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Chapter 3: Transport Layer

our goals: 
▪ understand principles 

behind transport 
layer services:

• multiplexing, 
demultiplexing

• reliable data transfer

• flow control

• congestion control

▪ learn about Internet 
transport layer protocols:

• UDP: connectionless 
transport

• TCP: connection-oriented 
reliable transport

• TCP congestion control
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Chapter 3 outline

3.1 transport-layer 
services

3.2 multiplexing and 
demultiplexing

3.3 connectionless 
transport: UDP

3.4 principles of reliable 
data transfer

3.5 connection-oriented 
transport: TCP
• segment structure

• reliable data transfer

• flow control

• connection management

3.6 principles of congestion 
control

3.7 TCP congestion control
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Transport services and protocols

▪ provide logical communication
between app processes 
running on different hosts

▪ transport protocols run in 
end systems 

• send side: breaks app 
messages into segments, 
passes to  network layer

• rcv side: reassembles 
segments into messages, 
passes to app layer

▪ more than one transport 
protocol available to apps

• Internet: TCP and UDP

application
transport
network
data link
physical

application
transport
network
data link
physical
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Transport vs. network layer

▪ network layer: logical 
communication 
between hosts

▪ transport layer:
logical 
communication 
between processes
• relies on, enhances, 

network layer 
services

12 kids in Ann’s house sending 
letters to 12 kids in Bill’s 
house:

▪ hosts = houses
▪ processes = kids
▪ app messages = letters in 

envelopes
▪ transport protocol = Ann 

and Bill who demux to in-
house siblings

▪ network-layer protocol = 
postal service

household analogy:
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Internet transport-layer protocols

▪ reliable, in-order 
delivery (TCP)

• congestion control 

• flow control

• connection setup

▪ unreliable, unordered 
delivery: UDP

• no-frills extension of 
“best-effort” IP

▪ services not available: 
• delay guarantees

• bandwidth guarantees

application
transport
network
data link
physical

application
transport
network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical
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Chapter 3 outline

3.1 transport-layer 
services

3.2 multiplexing and 
demultiplexing

3.3 connectionless 
transport: UDP

3.4 principles of reliable 
data transfer

3.5 connection-oriented 
transport: TCP
• segment structure

• reliable data transfer

• flow control

• connection management

3.6 principles of congestion 
control

3.7 TCP congestion control
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Multiplexing/demultiplexing

process

socket

use header info to deliver
received segments to correct 
socket

demultiplexing at receiver:handle data from multiple
sockets, add transport header 
(later used for demultiplexing)

multiplexing at sender:

transport

application

physical

link

network

P2P1

transport

application

physical

link

network

P4

transport

application

physical

link

network

P3



Transport Layer 3-9

How demultiplexing works

▪ host receives IP datagrams
• each datagram has source IP 

address, destination IP 
address

• each datagram carries one 
transport-layer segment

• each segment has source, 
destination port number 

▪ host uses IP addresses & 
port numbers to direct 
segment to appropriate 
socket

source port # dest port #

32 bits

application
data 

(payload)

other header fields

TCP/UDP segment format



Transport Layer 3-10

Connectionless demultiplexing

▪ recall: created socket has 
host-local port #:
DatagramSocket mySocket1        
= new DatagramSocket(12534);

▪ when host receives UDP 
segment:

• checks destination port # 
in segment

• directs UDP segment to 
socket with that port #

▪ recall: when creating 
datagram to send into UDP 
socket, must specify

• destination IP address

• destination port #

IP datagrams with same 
dest. port #, but different 
source IP addresses 
and/or source port 
numbers will be directed 
to same socket at dest
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Connectionless demux: example

DatagramSocket 
serverSocket = new 
DatagramSocket

(6428);

transport

application

physical

link

network

P3
transport

application

physical

link

network

P1

transport

application

physical

link

network

P4

DatagramSocket 
mySocket1 = new 
DatagramSocket 
(5775);

DatagramSocket 
mySocket2 = new 
DatagramSocket

(9157);

source port: 9157
dest port: 6428

source port: 6428
dest port: 9157

source port: ?
dest port: ?

source port: ?
dest port: ?
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Connection-oriented demux

▪ TCP socket identified 
by 4-tuple: 

• source IP address

• source port number

• dest IP address

• dest port number

▪ demux: receiver uses all 
four values to direct 
segment to appropriate 
socket

▪ server host may support 
many simultaneous TCP 
sockets:

• each socket identified by 
its own 4-tuple

▪ web servers have 
different sockets for 
each connecting client

• non-persistent HTTP will 
have different socket for 
each request
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Connection-oriented demux: example

transport

application

physical

link

network

P3
transport

application

physical

link

P4

transport

application

physical

link

network

P2

source IP,port: A,9157
dest IP, port: B,80

source IP,port: B,80
dest IP,port: A,9157

host: IP 
address A

host: IP 
address C

network

P6P5
P3

source IP,port: C,5775
dest IP,port: B,80

source IP,port: C,9157
dest IP,port: B,80

three segments, all destined to IP address: B,
dest port: 80 are demultiplexed to different sockets

server: IP 
address B
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Connection-oriented demux: example

transport

application

physical

link

network

P3
transport

application

physical

link

transport

application

physical

link

network

P2

source IP,port: A,9157
dest IP, port: B,80

source IP,port: B,80
dest IP,port: A,9157

host: IP 
address A

host: IP 
address C

server: IP 
address B

network

P3

source IP,port: C,5775
dest IP,port: B,80

source IP,port: C,9157
dest IP,port: B,80

P4

threaded server
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Chapter 3 outline

3.1 transport-layer 
services

3.2 multiplexing and 
demultiplexing

3.3 connectionless 
transport: UDP

3.4 principles of reliable 
data transfer

3.5 connection-oriented 
transport: TCP
• segment structure

• reliable data transfer

• flow control

• connection management

3.6 principles of congestion 
control

3.7 TCP congestion control
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UDP: User Datagram Protocol [RFC 768]

▪ “no frills,” “bare bones”
Internet transport 
protocol

▪ “best effort” service, UDP 
segments may be:

• lost

• delivered out-of-order 
to app

▪ connectionless:

• no handshaking 
between UDP sender, 
receiver

• each UDP segment 
handled independently 
of others

▪ UDP use:
▪ streaming multimedia 

apps (loss tolerant, rate 
sensitive)

▪ DNS

▪ SNMP

▪ reliable transfer over 
UDP: 
▪ add reliability at 

application layer

▪ application-specific error 
recovery!
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UDP: segment header

source port # dest port #

32 bits

application
data 

(payload)

UDP segment format

length checksum

length, in bytes of 
UDP segment, 

including header

▪ no connection 
establishment (which can 
add delay)

▪ simple: no connection 
state at sender, receiver

▪ small header size

▪ no congestion control: 
UDP can blast away as fast 
as desired

why is there a UDP?
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UDP checksum

sender:
▪ treat segment contents, 

including header fields,  
as sequence of 16-bit 
integers

▪ checksum: addition 
(one’s complement sum) 
of segment contents

▪ sender puts checksum 
value into UDP checksum 
field

receiver:
▪ compute checksum of 

received segment

▪ check if computed checksum 
equals checksum field value:

• NO - error detected

• YES - no error detected. 
But maybe errors 
nonetheless? More later 
….

Goal: detect “errors” (e.g., flipped bits) in transmitted 
segment
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Internet checksum: example

example: add two 16-bit integers

1 1  1  1  0  0  1  1  0  0  1  1  0  0  1  1  0
1 1  1  0  1  0  1  0  1  0  1  0  1  0  1  0  1

1  1  0  1  1  1  0  1  1  1  0  1  1  1  0  1  1

1 1  0  1  1  1  0  1  1  1  0  1  1  1  1  0  0
1 0  1  0  0  0  1  0  0  0  1  0  0  0  0  1  1

wraparound

sum

checksum

Note: when adding numbers, a carryout from the most 
significant bit needs to be added to the result

* Check out the online interactive exercises for more 

examples: http://gaia.cs.umass.edu/kurose_ross/interactive/
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Chapter 3 outline

3.1 transport-layer 
services

3.2 multiplexing and 
demultiplexing

3.3 connectionless 
transport: UDP

3.4 principles of reliable 
data transfer

3.5 connection-oriented 
transport: TCP
• segment structure

• reliable data transfer

• flow control

• connection management

3.6 principles of congestion 
control

3.7 TCP congestion control
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Principles of reliable data transfer
▪ important in application, transport, link layers

• top-10 list of important networking topics!

▪ characteristics of unreliable channel will determine 
complexity of reliable data transfer protocol (rdt)
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▪ characteristics of unreliable channel will determine 
complexity of reliable data transfer protocol (rdt)

Principles of reliable data transfer
▪ important in application, transport, link layers

• top-10 list of important networking topics!



Transport Layer 3-23

▪ characteristics of unreliable channel will determine 
complexity of reliable data transfer protocol (rdt)

▪ important in application, transport, link layers
• top-10 list of important networking topics!

Principles of reliable data transfer
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Reliable data transfer: getting started

send

side
receive

side

rdt_send(): called from above, 

(e.g., by app.). Passed data to 
deliver to receiver upper layer

udt_send(): called by rdt,

to transfer packet over 
unreliable channel to receiver

rdt_rcv(): called when packet 

arrives on rcv-side of channel

deliver_data(): called by 

rdt to deliver data to upper
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we’ll:

▪ incrementally develop sender, receiver sides of 
reliable data transfer protocol (rdt)

▪ consider only unidirectional data transfer
• but control info will flow on both directions!

▪ use finite state machines (FSM)  to specify sender, 
receiver

state
1

state
2

event causing state transition

actions taken on state transition

state: when in this 
“state” next state 

uniquely determined 
by next event

event

actions

Reliable data transfer: getting started
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rdt1.0: reliable transfer over a reliable channel

▪ underlying channel perfectly reliable
• no bit errors

• no loss of packets

▪ separate FSMs for sender, receiver:
• sender sends data into underlying channel

• receiver reads data from underlying channel

Wait for 

call from 

above packet = make_pkt(data)

udt_send(packet)

rdt_send(data)

extract (packet,data)

deliver_data(data)

Wait for 

call from 

below

rdt_rcv(packet)

sender receiver
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▪ underlying channel may flip bits in packet
• checksum to detect bit errors

▪ the question: how to recover from errors:
• acknowledgements (ACKs): receiver explicitly tells sender 

that pkt received OK
• negative acknowledgements (NAKs): receiver explicitly tells 

sender that pkt had errors
• sender retransmits pkt on receipt of NAK

▪ new mechanisms in rdt2.0 (beyond rdt1.0):
• error detection
• receiver feedback: control msgs (ACK,NAK) rcvr-

>sender

rdt2.0: channel with bit errors

How do humans recover from “errors”
during conversation?
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▪ underlying channel may flip bits in packet
• checksum to detect bit errors

▪ the question: how to recover from errors:

• acknowledgements (ACKs): receiver explicitly tells sender 
that pkt received OK

• negative acknowledgements (NAKs): receiver explicitly tells 
sender that pkt had errors

• sender retransmits pkt on receipt of NAK

▪ new mechanisms in rdt2.0 (beyond rdt1.0):
• error detection
• feedback: control msgs (ACK,NAK) from receiver to 

sender

rdt2.0: channel with bit errors
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rdt2.0: FSM specification

Wait for 

call from 

above

sndpkt = make_pkt(data, checksum)

udt_send(sndpkt)

extract(rcvpkt,data)

deliver_data(data)

udt_send(ACK)

rdt_rcv(rcvpkt) && 

notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&

isNAK(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) && 

corrupt(rcvpkt)

Wait for 

ACK or 

NAK

Wait for 

call from 

belowsender

receiver
rdt_send(data)

L
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rdt2.0: operation with no errors

Wait for 

call from 

above

snkpkt = make_pkt(data, checksum)

udt_send(sndpkt)

extract(rcvpkt,data)

deliver_data(data)

udt_send(ACK)

rdt_rcv(rcvpkt) && 

notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&

isNAK(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) && 

corrupt(rcvpkt)

Wait for 

ACK or 

NAK

Wait for 

call from 

below

rdt_send(data)

L
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rdt2.0: error scenario

Wait for 

call from 

above

snkpkt = make_pkt(data, checksum)

udt_send(sndpkt)

extract(rcvpkt,data)

deliver_data(data)

udt_send(ACK)

rdt_rcv(rcvpkt) && 

notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&

isNAK(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) && 

corrupt(rcvpkt)

Wait for 

ACK or 

NAK

Wait for 

call from 

below

rdt_send(data)

L
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rdt2.0 has a fatal flaw!

what happens if 
ACK/NAK corrupted?

▪ sender doesn’t know 
what happened at 
receiver!

▪ can’t just retransmit: 
possible duplicate

handling duplicates: 
▪ sender retransmits 

current pkt if ACK/NAK 
corrupted

▪ sender adds sequence 
number to each pkt

▪ receiver discards (doesn’t 
deliver up) duplicate pkt

stop and wait
sender sends one packet, 
then waits for receiver 
response
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rdt2.1: sender, handles garbled ACK/NAKs

Wait for 

call 0 from 

above

sndpkt = make_pkt(0, data, checksum)

udt_send(sndpkt)

rdt_send(data)

Wait for 

ACK or 

NAK 0 udt_send(sndpkt)

rdt_rcv(rcvpkt) &&  

( corrupt(rcvpkt) ||

isNAK(rcvpkt) )

sndpkt = make_pkt(1, data, checksum)

udt_send(sndpkt)

rdt_send(data)

rdt_rcv(rcvpkt)   

&& notcorrupt(rcvpkt) 

&& isACK(rcvpkt) 

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&  

( corrupt(rcvpkt) ||

isNAK(rcvpkt) )

rdt_rcv(rcvpkt)   

&& notcorrupt(rcvpkt) 

&& isACK(rcvpkt)

Wait for

call 1 from 

above

Wait for 

ACK or 

NAK 1

L
L
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Wait for 

0 from 

below

sndpkt = make_pkt(NAK, chksum)

udt_send(sndpkt)

rdt_rcv(rcvpkt) && 

not corrupt(rcvpkt) &&

has_seq0(rcvpkt)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) 

&& has_seq1(rcvpkt)

extract(rcvpkt,data)

deliver_data(data)

sndpkt = make_pkt(ACK, chksum)

udt_send(sndpkt)

Wait for 

1 from 

below

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) 

&& has_seq0(rcvpkt) 

extract(rcvpkt,data)

deliver_data(data)

sndpkt = make_pkt(ACK, chksum)

udt_send(sndpkt)

rdt_rcv(rcvpkt) && (corrupt(rcvpkt)

sndpkt = make_pkt(ACK, chksum)

udt_send(sndpkt)

rdt_rcv(rcvpkt) && 

not corrupt(rcvpkt) &&

has_seq1(rcvpkt)

rdt_rcv(rcvpkt) && (corrupt(rcvpkt)

sndpkt = make_pkt(ACK, chksum)

udt_send(sndpkt)

sndpkt = make_pkt(NAK, chksum)

udt_send(sndpkt)

rdt2.1: receiver, handles garbled ACK/NAKs
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rdt2.1: discussion

sender:

▪ seq # added to pkt

▪ two seq. #’s (0,1) will 
suffice.  Why?

▪ must check if received 
ACK/NAK corrupted 

▪ twice as many states
• state must 
“remember” whether 
“expected” pkt should 
have seq # of 0 or 1 

receiver:

▪ must check if received 
packet is duplicate

• state indicates whether 
0 or 1 is expected pkt 
seq #

▪ note: receiver can not
know if its last 
ACK/NAK received 
OK at sender
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rdt2.2: a NAK-free protocol

▪ same functionality as rdt2.1, using ACKs only

▪ instead of NAK, receiver sends ACK for last pkt 
received OK

• receiver must explicitly include seq # of pkt being ACKed 

▪ duplicate ACK at sender results in same action as 
NAK: retransmit current pkt
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rdt2.2: sender, receiver fragments

Wait for 

call 0 from 

above

sndpkt = make_pkt(0, data, checksum)

udt_send(sndpkt)

rdt_send(data)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&  

( corrupt(rcvpkt) ||

isACK(rcvpkt,1) )

rdt_rcv(rcvpkt)   

&& notcorrupt(rcvpkt) 

&& isACK(rcvpkt,0)

Wait for 

ACK

0

sender FSM
fragment

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) 

&& has_seq1(rcvpkt) 

extract(rcvpkt,data)

deliver_data(data)

sndpkt = make_pkt(ACK1, chksum)

udt_send(sndpkt)

Wait for 

0 from 

below

rdt_rcv(rcvpkt) && 

(corrupt(rcvpkt) ||

has_seq1(rcvpkt))

udt_send(sndpkt)

receiver FSM
fragment

L
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rdt3.0: channels with errors and loss

new assumption:
underlying channel can 
also lose packets (data, 
ACKs)

• checksum, seq. #, 
ACKs, retransmissions 
will be of help … but 
not enough

approach: sender waits 
“reasonable” amount of 
time for ACK 

▪ retransmits if no ACK 
received in this time

▪ if pkt (or ACK) just delayed 
(not lost):

• retransmission will be  
duplicate, but seq. #’s 
already handles this

• receiver must specify seq 
# of pkt being ACKed

▪ requires countdown timer
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rdt3.0 sender

sndpkt = make_pkt(0, data, checksum)

udt_send(sndpkt)

start_timer

rdt_send(data)

Wait 

for 

ACK0

rdt_rcv(rcvpkt) &&  

( corrupt(rcvpkt) ||

isACK(rcvpkt,1) )

Wait for 

call 1 from 

above

sndpkt = make_pkt(1, data, checksum)

udt_send(sndpkt)

start_timer

rdt_send(data)

rdt_rcv(rcvpkt)   

&& notcorrupt(rcvpkt) 

&& isACK(rcvpkt,0)

rdt_rcv(rcvpkt) &&  

( corrupt(rcvpkt) ||

isACK(rcvpkt,0) )

rdt_rcv(rcvpkt)   

&& notcorrupt(rcvpkt) 

&& isACK(rcvpkt,1)

stop_timer

stop_timer

udt_send(sndpkt)

start_timer

timeout

udt_send(sndpkt)

start_timer

timeout

rdt_rcv(rcvpkt)

Wait for 

call 0from 

above

Wait 

for 

ACK1

L

rdt_rcv(rcvpkt)

L

L

L
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sender receiver

rcv pkt1

rcv pkt0

send ack0

send ack1

send ack0

rcv ack0

send pkt0

send pkt1

rcv ack1

send pkt0

rcv pkt0
pkt0

pkt0

pkt1

ack1

ack0

ack0

(a) no loss

sender receiver

rcv pkt1

rcv pkt0

send ack0

send ack1

send ack0

rcv ack0

send pkt0

send pkt1

rcv ack1

send pkt0

rcv pkt0
pkt0

pkt0

ack1

ack0

ack0

(b) packet loss

pkt1
X

loss

pkt1
timeout

resend pkt1

rdt3.0 in action
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rdt3.0 in action

rcv pkt1
send ack1

(detect duplicate)

pkt1

sender receiver

rcv pkt1

rcv pkt0

send ack0

send ack1

send ack0

rcv ack0

send pkt0

send pkt1

rcv ack1

send pkt0

rcv pkt0
pkt0

pkt0

ack1

ack0

ack0

(c) ACK loss

ack1
X

loss

pkt1
timeout

resend pkt1

rcv pkt1
send ack1

(detect duplicate)

pkt1

sender receiver

rcv pkt1

send ack0
rcv ack0

send pkt1

send pkt0

rcv pkt0
pkt0

ack0

(d) premature timeout/ delayed ACK

pkt1
timeout

resend pkt1

ack1

send ack1

send pkt0
rcv ack1

pkt0

ack1

ack0

send pkt0
rcv ack1 pkt0

rcv pkt0
send ack0ack0

rcv pkt0

send ack0
(detect duplicate)
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Performance of rdt3.0

▪ rdt3.0 is correct, but performance stinks

▪ e.g.: 1 Gbps link, 15 ms prop. delay, 8000 bit packet:

▪ U sender: utilization – fraction of time sender busy sending

 

U 
sender = 

.008 

30.008 
= 0.00027  

L / R 

RTT + L / R 
= 

▪ if RTT=30 msec, 1KB pkt every 30 msec: 33kB/sec thruput 
over 1 Gbps link

▪ network protocol limits use of physical resources!

Dtrans =
L
R

8000 bits

109 bits/sec
= = 8 microsecs
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rdt3.0: stop-and-wait operation

first packet bit transmitted, t = 0

sender receiver

RTT

last packet bit transmitted, t = L / R

first packet bit arrives

last packet bit arrives, send ACK

ACK arrives, send next 

packet, t = RTT + L / R

 

U 
sender = 

.008 

30.008 
= 0.00027  

L / R 

RTT + L / R 
= 
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Pipelined protocols

pipelining: sender allows multiple, “in-flight”, yet-
to-be-acknowledged pkts

• range of sequence numbers must be increased

• buffering at sender and/or receiver

▪ two generic forms of pipelined protocols: go-Back-N, 
selective repeat
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Pipelining: increased utilization

first packet bit transmitted, t = 0

sender receiver

RTT 

last bit transmitted, t = L / R

first packet bit arrives

last packet bit arrives, send ACK

ACK arrives, send next 

packet, t = RTT + L / R

last bit of 2nd packet arrives, send ACK
last bit of 3rd packet arrives, send ACK

3-packet pipelining increases

utilization by a factor of 3!

 

U 
sender = 

.0024 

30.008 
= 0.00081  

3L / R 

RTT + L / R 
= 
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Pipelined protocols: overview

Go-back-N:
▪ sender can have up to 

N unacked packets in 
pipeline

▪ receiver only sends 
cumulative ack

• doesn’t ack packet if 
there’s a gap

▪ sender has timer for 
oldest unacked packet

• when timer expires, 
retransmit all unacked 
packets

Selective Repeat:
▪ sender can have up to N 

unack’ed packets in 
pipeline

▪ rcvr sends individual ack
for each packet

▪ sender maintains timer 
for each unacked packet

• when timer expires, 
retransmit only that 
unacked packet
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Go-Back-N: sender

▪ k-bit seq # in pkt header

▪ “window” of up to N, consecutive unack’ed pkts allowed

▪ ACK(n): ACKs all pkts up to, including seq # n - “cumulative 
ACK”
• may receive duplicate ACKs (see receiver)

▪ timer for oldest in-flight pkt

▪ timeout(n): retransmit packet n and all higher seq # pkts in 
window
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GBN: sender extended FSM

Wait
start_timer

udt_send(sndpkt[base])

udt_send(sndpkt[base+1])

…

udt_send(sndpkt[nextseqnum-1])

timeout

rdt_send(data)

if (nextseqnum < base+N) {

sndpkt[nextseqnum] = make_pkt(nextseqnum,data,chksum)

udt_send(sndpkt[nextseqnum])

if (base == nextseqnum)

start_timer

nextseqnum++

}

else

refuse_data(data)

base = getacknum(rcvpkt)+1

If (base == nextseqnum)

stop_timer

else

start_timer

rdt_rcv(rcvpkt) && 

notcorrupt(rcvpkt) 

base=1

nextseqnum=1

rdt_rcv(rcvpkt) 

&& corrupt(rcvpkt)

L
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ACK-only: always send ACK for correctly-received 
pkt with highest in-order seq #

• may generate duplicate ACKs

• need only remember expectedseqnum

▪ out-of-order pkt: 
• discard (don’t buffer): no receiver buffering!

• re-ACK pkt with highest in-order seq #

Wait

udt_send(sndpkt)

default

rdt_rcv(rcvpkt)

&& notcurrupt(rcvpkt)

&& hasseqnum(rcvpkt,expectedseqnum) 

extract(rcvpkt,data)

deliver_data(data)

sndpkt = make_pkt(expectedseqnum,ACK,chksum)

udt_send(sndpkt)

expectedseqnum++

expectedseqnum=1

sndpkt =    

make_pkt(expectedseqnum,ACK,chksum)

L

GBN: receiver extended FSM
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GBN in action

send  pkt0
send  pkt1
send  pkt2
send  pkt3

(wait)

sender receiver

receive pkt0, send ack0
receive pkt1, send ack1

receive pkt3, discard, 
(re)send ack1rcv ack0, send pkt4

rcv ack1, send pkt5

pkt 2 timeout
send  pkt2
send  pkt3
send  pkt4
send  pkt5

Xloss

receive pkt4, discard, 
(re)send ack1

receive pkt5, discard, 
(re)send ack1

rcv pkt2, deliver, send ack2
rcv pkt3, deliver, send ack3
rcv pkt4, deliver, send ack4
rcv pkt5, deliver, send ack5

ignore duplicate ACK

0 1 2 3 4 5 6 7 8 

sender window (N=4)

0 1 2 3 4 5 6 7 8 

0 1 2 3 4 5 6 7 8 

0 1 2 3 4 5 6 7 8 

0 1 2 3 4 5 6 7 8 

0 1 2 3 4 5 6 7 8 

0 1 2 3 4 5 6 7 8 

0 1 2 3 4 5 6 7 8 

0 1 2 3 4 5 6 7 8 

0 1 2 3 4 5 6 7 8 
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Selective repeat

▪ receiver individually acknowledges all correctly 
received pkts

• buffers pkts, as needed, for eventual in-order delivery 
to upper layer

▪ sender only resends pkts for which ACK not 
received

• sender timer for each unACKed pkt

▪ sender window
• N consecutive seq #’s

• limits seq #s of sent, unACKed pkts
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Selective repeat: sender, receiver windows
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Selective repeat

data from above:
▪ if next available seq # in 

window, send pkt

timeout(n):
▪ resend pkt n, restart timer

ACK(n) in [sendbase,sendbase+N]:

▪ mark pkt n as received

▪ if n smallest unACKed pkt, 
advance window base to 
next unACKed seq # 

sender
pkt n in [rcvbase, rcvbase+N-1]

▪ send ACK(n)

▪ out-of-order: buffer

▪ in-order: deliver (also 
deliver buffered, in-order 
pkts), advance window to 
next not-yet-received pkt

pkt n in [rcvbase-N,rcvbase-1]

▪ ACK(n)

otherwise:
▪ ignore 

receiver



Transport Layer 3-54

Selective repeat in action

send  pkt0
send  pkt1
send  pkt2
send  pkt3

(wait)

sender receiver

receive pkt0, send ack0
receive pkt1, send ack1

receive pkt3, buffer, 
send ack3rcv ack0, send pkt4

rcv ack1, send pkt5

pkt 2 timeout
send  pkt2

Xloss

receive pkt4, buffer, 
send ack4

receive pkt5, buffer, 
send ack5

rcv pkt2; deliver pkt2,
pkt3, pkt4, pkt5; send ack2

record ack3 arrived

0 1 2 3 4 5 6 7 8 

sender window (N=4)

0 1 2 3 4 5 6 7 8 

0 1 2 3 4 5 6 7 8 

0 1 2 3 4 5 6 7 8 

0 1 2 3 4 5 6 7 8 

0 1 2 3 4 5 6 7 8 

0 1 2 3 4 5 6 7 8 

0 1 2 3 4 5 6 7 8 

0 1 2 3 4 5 6 7 8 

0 1 2 3 4 5 6 7 8 

record ack4 arrived

record ack5 arrived

Q: what happens when ack2 arrives?
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Selective repeat:
dilemma

example: 
▪ seq #’s: 0, 1, 2, 3

▪ window size=3

receiver window
(after receipt)

sender window
(after receipt)

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

pkt0

pkt1

pkt2

0 1 2 3 0 1 2 pkt0

timeout
retransmit pkt0

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2X

X

X

will accept packet
with seq number 0

(b) oops!

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

pkt0

pkt1

pkt2

0 1 2 3 0 1 2

pkt0

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

X

will accept packet
with seq number 0

0 1 2 3 0 1 2 pkt3

(a) no problem

receiver can’t see sender side.
receiver behavior identical in both cases!

something’s (very) wrong!

▪ receiver sees no 
difference in two 
scenarios!

▪ duplicate data 
accepted as new in (b)

Q: what relationship 
between seq # size 
and window size to 
avoid problem in (b)?
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Chapter 3 outline

3.1 transport-layer 
services

3.2 multiplexing and 
demultiplexing

3.3 connectionless 
transport: UDP

3.4 principles of reliable 
data transfer

3.5 connection-oriented 
transport: TCP
• segment structure

• reliable data transfer

• flow control

• connection management

3.6 principles of congestion 
control

3.7 TCP congestion control
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TCP: Overview  RFCs: 793,1122,1323, 2018, 2581

▪ full duplex data:
• bi-directional data flow 

in same connection

• MSS: maximum segment 
size

▪ connection-oriented:
• handshaking (exchange 

of control msgs) inits 
sender, receiver state 
before data exchange

▪ flow controlled:
• sender will not 

overwhelm receiver

▪ point-to-point:
• one sender, one receiver

▪ reliable, in-order byte 
steam:

• no “message 
boundaries”

▪ pipelined:
• TCP congestion and 

flow control set window 
size



Transport Layer 3-58

TCP segment structure

source port # dest port #

32 bits

application

data 

(variable length)

sequence number

acknowledgement number

receive window

Urg data pointerchecksum

FSRPAU
head

len

not

used

options (variable length)

URG: urgent data 

(generally not used)

ACK: ACK #

valid

PSH: push data now

(generally not used)

RST, SYN, FIN:

connection estab

(setup, teardown

commands)

# bytes 

rcvr willing

to accept

counting

by bytes 

of data

(not segments!)

Internet

checksum

(as in UDP)
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TCP seq. numbers, ACKs

sequence numbers:

• byte stream “number” of 
first byte in segment’s 
data

acknowledgements:

• seq # of next byte 
expected from other side

• cumulative ACK

Q: how receiver handles 
out-of-order segments

• A: TCP spec doesn’t say, 
- up to implementor source port # dest port #

sequence number

acknowledgement number

checksum

rwnd

urg pointer

incoming segment to sender

A

sent 
ACKed

sent, not-
yet ACKed
(“in-
flight”)

usable
but not 
yet sent

not 
usable

window size
N

sender sequence number space 

source port # dest port #

sequence number

acknowledgement number

checksum

rwnd

urg pointer

outgoing segment from sender
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TCP seq. numbers, ACKs

User
types
‘C’

host ACKs
receipt 

of echoed
‘C’

host ACKs
receipt of
‘C’, echoes
back ‘C’

simple telnet scenario

Host BHost A

Seq=42, ACK=79, data = ‘C’

Seq=79, ACK=43, data = ‘C’

Seq=43, ACK=80
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TCP round trip time, timeout

Q: how to set TCP 
timeout value?

▪ longer than RTT

• but RTT varies

▪ too short: premature 
timeout, unnecessary 
retransmissions

▪ too long: slow reaction 
to segment loss

Q: how to estimate RTT?
▪ SampleRTT: measured 

time from segment 
transmission until ACK 
receipt

• ignore retransmissions

▪ SampleRTT will vary, want 
estimated RTT “smoother”

• average several recent
measurements, not just 
current SampleRTT
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RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

100

150

200

250

300

350

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconnds)

R
T

T
 (

m
il

li
se

co
n

d
s)

SampleRTT Estimated RTT

EstimatedRTT = (1- )*EstimatedRTT + *SampleRTT

▪ exponential weighted moving average
▪ influence of past sample decreases exponentially fast
▪ typical value:  = 0.125

TCP round trip time, timeout

R
T
T
 (

m
ill

is
e
co

n
d
s)

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

sampleRTT

EstimatedRTT

time (seconds)
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▪ timeout interval: EstimatedRTT plus “safety margin”
• large variation in EstimatedRTT -> larger safety margin

▪ estimate SampleRTT deviation from EstimatedRTT: 

DevRTT = (1-)*DevRTT +

*|SampleRTT-EstimatedRTT|

TCP round trip time, timeout

(typically,  = 0.25)

TimeoutInterval = EstimatedRTT + 4*DevRTT

estimated RTT “safety margin”

* Check out the online interactive exercises for more 

examples: http://gaia.cs.umass.edu/kurose_ross/interactive/
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Chapter 3 outline

3.1 transport-layer 
services

3.2 multiplexing and 
demultiplexing

3.3 connectionless 
transport: UDP

3.4 principles of reliable 
data transfer

3.5 connection-oriented 
transport: TCP
• segment structure

• reliable data transfer

• flow control

• connection management

3.6 principles of congestion 
control

3.7 TCP congestion control
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TCP reliable data transfer

▪ TCP creates rdt service 
on top of IP’s unreliable 
service

• pipelined segments

• cumulative acks

• single retransmission 
timer

▪ retransmissions  
triggered by:

• timeout events

• duplicate acks

let’s initially consider 
simplified TCP sender:

• ignore duplicate acks

• ignore flow control, 
congestion control
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TCP sender events:

data rcvd from app:

▪ create segment with 
seq #

▪ seq # is byte-stream 
number of first data 
byte in  segment

▪ start timer if not 
already running 

• think of timer as for 
oldest unacked 
segment

• expiration interval: 
TimeOutInterval

timeout:

▪ retransmit segment 
that caused timeout

▪ restart timer

ack rcvd:

▪ if ack acknowledges 
previously unacked 
segments

• update what is known 
to be ACKed

• start timer if there are  
still unacked segments
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TCP sender (simplified)

wait

for 

event

NextSeqNum = InitialSeqNum

SendBase = InitialSeqNum

L

create segment, seq. #: NextSeqNum

pass segment to IP (i.e., “send”)

NextSeqNum = NextSeqNum + length(data) 

if (timer currently not running)

start timer

data received from application above

retransmit not-yet-acked segment         
with smallest seq. #

start timer

timeout

if (y > SendBase) { 

SendBase = y 

/* SendBase–1: last cumulatively ACKed byte */

if (there are currently not-yet-acked segments)

start timer

else stop timer 

} 

ACK received, with ACK field value y 
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TCP: retransmission scenarios

lost ACK scenario

Host BHost A

Seq=92, 8 bytes of data

ACK=100

Seq=92, 8 bytes of data

Xti
m

e
o
u
t

ACK=100

premature timeout

Host BHost A

Seq=92, 8 bytes of data

ACK=100

Seq=92,  8
bytes of data

ti
m

e
o
u
t

ACK=120

Seq=100, 20 bytes of data

ACK=120

SendBase=100

SendBase=120

SendBase=120

SendBase=92
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TCP: retransmission scenarios

X

cumulative ACK

Host BHost A

Seq=92, 8 bytes of data

ACK=100

Seq=120,  15 bytes of data

ti
m

e
o
u
t

Seq=100, 20 bytes of data

ACK=120
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TCP ACK generation [RFC 1122, RFC 2581]

event at receiver

arrival of in-order segment with

expected seq #. All data up to

expected seq # already ACKed

arrival of in-order segment with

expected seq #. One other 

segment has ACK pending

arrival of out-of-order segment

higher-than-expect seq. # .

Gap detected

arrival of segment that 

partially or completely fills gap

TCP receiver action

delayed ACK. Wait up to 500ms

for next segment. If no next segment,

send ACK

immediately send single cumulative 

ACK, ACKing both in-order segments 

immediately send duplicate ACK,

indicating seq. # of next expected byte

immediate send ACK, provided that

segment starts at lower end of gap
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TCP fast retransmit

▪ time-out period  often 
relatively long:

• long delay before 
resending lost packet

▪ detect lost segments 
via duplicate ACKs.

• sender often sends 
many segments back-
to-back

• if segment is lost, there 
will likely be many 
duplicate ACKs.

if sender receives 3 
ACKs for same data

(“triple duplicate ACKs”),

resend unacked 
segment with smallest 
seq #
▪ likely that unacked 

segment lost, so don’t 
wait for timeout

TCP fast retransmit

(“triple duplicate ACKs”),
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X

fast retransmit after sender 
receipt of triple duplicate ACK

Host BHost A

Seq=92, 8 bytes of data

ACK=100

ti
m

e
o
u
t

ACK=100

ACK=100

ACK=100

TCP fast retransmit

Seq=100, 20 bytes of data

Seq=100, 20 bytes of data
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Chapter 3 outline

3.1 transport-layer 
services

3.2 multiplexing and 
demultiplexing

3.3 connectionless 
transport: UDP

3.4 principles of reliable 
data transfer

3.5 connection-oriented 
transport: TCP
• segment structure

• reliable data transfer

• flow control

• connection management

3.6 principles of congestion 
control

3.7 TCP congestion control
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TCP flow control
application

process

TCP socket
receiver buffers

TCP
code

IP
code

application

OS

receiver protocol stack

application may 
remove data from 

TCP socket buffers …. 

… slower than TCP 
receiver is delivering
(sender is sending)

from sender

receiver controls sender, so 

sender won’t overflow 

receiver’s buffer by transmitting 

too much, too fast

flow control
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TCP flow control

buffered data

free buffer spacerwnd

RcvBuffer

TCP segment payloads

to application process

▪ receiver “advertises” free 
buffer space by including 
rwnd value in TCP header 
of receiver-to-sender 
segments

• RcvBuffer size set via 
socket options (typical default 
is 4096 bytes)

• many operating systems 
autoadjust RcvBuffer

▪ sender limits amount of 
unacked (“in-flight”) data to 
receiver’s rwnd value 

▪ guarantees receive buffer 
will not overflow

receiver-side buffering
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Chapter 3 outline

3.1 transport-layer 
services

3.2 multiplexing and 
demultiplexing

3.3 connectionless 
transport: UDP

3.4 principles of reliable 
data transfer

3.5 connection-oriented 
transport: TCP
• segment structure

• reliable data transfer

• flow control

• connection management

3.6 principles of congestion 
control

3.7 TCP congestion control
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Connection Management

before exchanging data, sender/receiver “handshake”:
▪ agree to establish connection (each knowing the other willing 

to establish connection)

▪ agree on connection parameters

connection state: ESTAB
connection variables:

seq # client-to-server
server-to-client

rcvBuffer size

at server,client 

application

network

connection state: ESTAB
connection Variables:

seq # client-to-server
server-to-client

rcvBuffer size

at server,client 

application

network

Socket clientSocket =   

newSocket("hostname","port 

number");

Socket connectionSocket = 

welcomeSocket.accept();
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Q: will 2-way handshake 
always work in 
network?

▪ variable delays

▪ retransmitted messages (e.g. 
req_conn(x)) due to 
message loss

▪ message reordering

▪ can’t “see” other side

2-way handshake:

Let’s talk

OK
ESTAB

ESTAB

choose x
req_conn(x)

ESTAB

ESTAB
acc_conn(x)

Agreeing to establish a connection



Transport Layer 3-79

Agreeing to establish a connection

2-way handshake failure scenarios:

retransmit
req_conn(x)

ESTAB

req_conn(x)

half open connection!
(no client!)

client 
terminates

server
forgets x

connection 
x completes

retransmit
req_conn(x)

ESTAB

req_conn(x)

data(x+1)

retransmit
data(x+1)

accept
data(x+1)

choose x
req_conn(x)

ESTAB

ESTAB

acc_conn(x)

client 
terminates

ESTAB

choose x
req_conn(x)

ESTAB

acc_conn(x)

data(x+1) accept
data(x+1)

connection 
x completes server

forgets x



Transport Layer 3-80

TCP 3-way handshake

SYNbit=1, Seq=x

choose init seq num, x
send TCP SYN msg

ESTAB

SYNbit=1, Seq=y
ACKbit=1; ACKnum=x+1

choose init seq num, y
send TCP SYNACK
msg, acking SYN

ACKbit=1, ACKnum=y+1

received SYNACK(x) 
indicates server is live;
send ACK for SYNACK;

this segment may contain 
client-to-server data

received ACK(y) 
indicates client is live

SYNSENT

ESTAB

SYN RCVD

client state

LISTEN

server state

LISTEN
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TCP 3-way handshake: FSM

closed

L

listen

SYN
rcvd

SYN
sent

ESTAB

Socket clientSocket =   

newSocket("hostname","port 

number");

SYN(seq=x)

Socket connectionSocket = 

welcomeSocket.accept();

SYN(x)

SYNACK(seq=y,ACKnum=x+1)
create new socket for 

communication back to client

SYNACK(seq=y,ACKnum=x+1)

ACK(ACKnum=y+1)
ACK(ACKnum=y+1)

L
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TCP: closing a connection

▪ client, server each close their side of connection
• send TCP segment with FIN bit = 1

▪ respond to received FIN with ACK
• on receiving FIN, ACK can be combined with own FIN

▪ simultaneous FIN exchanges can be handled
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FIN_WAIT_2

CLOSE_WAIT

FINbit=1, seq=y

ACKbit=1; ACKnum=y+1

ACKbit=1; ACKnum=x+1

wait for server
close

can still
send data

can no longer
send data

LAST_ACK

CLOSED

TIMED_WAIT

timed wait 
for 2*max 

segment lifetime

CLOSED

TCP: closing a connection

FIN_WAIT_1 FINbit=1, seq=xcan no longer
send but can
receive data

clientSocket.close()

client state server state

ESTABESTAB
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Chapter 3 outline

3.1 transport-layer 
services

3.2 multiplexing and 
demultiplexing

3.3 connectionless 
transport: UDP

3.4 principles of reliable 
data transfer

3.5 connection-oriented 
transport: TCP
• segment structure

• reliable data transfer

• flow control

• connection management

3.6 principles of congestion 
control

3.7 TCP congestion control
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congestion:
▪ informally: “too many sources sending too much 

data too fast for network to handle”
▪ different from flow control!

▪ manifestations:

• lost packets (buffer overflow at routers)

• long delays (queueing in router buffers)

▪ a top-10 problem!

Principles of congestion control
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Causes/costs of congestion: scenario 1

▪ two senders, two 
receivers

▪ one router, infinite buffers 

▪ output link capacity: R

▪ no retransmission

▪ maximum per-connection 
throughput: R/2

unlimited shared 

output link buffers

Host A

original data: lin

Host B

throughput: lout

R/2

R/2

l
o

u
t

lin R/2
d

e
la

y
lin

❖ large delays as arrival rate, lin, 
approaches capacity
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▪ one router, finite buffers 

▪ sender retransmission of timed-out packet
• application-layer input = application-layer output: lin = 
lout

• transport-layer input includes retransmissions : lin lin

finite shared output 

link buffers

Host A

lin : original data

Host B

loutl'in: original data, plus

retransmitted data

‘

Causes/costs of congestion: scenario 2
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idealization: perfect 
knowledge

▪ sender sends only when 
router buffers available 

finite shared output 

link buffers

lin : original data
loutl'in: original data, plus

retransmitted data

copy

free buffer space!

R/2

R/2

l
o

u
t

lin

Causes/costs of congestion: scenario 2

Host B

A
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lin : original data
loutl'in: original data, plus

retransmitted data

copy

no buffer space!

Idealization: known loss
packets can be lost, 
dropped at router due  
to full buffers

▪ sender only resends if 
packet known to be lost

Causes/costs of congestion: scenario 2

A

Host B
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lin : original data
loutl'in: original data, plus

retransmitted data

free buffer space!

Causes/costs of congestion: scenario 2

Idealization: known loss
packets can be lost, 
dropped at router due  
to full buffers

▪ sender only resends if 
packet known to be lost

R/2

R/2lin

l
o

u
t

when sending at R/2, 

some packets are 

retransmissions but 

asymptotic goodput 

is still R/2 (why?)

A

Host B
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A

lin
loutl'in

copy

free buffer space!

timeout

R/2

R/2lin

l
o

u
t

when sending at R/2, 

some packets are 

retransmissions 

including duplicated 

that are delivered!

Host B

Realistic: duplicates
▪ packets can be lost, dropped at 

router due  to full buffers

▪ sender times out prematurely, 
sending two copies, both of 
which are delivered

Causes/costs of congestion: scenario 2
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R/2

l
o

u
t

when sending at R/2, 

some packets are 

retransmissions 

including duplicated 

that are delivered!

“costs” of congestion:
▪ more work (retrans) for given “goodput”
▪ unneeded retransmissions: link carries multiple copies of pkt

• decreasing goodput

R/2lin

Causes/costs of congestion: scenario 2

Realistic: duplicates
▪ packets can be lost, dropped at 

router due  to full buffers

▪ sender times out prematurely, 
sending two copies, both of 
which are delivered
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▪ four senders

▪ multihop paths

▪ timeout/retransmit

Q: what happens as lin and lin
’

increase ?

finite shared output 

link buffers

Host A lout

Causes/costs of congestion: scenario 3

Host B

Host C

Host D

lin : original data

l'in: original data, plus

retransmitted data

A: as red  lin
’ increases, all arriving 

blue pkts at upper queue are 
dropped, blue throughput g 0
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another “cost” of congestion:

▪ when packet dropped, any “upstream 
transmission capacity used for that packet was 
wasted!

Causes/costs of congestion: scenario 3

C/2

C/2

l
o

u
t

lin
’
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Chapter 3 outline

3.1 transport-layer 
services

3.2 multiplexing and 
demultiplexing

3.3 connectionless 
transport: UDP

3.4 principles of reliable 
data transfer

3.5 connection-oriented 
transport: TCP
• segment structure

• reliable data transfer

• flow control

• connection management

3.6 principles of congestion 
control

3.7 TCP congestion control
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TCP congestion control: additive increase 
multiplicative decrease

▪ approach: sender increases transmission rate (window 
size), probing for usable bandwidth, until loss occurs

• additive increase: increase  cwnd by 1 MSS every 
RTT until loss detected

• multiplicative decrease: cut cwnd in half after loss 
c
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AIMD saw tooth

behavior: probing

for bandwidth

additively increase window size …
…. until loss occurs (then cut window in half)

time
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TCP Congestion Control: details

▪ sender limits transmission:

▪ cwnd is dynamic, function 
of perceived network 
congestion

TCP sending rate:

▪ roughly: send cwnd 
bytes, wait RTT for 
ACKS, then send 
more bytes

last byte
ACKed sent, not-

yet ACKed
(“in-
flight”)

last byte 
sent

cwnd

LastByteSent-

LastByteAcked
< cwnd

sender sequence number space 

rate ~~
cwnd

RTT
bytes/sec
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TCP Slow Start 

▪ when connection begins, 
increase rate 
exponentially until first 
loss event:

• initially cwnd = 1 MSS

• double cwnd every RTT

• done by incrementing 
cwnd for every ACK 
received

▪ summary: initial rate is 
slow but ramps up 
exponentially fast

Host A

R
T

T

Host B

time
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TCP: detecting, reacting to loss

▪ loss indicated by timeout:
• cwnd set to 1 MSS; 

• window then grows exponentially (as in slow start) 
to threshold, then grows linearly

▪ loss indicated by 3 duplicate ACKs: TCP RENO

• dup ACKs indicate network capable of  delivering 
some segments 

• cwnd is cut in half window then grows linearly

▪ TCP Tahoe always sets cwnd to 1 (timeout or 3 
duplicate acks)
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Q: when should the 
exponential 
increase switch to 
linear? 

A: when cwnd gets 
to 1/2 of its value 
before timeout.

Implementation:
▪ variable ssthresh

▪ on loss event, ssthresh
is set to 1/2 of cwnd just 
before loss event

TCP: switching from slow start to CA

* Check out the online interactive exercises for more 

examples: http://gaia.cs.umass.edu/kurose_ross/interactive/
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Summary: TCP Congestion Control

timeout

ssthresh = cwnd/2
cwnd = 1 MSS

dupACKcount = 0

retransmit missing segment

L

cwnd > ssthresh

congestion

avoidance 

cwnd = cwnd + MSS    (MSS/cwnd)
dupACKcount = 0

transmit new segment(s), as allowed

new ACK
.

dupACKcount++

duplicate ACK

fast

recovery 

cwnd = cwnd + MSS
transmit new segment(s), as allowed

duplicate ACK

ssthresh= cwnd/2
cwnd = ssthresh + 3

retransmit missing segment

dupACKcount == 3

timeout

ssthresh = cwnd/2
cwnd = 1 
dupACKcount = 0

retransmit missing segment

ssthresh= cwnd/2
cwnd = ssthresh + 3
retransmit missing segment

dupACKcount == 3cwnd = ssthresh
dupACKcount = 0

New ACK

slow 

start

timeout

ssthresh = cwnd/2 
cwnd = 1 MSS

dupACKcount = 0
retransmit missing segment

cwnd = cwnd+MSS
dupACKcount = 0
transmit new segment(s), as allowed

new ACKdupACKcount++

duplicate ACK

L

cwnd = 1 MSS
ssthresh = 64 KB
dupACKcount = 0

New
ACK!

New
ACK!

New
ACK!
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TCP throughput

▪ avg. TCP thruput as function of window size, RTT?
• ignore slow start, assume always data to send

▪ W: window size (measured in bytes) where loss occurs
• avg. window size (# in-flight bytes) is ¾  W

• avg. thruput is 3/4W per RTT

W

W/2

avg TCP thruput = 
3
4

W
RTT

bytes/sec
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TCP Futures: TCP over “long, fat pipes”

▪ example: 1500 byte segments, 100ms RTT, want 
10 Gbps throughput

▪ requires W = 83,333 in-flight segments

▪ throughput in terms of segment loss probability, L 
[Mathis 1997]:

➜ to achieve 10 Gbps throughput, need a loss rate of L 
= 2·10-10  – a very small loss rate!

▪ new versions of TCP for high-speed

TCP throughput = 
1.22 . MSS

RTT L
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fairness goal: if K TCP sessions share same 
bottleneck link of bandwidth R, each should have 
average rate of R/K

TCP connection 1

bottleneck

router

capacity R

TCP Fairness

TCP connection 2



Transport Layer 3-105

Why is TCP fair?

two competing sessions:
▪ additive increase gives slope of 1, as throughout increases

▪ multiplicative decrease decreases throughput proportionally 

R

R

equal bandwidth share

Connection 1 throughput

congestion avoidance: additive increase

loss: decrease window by factor of 2

congestion avoidance: additive increase
loss: decrease window by factor of 2
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Fairness (more)

Fairness and UDP

▪ multimedia apps often 
do not use TCP

• do not want rate 
throttled by congestion 
control

▪ instead use UDP:
• send audio/video at 

constant rate, tolerate 
packet loss

Fairness, parallel TCP 
connections

▪ application can open 
multiple parallel 
connections between 
two hosts

▪ web browsers do this 

▪ e.g., link of rate R with 9 
existing connections:

• new app asks for 1 TCP, gets 
rate R/10

• new app asks for 9 TCPs, gets 
R/2 
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network-assisted congestion control:
▪ two bits in IP header (ToS field) marked by network router

to indicate congestion

▪ congestion indication carried to receiving host

▪ receiver (seeing congestion indication in IP datagram) ) 
sets ECE bit on receiver-to-sender ACK segment to 
notify sender of congestion

Explicit Congestion Notification (ECN)

source

application

transport

network

link

physical

destination

application

transport

network

link

physical

ECN=00 ECN=11

ECE=1

IP datagram

TCP ACK segment
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Chapter 3: summary

▪ principles behind transport 
layer services:

• multiplexing, 
demultiplexing

• reliable data transfer

• flow control

• congestion control

▪ instantiation, 
implementation in the 
Internet

• UDP

• TCP

next:

▪ leaving the network 
“edge” (application, 
transport layers)

▪ into the network 
“core”

▪ two network layer 
chapters:

• data plane

• control plane


