkt4

rcv ack1, send pkt5

pkt 2 timeout
send pkt2

Xloss

receive pkt4, buffer,
send ack4

receive pkt5, buffer,
send ack5

rcv pkt2; deliver pkt2,
pkt3, pkt4, pkt5; send ack2

record ack3 arrived

0 1 2 3 4 5 6 7 8

sender window (N=4)

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

record ack4 arrived

record ack5 arrived

Q: what happens when ack2 arrives?

Transport Layer 3-55

Selective repeat:
dilemma

example:
▪ seq #’s: 0, 1, 2, 3

▪ window size=3

receiver window
(after receipt)

sender window
(after receipt)

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

pkt0

pkt1

pkt2

0 1 2 3 0 1 2 pkt0

timeout
retransmit pkt0

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2X

X

X

will accept packet
with seq number 0

(b) oops!

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

pkt0

pkt1

pkt2

0 1 2 3 0 1 2

pkt0

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

X

will accept packet
with seq number 0

0 1 2 3 0 1 2 pkt3

(a) no problem

receiver can’t see sender side.
receiver behavior identical in both cases!

something’s (very) wrong!

▪ receiver sees no
difference in two
scenarios!

▪ duplicate data
accepted as new in (b)

Q: what relationship
between seq # size
and window size to
avoid problem in (b)?

Transport Layer 3-56

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP
• segment structure

• reliable data transfer

• flow control

• connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-57

TCP: Overview RFCs: 793,1122,1323, 2018, 2581

▪ full duplex data:
• bi-directional data flow

in same connection

• MSS: maximum segment
size

▪ connection-oriented:
• handshaking (exchange

of control msgs) inits
sender, receiver state
before data exchange

▪ flow controlled:
• sender will not

overwhelm receiver

▪ point-to-point:
• one sender, one receiver

▪ reliable, in-order byte
steam:

• no “message
boundaries”

▪ pipelined:
• TCP congestion and

flow control set window
size

Transport Layer 3-58

TCP segment structure

source port # dest port #

32 bits

application

data

(variable length)

sequence number

acknowledgement number

receive window

Urg data pointerchecksum

FSRPAU
head

len

not

used

options (variable length)

URG: urgent data

(generally not used)

ACK: ACK #

valid

PSH: push data now

(generally not used)

RST, SYN, FIN:

connection estab

(setup, teardown

commands)

bytes

rcvr willing

to accept

counting

by bytes

of data

(not segments!)

Internet

checksum

(as in UDP)

Transport Layer 3-59

TCP seq. numbers, ACKs

sequence numbers:

• byte stream “number” of
first byte in segment’s
data

acknowledgements:

• seq # of next byte
expected from other side

• cumulative ACK

Q: how receiver handles
out-of-order segments

• A: TCP spec doesn’t say,
- up to implementor source port # dest port #

sequence number

acknowledgement number

checksum

rwnd

urg pointer

incoming segment to sender

A

sent
ACKed

sent, not-
yet ACKed
(“in-
flight”)

usable
but not
yet sent

not
usable

window size
N

sender sequence number space

source port # dest port #

sequence number

acknowledgement number

checksum

rwnd

urg pointer

outgoing segment from sender

Transport Layer 3-60

TCP seq. numbers, ACKs

User
types
‘C’

host ACKs
receipt

of echoed
‘C’

host ACKs
receipt of
‘C’, echoes
back ‘C’

simple telnet scenario

Host BHost A

Seq=42, ACK=79, data = ‘C’

Seq=79, ACK=43, data = ‘C’

Seq=43, ACK=80

Transport Layer 3-61

TCP round trip time, timeout

Q: how to set TCP
timeout value?

▪ longer than RTT

• but RTT varies

▪ too short: premature
timeout, unnecessary
retransmissions

▪ too long: slow reaction
to segment loss

Q: how to estimate RTT?
▪ SampleRTT: measured

time from segment
transmission until ACK
receipt

• ignore retransmissions

▪ SampleRTT will vary, want
estimated RTT “smoother”

• average several recent
measurements, not just
current SampleRTT

Transport Layer 3-62

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

100

150

200

250

300

350

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconnds)

R
T

T
 (

m
il

li
se

co
n

d
s)

SampleRTT Estimated RTT

EstimatedRTT = (1- )*EstimatedRTT + *SampleRTT

▪ exponential weighted moving average
▪ influence of past sample decreases exponentially fast
▪ typical value:  = 0.125

TCP round trip time, timeout

R
T
T
 (

m
ill

is
e
co

n
d
s)

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

sampleRTT

EstimatedRTT

time (seconds)

Transport Layer 3-63

▪ timeout interval: EstimatedRTT plus “safety margin”
• large variation in EstimatedRTT -> larger safety margin

▪ estimate SampleRTT deviation from EstimatedRTT:

DevRTT = (1-)*DevRTT +

*|SampleRTT-EstimatedRTT|

TCP round trip time, timeout

(typically,  = 0.25)

TimeoutInterval = EstimatedRTT + 4*DevRTT

estimated RTT “safety margin”

* Check out the online interactive exercises for more

examples: http://gaia.cs.umass.edu/kurose_ross/interactive/

Transport Layer 3-64

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP
• segment structure

• reliable data transfer

• flow control

• connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-65

TCP reliable data transfer

▪ TCP creates rdt service
on top of IP’s unreliable
service

• pipelined segments

• cumulative acks

• single retransmission
timer

▪ retransmissions
triggered by:

• timeout events

• duplicate acks

let’s initially consider
simplified TCP sender:

• ignore duplicate acks

• ignore flow control,
congestion control

Transport Layer 3-66

TCP sender events:

data rcvd from app:

▪ create segment with
seq #

▪ seq # is byte-stream
number of first data
byte in segment

▪ start timer if not
already running

• think of timer as for
oldest unacked
segment

• expiration interval:
TimeOutInterval

timeout:

▪ retransmit segment
that caused timeout

▪ restart timer

ack rcvd:

▪ if ack acknowledges
previously unacked
segments

• update what is known
to be ACKed

• start timer if there are
still unacked segments

Transport Layer 3-67

TCP sender (simplified)

wait

for

event

NextSeqNum = InitialSeqNum

SendBase = InitialSeqNum

L

create segment, seq. #: NextSeqNum

pass segment to IP (i.e., “send”)

NextSeqNum = NextSeqNum + length(data)

if (timer currently not running)

start timer

data received from application above

retransmit not-yet-acked segment
with smallest seq. #

start timer

timeout

if (y > SendBase) {

SendBase = y

/* SendBase–1: last cumulatively ACKed byte */

if (there are currently not-yet-acked segments)

start timer

else stop timer

}

ACK received, with ACK field value y

Transport Layer 3-68

TCP: retransmission scenarios

lost ACK scenario

Host BHost A

Seq=92, 8 bytes of data

ACK=100

Seq=92, 8 bytes of data

Xti
m

e
o
u
t

ACK=100

premature timeout

Host BHost A

Seq=92, 8 bytes of data

ACK=100

Seq=92, 8
bytes of data

ti
m

e
o
u
t

ACK=120

Seq=100, 20 bytes of data

ACK=120

SendBase=100

SendBase=120

SendBase=120

SendBase=92

Transport Layer 3-69

TCP: retransmission scenarios

X

cumulative ACK

Host BHost A

Seq=92, 8 bytes of data

ACK=100

Seq=120, 15 bytes of data

ti
m

e
o
u
t

Seq=100, 20 bytes of data

ACK=120

Transport Layer 3-70

TCP ACK generation [RFC 1122, RFC 2581]

event at receiver

arrival of in-order segment with

expected seq #. All data up to

expected seq # already ACKed

arrival of in-order segment with

expected seq #. One other

segment has ACK pending

arrival of out-of-order segment

higher-than-expect seq. # .

Gap detected

arrival of segment that

partially or completely fills gap

TCP receiver action

delayed ACK. Wait up to 500ms

for next segment. If no next segment,

send ACK

immediately send single cumulative

ACK, ACKing both in-order segments

immediately send duplicate ACK,

indicating seq. # of next expected byte

immediate send ACK, provided that

segment starts at lower end of gap

Transport Layer 3-71

TCP fast retransmit

▪ time-out period often
relatively long:

• long delay before
resending lost packet

▪ detect lost segments
via duplicate ACKs.

• sender often sends
many segments back-
to-back

• if segment is lost, there
will likely be many
duplicate ACKs.

if sender receives 3
ACKs for same data

(“triple duplicate ACKs”),

resend unacked
segment with smallest
seq #
▪ likely that unacked

segment lost, so don’t
wait for timeout

TCP fast retransmit

(“triple duplicate ACKs”),

Transport Layer 3-72

X

fast retransmit after sender
receipt of triple duplicate ACK

Host BHost A

Seq=92, 8 bytes of data

ACK=100

ti
m

e
o
u
t

ACK=100

ACK=100

ACK=100

TCP fast retransmit

Seq=100, 20 bytes of data

Seq=100, 20 bytes of data

Transport Layer 3-73

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP
• segment structure

• reliable data transfer

• flow control

• connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-74

TCP flow control
application

process

TCP socket
receiver buffers

TCP
code

IP
code

application

OS

receiver protocol stack

application may
remove data from

TCP socket buffers ….

… slower than TCP
receiver is delivering
(sender is sending)

from sender

receiver controls sender, so

sender won’t overflow

receiver’s buffer by transmitting

too much, too fast

flow control

Transport Layer 3-75

TCP flow control

buffered data

free buffer spacerwnd

RcvBuffer

TCP segment payloads

to application process

▪ receiver “advertises” free
buffer space by including
rwnd value in TCP header
of receiver-to-sender
segments

• RcvBuffer size set via
socket options (typical default
is 4096 bytes)

• many operating systems
autoadjust RcvBuffer

▪ sender limits amount of
unacked (“in-flight”) data to
receiver’s rwnd value

▪ guarantees receive buffer
will not overflow

receiver-side buffering

Transport Layer 3-76

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP
• segment structure

• reliable data transfer

• flow control

• connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-77

Connection Management

before exchanging data, sender/receiver “handshake”:
▪ agree to establish connection (each knowing the other willing

to establish connection)

▪ agree on connection parameters

connection state: ESTAB
connection variables:

seq # client-to-server
server-to-client

rcvBuffer size

at server,client

application

network

connection state: ESTAB
connection Variables:

seq # client-to-server
server-to-client

rcvBuffer size

at server,client

application

network

Socket clientSocket =

newSocket("hostname","port

number");

Socket connectionSocket =

welcomeSocket.accept();

Transport Layer 3-78

Q: will 2-way handshake
always work in
network?

▪ variable delays

▪ retransmitted messages (e.g.
req_conn(x)) due to
message loss

▪ message reordering

▪ can’t “see” other side

2-way handshake:

Let’s talk

OK
ESTAB

ESTAB

choose x
req_conn(x)

ESTAB

ESTAB
acc_conn(x)

Agreeing to establish a connection

Transport Layer 3-79

Agreeing to establish a connection

2-way handshake failure scenarios:

retransmit
req_conn(x)

ESTAB

req_conn(x)

half open connection!
(no client!)

client
terminates

server
forgets x

connection
x completes

retransmit
req_conn(x)

ESTAB

req_conn(x)

data(x+1)

retransmit
data(x+1)

accept
data(x+1)

choose x
req_conn(x)

ESTAB

ESTAB

acc_conn(x)

client
terminates

ESTAB

choose x
req_conn(x)

ESTAB

acc_conn(x)

data(x+1) accept
data(x+1)

connection
x completes server

forgets x

Transport Layer 3-80

TCP 3-way handshake

SYNbit=1, Seq=x

choose init seq num, x
send TCP SYN msg

ESTAB

SYNbit=1, Seq=y
ACKbit=1; ACKnum=x+1

choose init seq num, y
send TCP SYNACK
msg, acking SYN

ACKbit=1, ACKnum=y+1

received SYNACK(x)
indicates server is live;
send ACK for SYNACK;

this segment may contain
client-to-server data

received ACK(y)
indicates client is live

SYNSENT

ESTAB

SYN RCVD

client state

LISTEN

server state

LISTEN

Transport Layer 3-81

TCP 3-way handshake: FSM

closed

L

listen

SYN
rcvd

SYN
sent

ESTAB

Socket clientSocket =

newSocket("hostname","port

number");

SYN(seq=x)

Socket connectionSocket =

welcomeSocket.accept();

SYN(x)

SYNACK(seq=y,ACKnum=x+1)
create new socket for

communication back to client

SYNACK(seq=y,ACKnum=x+1)

ACK(ACKnum=y+1)
ACK(ACKnum=y+1)

L

Transport Layer 3-82

TCP: closing a connection

▪ client, server each close their side of connection
• send TCP segment with FIN bit = 1

▪ respond to received FIN with ACK
• on receiving FIN, ACK can be combined with own FIN

▪ simultaneous FIN exchanges can be handled

Transport Layer 3-83

FIN_WAIT_2

CLOSE_WAIT

FINbit=1, seq=y

ACKbit=1; ACKnum=y+1

ACKbit=1; ACKnum=x+1

wait for server
close

can still
send data

can no longer
send data

LAST_ACK

CLOSED

TIMED_WAIT

timed wait
for 2*max

segment lifetime

CLOSED

TCP: closing a connection

FIN_WAIT_1 FINbit=1, seq=xcan no longer
send but can
receive data

clientSocket.close()

client state server state

ESTABESTAB

Transport Layer 3-84

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP
• segment structure

• reliable data transfer

• flow control

• connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-85

congestion:
▪ informally: “too many sources sending too much

data too fast for network to handle”
▪ different from flow control!

▪ manifestations:

• lost packets (buffer overflow at routers)

• long delays (queueing in router buffers)

▪ a top-10 problem!

Principles of congestion control

Transport Layer 3-86

Causes/costs of congestion: scenario 1

▪ two senders, two
receivers

▪ one router, infinite buffers

▪ output link capacity: R

▪ no retransmission

▪ maximum per-connection
throughput: R/2

unlimited shared

output link buffers

Host A

original data: lin

Host B

throughput: lout

R/2

R/2

l
o

u
t

lin R/2
d

e
la

y
lin

❖ large delays as arrival rate, lin,
approaches capacity

Transport Layer 3-87

▪ one router, finite buffers

▪ sender retransmission of timed-out packet
• application-layer input = application-layer output: lin =
lout

• transport-layer input includes retransmissions : lin lin

finite shared output

link buffers

Host A

lin : original data

Host B

loutl'in: original data, plus

retransmitted data

‘

Causes/costs of congestion: scenario 2

Transport Layer 3-88

idealization: perfect
knowledge

▪ sender sends only when
router buffers available

finite shared output

link buffers

lin : original data
loutl'in: original data, plus

retransmitted data

copy

free buffer space!

R/2

R/2

l
o

u
t

lin

Causes/costs of congestion: scenario 2

Host B

A

Transport Layer 3-89

lin : original data
loutl'in: original data, plus

retransmitted data

copy

no buffer space!

Idealization: known loss
packets can be lost,
dropped at router due
to full buffers

▪ sender only resends if
packet known to be lost

Causes/costs of congestion: scenario 2

A

Host B

Transport Layer 3-90

lin : original data
loutl'in: original data, plus

retransmitted data

free buffer space!

Causes/costs of congestion: scenario 2

Idealization: known loss
packets can be lost,
dropped at router due
to full buffers

▪ sender only resends if
packet known to be lost

R/2

R/2lin

l
o

u
t

when sending at R/2,

some packets are

retransmissions but

asymptotic goodput

is still R/2 (why?)

A

Host B

Transport Layer 3-91

A

lin
loutl'in

copy

free buffer space!

timeout

R/2

R/2lin

l
o

u
t

when sending at R/2,

some packets are

retransmissions

including duplicated

that are delivered!

Host B

Realistic: duplicates
▪ packets can be lost, dropped at

router due to full buffers

▪ sender times out prematurely,
sending two copies, both of
which are delivered

Causes/costs of congestion: scenario 2

Transport Layer 3-92

R/2

l
o

u
t

when sending at R/2,

some packets are

retransmissions

including duplicated

that are delivered!

“costs” of congestion:
▪ more work (retrans) for given “goodput”
▪ unneeded retransmissions: link carries multiple copies of pkt

• decreasing goodput

R/2lin

Causes/costs of congestion: scenario 2

Realistic: duplicates
▪ packets can be lost, dropped at

router due to full buffers

▪ sender times out prematurely,
sending two copies, both of
which are delivered

Transport Layer 3-93

▪ four senders

▪ multihop paths

▪ timeout/retransmit

Q: what happens as lin and lin
’

increase ?

finite shared output

link buffers

Host A lout

Causes/costs of congestion: scenario 3

Host B

Host C

Host D

lin : original data

l'in: original data, plus

retransmitted data

A: as red lin
’ increases, all arriving

blue pkts at upper queue are
dropped, blue throughput g 0

Transport Layer 3-94

another “cost” of congestion:

▪ when packet dropped, any “upstream
transmission capacity used for that packet was
wasted!

Causes/costs of congestion: scenario 3

C/2

C/2

l
o

u
t

lin
’

Transport Layer 3-95

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP
• segment structure

• reliable data transfer

• flow control

• connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-96

TCP congestion control: additive increase
multiplicative decrease

▪ approach: sender increases transmission rate (window
size), probing for usable bandwidth, until loss occurs

• additive increase: increase cwnd by 1 MSS every
RTT until loss detected

• multiplicative decrease: cut cwnd in half after loss
c
w
n
d
:

T
C

P
 s

e
n

d
e

r

c
o

n
g

e
s
ti
o

n
 w

in
d

o
w

 s
iz

e

AIMD saw tooth

behavior: probing

for bandwidth

additively increase window size …
…. until loss occurs (then cut window in half)

time

Transport Layer 3-97

TCP Congestion Control: details

▪ sender limits transmission:

▪ cwnd is dynamic, function
of perceived network
congestion

TCP sending rate:

▪ roughly: send cwnd
bytes, wait RTT for
ACKS, then send
more bytes

last byte
ACKed sent, not-

yet ACKed
(“in-
flight”)

last byte
sent

cwnd

LastByteSent-

LastByteAcked
< cwnd

sender sequence number space

rate ~~
cwnd

RTT
bytes/sec

Transport Layer 3-98

TCP Slow Start

▪ when connection begins,
increase rate
exponentially until first
loss event:

• initially cwnd = 1 MSS

• double cwnd every RTT

• done by incrementing
cwnd for every ACK
received

▪ summary: initial rate is
slow but ramps up
exponentially fast

Host A

R
T

T

Host B

time

Transport Layer 3-99

TCP: detecting, reacting to loss

▪ loss indicated by timeout:
• cwnd set to 1 MSS;

• window then grows exponentially (as in slow start)
to threshold, then grows linearly

▪ loss indicated by 3 duplicate ACKs: TCP RENO

• dup ACKs indicate network capable of delivering
some segments

• cwnd is cut in half window then grows linearly

▪ TCP Tahoe always sets cwnd to 1 (timeout or 3
duplicate acks)

Transport Layer 3-100

Q: when should the
exponential
increase switch to
linear?

A: when cwnd gets
to 1/2 of its value
before timeout.

Implementation:
▪ variable ssthresh

▪ on loss event, ssthresh
is set to 1/2 of cwnd just
before loss event

TCP: switching from slow start to CA

* Check out the online interactive exercises for more

examples: http://gaia.cs.umass.edu/kurose_ross/interactive/

Transport Layer 3-101

Summary: TCP Congestion Control

timeout

ssthresh = cwnd/2
cwnd = 1 MSS

dupACKcount = 0

retransmit missing segment

L

cwnd > ssthresh

congestion

avoidance

cwnd = cwnd + MSS (MSS/cwnd)
dupACKcount = 0

transmit new segment(s), as allowed

new ACK
.

dupACKcount++

duplicate ACK

fast

recovery

cwnd = cwnd + MSS
transmit new segment(s), as allowed

duplicate ACK

ssthresh= cwnd/2
cwnd = ssthresh + 3

retransmit missing segment

dupACKcount == 3

timeout

ssthresh = cwnd/2
cwnd = 1
dupACKcount = 0

retransmit missing segment

ssthresh= cwnd/2
cwnd = ssthresh + 3
retransmit missing segment

dupACKcount == 3cwnd = ssthresh
dupACKcount = 0

New ACK

slow

start

timeout

ssthresh = cwnd/2
cwnd = 1 MSS

dupACKcount = 0
retransmit missing segment

cwnd = cwnd+MSS
dupACKcount = 0
transmit new segment(s), as allowed

new ACKdupACKcount++

duplicate ACK

L

cwnd = 1 MSS
ssthresh = 64 KB
dupACKcount = 0

New
ACK!

New
ACK!

New
ACK!

Transport Layer 3-102

TCP throughput

▪ avg. TCP thruput as function of window size, RTT?
• ignore slow start, assume always data to send

▪ W: window size (measured in bytes) where loss occurs
• avg. window size (# in-flight bytes) is ¾ W

• avg. thruput is 3/4W per RTT

W

W/2

avg TCP thruput =
3
4

W
RTT

bytes/sec

Transport Layer 3-103

TCP Futures: TCP over “long, fat pipes”

▪ example: 1500 byte segments, 100ms RTT, want
10 Gbps throughput

▪ requires W = 83,333 in-flight segments

▪ throughput in terms of segment loss probability, L
[Mathis 1997]:

➜ to achieve 10 Gbps throughput, need a loss rate of L
= 2·10-10 – a very small loss rate!

▪ new versions of TCP for high-speed

TCP throughput =
1.22 . MSS

RTT L

Transport Layer 3-104

fairness goal: if K TCP sessions share same
bottleneck link of bandwidth R, each should have
average rate of R/K

TCP connection 1

bottleneck

router

capacity R

TCP Fairness

TCP connection 2

Transport Layer 3-105

Why is TCP fair?

two competing sessions:
▪ additive increase gives slope of 1, as throughout increases

▪ multiplicative decrease decreases throughput proportionally

R

R

equal bandwidth share

Connection 1 throughput

congestion avoidance: additive increase

loss: decrease window by factor of 2

congestion avoidance: additive increase
loss: decrease window by factor of 2

Transport Layer 3-106

Fairness (more)

Fairness and UDP

▪ multimedia apps often
do not use TCP

• do not want rate
throttled by congestion
control

▪ instead use UDP:
• send audio/video at

constant rate, tolerate
packet loss

Fairness, parallel TCP
connections

▪ application can open
multiple parallel
connections between
two hosts

▪ web browsers do this

▪ e.g., link of rate R with 9
existing connections:

• new app asks for 1 TCP, gets
rate R/10

• new app asks for 9 TCPs, gets
R/2

Transport Layer 3-107

network-assisted congestion control:
▪ two bits in IP header (ToS field) marked by network router

to indicate congestion

▪ congestion indication carried to receiving host

▪ receiver (seeing congestion indication in IP datagram))
sets ECE bit on receiver-to-sender ACK segment to
notify sender of congestion

Explicit Congestion Notification (ECN)

source

application

transport

network

link

physical

destination

application

transport

network

link

physical

ECN=00 ECN=11

ECE=1

IP datagram

TCP ACK segment

Transport Layer 3-108

Chapter 3: summary

▪ principles behind transport
layer services:

• multiplexing,
demultiplexing

• reliable data transfer

• flow control

• congestion control

▪ instantiation,
implementation in the
Internet

• UDP

• TCP

next:

▪ leaving the network
“edge” (application,
transport layers)

▪ into the network
“core”

▪ two network layer
chapters:

• data plane

• control plane

