Chapter 3
Transport Layer

A note on the use of these Powerpoint slides:

We’ re making these slides freely available to all (faculty, students, readers).
They’re in PowerPoint form so you see the animations; and can add, modify,
and delete slides (including this one) and slide content to suit your needs.

They obviously represent a lot of work on our part. In return for use, we only

ask the following: COm,DUfEI‘
* |f you use these slides (e.g., in a class) that you mention their source N@tWOfk/ng.' A Top

(after all, we’ d like people to use our book!)
= |f you post any slides on a www site, that you note that they are adapted
from (or perhaps identical to) our slides, and note our copyright of this DOW” ApproaCh
material. i .
7t Edition, Global Edition

Jim Kurose, Keith Ross

© All material copyright 1996-2016 Pearson
J.F Kurose and K.W. Ross, All Rights Reserved April 2016

Thanks and enjoy! JFK/IKWR

Transport Layer 2-1

Chapter 3: Transport Layer

our goals:
= understand principles = learn about Internet
behind transport transport layer protocols:
layer services: UDP: connectionless
 multiplexing, transport
demultiplexing * TCP: connection-oriented
* reliable data transfer reliable transport
e flow control * TCP congestion control

* congestion control

Transport Layer 3-2

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP

* segment structure

* reliable data transfer

* flow control

* connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-3

Transport services and protocols

appllcatlon
Plaaniy ‘

transport
networ
data link |ro's
phy5|cal

s

E

" provide logical communication
between app processes
running on different hosts

" transport protocols run in
end systems

* send side: breaks app
messages into segments,
passes to network layer

e rcv side: reassembles _
segments into messages, transport

network

passes to app layer , data Ik

phy5|cal
" more than one transport
protocol available to apps

* Internet;: TCP and UDP

3

Transport Layer 3-4

Transport vs. network layer

= network layer: logical

, - household analogy:
communication 12 fide i AT .
ids in Ann s house sending
between hosts letters to |2 kids in Bill 's
" transport layer: house:
Iogical * hosts = houses
communication " processes = kids |
between processes " app messages = letters in
e reli hances envelopes
refies oln,len ‘ " transport protocol = Ann
network layer and Bill who demux to in-
services house siblings
" network-layer protocol =
postal service

Transport Layer 3-5

Internet transport-layer protocols

= reliable, in-order
delivery (TCP)

* congestion control
* flow control
* connection setup

= unreliable, unordered
delivery: UDP

* no-frills extension of
“best-effort” IP

" services not available:
* delay guarantees
* bandwidth guarantees

<& 7

application
DO

net

B, | rcheroe
data li
hysi
, PYee network
netwi data link
data linR(e, hysical ——
physical O
ork a
k
qf'\'ﬁ')\ p &
& q network 4
@»5% data link O
%@7 physical s
|__networkN[®,
data link
shysical
network
data link

physical

“ network
data link
e physical

% 3

d

ation

networ
data link
physical

Transport Layer 3-6

Chapter 3 outline

3.l transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP

* segment structure

* reliable data transfer

* flow control

* connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-7

Multiplexing/demultiplexing

- multiplexing at sender:
handle data from multiple
sockets, add transport header
(later used for demultiplexing)

— demultiplexing at receiver: —
use header info to deliver
received segments to correct
socket

application
application
\
transport NetWwark
network it

link physi¢al
N/ _

physical

application |:| socket
Q process
trangport
netork
[{pk D
physical

Transport Layer 3-8

How demultiplexing works

" host receives |IP datagrams

* each datagram has source IP
address, destination [P
address

* each datagram carries one
transport-layer segment

* each segment has source,
destination port number
" host uses IP addresses &
pbort numbers to direct
segment to appropriate
socket

32 bits

source port # | dest port #

other header fields

application
data

(payload)

TCP/UDP segment format

Transport Layer 3-9

Connectionless demultiplexing

" recall: created socket has " recall: when creating
host-local port #: datagram to send into UDP
DatagramSocket mySocketl socket, Must specify
= new DatagramSocket (12534); . .

* destination IP address

* destination port #

= when host receives UDP IP datagrams with same
segment: dest. port #, but different
* checks destination port # D :::g}fj lij:lcderle:c‘:'fts
in segment : :
_ 8 numbers will be directed
* directs UDP segment to to same socket at dest

socket with that port #

Transport Layer 3-10

Connectionless demux: example

DatagramSocket
serverSocket = new
DatagramSocket DatagramSocket DatagramSocket
mySocket2 = new g mySocketl = new
DatagramSocket (6428) ; DatagramSocket

(9157) ; application (5773) ;
application application
44
y tramsport o[, al
trangport et wo n transport
nefwork | n|< netwprk
link plh‘/sical link
[‘! physical phykical \
source port: 6428 source port: ?
. dest port: 9157 L dest port: ?
> e ¥
source port: 9157 source port: ?
dest port: 6428 dest port: ?

Transport Layer 3-11

Connection-oriented demux

= TCP socket identified " server host may support
by 4-tuple: many simultaneous TCP
* source IP address sockets:
* source port number * each socket identified by
* dest IP address its own 4-tuple
» dest port number = web servers have

different sockets for

= demux: receiver uses all , :
each connecting client

four values to direct

segment to appropriate * non-persistent HT TP will
socket have different socket for

each request

Transport Layer 3-12

Connection-oriented demux: examEIe

application
application - - - application
A ansport _Ijﬁ
tranpport Tetvbork Fansport
netyvork lidk network
lihk)hysical link
:" ‘f phykical gl server: [P physical E' \
e address B o
host: IP source IP,port: B,80 + host: IP
address A dest IPport: A,9157 source IP,port: C,5775 address C
DS dest IP,port: B,80
source IP,port: A,9157 -
dest If, port: B8O source IP,port: C,9157

dest IP,port: B,80

three segments, all destined to IP address: B,

dest port: 80 are demultiplexed to different sockets Transport Layer 3-13

Connection-oriented demux: examEIe

threaded server

application

application

application

trangport _ljmansport
netyvork network
link link
:" ‘f phykical gl server: [P physical E' \
e — address B o
host: IP source IP,port: B,80 + host: IP
address A dest IPport: A,9157 source IP,port: C,5775 address C
- dest IP,port: B,80
source IP,port: A,9157 -
dest IP ' B
est IF, port: 8,80 source IP,port: C,9157

dest IP,port: B,80

Transport Layer 3-14

Chapter 3 outline

3.l transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP

* segment structure

* reliable data transfer

* flow control

* connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-15

UDP: User Datagram Protocol [RFC 768]

= “no frills,” “bare bones”
Internet transport
protocol

= “best effort” service, UDP

segments may be:
* lost

e delivered out-of-order
to app

m connectionless:

* no handshaking
between UDP sender,
receiver

* each UDP segment
handled independently
of others

= UDP use:

" streaming multimedia
apps (loss tolerant, rate
sensitive)

= DNS
= SNMP

= reliable transfer over
UDP:

" add reliability at
application layer

= application-specific error
recovery!

Transport Layer 3-16

UDP: segment header

length, in bytes of
UDP segment,
including header

32 bits

source port #

~

length <~ | checksum

— why is there a UDP? ___

" NO connhection

application establishment (which can
data add delay)
(payload)

" simple: no connection
state at sender, receiver

= small header size

" no congestion control:
UDP can blast away as fast
as desired

UDP segment format

Transport Layer 3-17

UDP checksum

Goal: detect “errors” (e.g., flipped bits) in transmitted

segment

sender:

" treat segment contents,
including header fields,
as sequence of 16-bit
integers

" checksum: addition
(one s complement sum)
of segment contents

" sender puts checksum
value into UDP checksum
field

receiver:

= compute checksum of
received segment

* check if computed checksum
equals checksum field value:

e NO - error detected

* YES - no error detected.
But maybe errors
nonetheless? More later

Transport Layer 3-18

Internet checksum: example

example: add two | 6-bit integers

6-
1 1 O 01 O 01 O 01
1 1 1 01 1 01 1 01

O =
= O

1 1 1
0] 0] o)

wraparound (1)1 001 1 101110111011

sum

10 0 0
checksum 01 1 1

= O
= O

1 11 1 11 1111

00O 00O 0O0O00O

Note: when adding numbers, a carryout from the most
significant bit needs to be added to the result

* Check out the online interactive exercises for more
examples: http://gaia.cs.umass.edu/kurose_ross/interactive/ Transport Layer 3-19

Chapter 3 outline

3.l transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP

* segment structure

* reliable data transfer

* flow control

* connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-20

Principles of reliable data transfer

" important in application, transport, link layers
* top-10 list of important networking topics!

sending receiver I
process I process
| 1
reliable chcnrmel)j

application
layer

fransport
layer

() provided service

= characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

Transport Layer 3-21

Principles of reliable data transfer

" important in application, transport, link layers
* top-10 list of important networking topics!

sending receiver I
process I process
| 1
reliable chcnrmel)j

application
layer

fransport
layer

Junreliable Chonnel)i

(a) provided service (b) service implementation

= characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

Transport Layer 3-22

Principles of reliable data transfer

" important in application, transport, link layers
* top-10 list of important networking topics!

senalngl receiver I
process process
! f

. rdt send()
reliable chcnrmel)j —

application
layer

deliver data()

=

8_ 5 reliable data reliable data

B > transfer protocol transfer protocol

% O (sending side) (receiving side)

+ udt_send()i [packet | [packet] Irdt rev()

Junreliable Chonnel)i

(a) provided service (b) service implementation

= characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

Transport Layer 3-23

Reliable data transfer: getting started

rdt send () : called from above, deliver data () : called by
(e.g., by app.). Passed data to rdt to deliver data to upper
deliver to receiver upper layer /
rdt_send() data Tdeliver_data()
send [reliable data reliable data recejve
i fransfer profocol transfer protocol i
SIO€ |sending side) (receiving side) Slae
udt send ()i packet packet Irdt rcv ()
T—»()unrelicible channel)J
udt send () : called by rdt, rdt rcv () : called when packet
to transfer packet over arrives on rcv-side of channel
unreliable channel to receiver

Transport Layer 3-24

Reliable data transfer: getting started

’
we |l
" incrementally develop sender, receiver sides of
reliable data transfer protocol (rdt)
= consider only unidirectional data transfer
* but control info will flow on both directions!

"= use finite state machines (FSM) to specify sender,

receiver
event causing state transition
actions taken on state transition

state: when in this
“state” next state
uniquely determined
by next event

|

Transport Layer 3-25

rdt|.0: reliable transfer over a reliable channel

= underlying channel perfectly reliable
* no bit errors
* no loss of packets

= separate FSMs for sender, receiver:

* sender sends data into underlying channel
* receiver reads data from underlying channel

rdt_rcv(packet)

extract (packet,data)
deliver_data(data)

Wait for
call from
below

rdt_send(data)

Wait for
call from
above

packet = make pkt(data)
udt_send(packet)

sender receiver

Transport Layer 3-26

rdt2.0: channel with bit errors

* underlying channel may flip bits in packet
* checksum to detect bit errors

" the question: how to recover from errors:

»

How do humans recover from ‘errors
during conversation?

Transport Layer 3-27

rdt2.0: channel with bit errors

* underlying channel may flip bits in packet
* checksum to detect bit errors

" the question: how to recover from errors:
* acknowledgements (ACKs): receiver explicitly tells sender
that pkt received OK

* negative acknowledgements (NAKs): receiver explicitly tells
sender that pkt had errors

* sender retransmits pkt on receipt of NAK

" new mechanisms in rdt2.0 (beyond rdt1.0):
* error detection

* feedback: control msgs (ACK,NAK) from receiver to
sender

Transport Layer 3-28

rdt2.0: FSM specification

rdt_send(data)

sndpkt = make_pkt(data, checksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
ISNAK((rcvpkt)

Wait for
call from
above

udt_send(sndpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)
A

sender

receiver

rdt_rcv(rcvpkt) &&
corrupt(rcvpkt)

udt_send(NAK)

Wait for
call from
below

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)
extract(rcvpkt,data)

deliver_data(data)
udt_send(ACK)

Transport Layer 3-29

rdt2.0: operation with no errors

rdt_send(data)

snkpkt = make pkt(data, checksum)
udt send(sndpkt

rdt_rcv(rcvpkt) &&
ISNAK((rcvpkt)

Wait for
call from
above

rdt_rcv(rcvpkt) &&
udt send(sndpkt) corrupt(rcvpkt)

udt_send(NAK)

D

Wait for
call from
below

rdt_rcv(rcvpkt) && isACK(rcvpkt)
3
A

rdt rcv(rcvka &&
notcorrupt(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

Transport Layer 3-30

rdt2.0: error scenario

rdt_send(data)

snkpkt = make pkt(data, checksum)
udt send(sndpkt)

dt rev(

£

rcvpkt) &&

Wait for
call from
above

rdt_rcv(rcvpkt) &&
corrupt(rcvpkt)

dt send(NAK

udt_send(sndpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt) A
<
A

Wait for
call from
below

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

Transport Layer 3-31

rdt2.0 has a fatal flaw!

what happens if handling duplicates:
ACK/NAK ’corrupted? " sender retransmits

= sender doesn t know current pkt if ACK/NAK
what happened at corrupted
receiver!

" sender adds sequence
number to each pkt

= receiver discards (doesn’ t
deliver up) duplicate pkt

= can’ t just retransmit:
possible duplicate

— stop and wait
sender sends one packet,

then waits for receiver
response

Transport Layer 3-32

rdt2.1: sender, handles garbled ACK/NAKSs

rdt_send(data)

sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
ISNAK(rcvpkt))

udt_send(sndpkt)

Wait for
ACK or
NAK O

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& iISACK(rcvpkt)

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& iISACK(rcvpkt)

t A
Wait for
ACK or
rdt_rcv(rcvpkt) && NAK 1
(corrupt(rcvpkt) ||
iSNAK (rcvpkt)) rdt_send(data)
udt_send(sndpkt) sndpkt = make_pkt(1, data, checksum)

udt_send(sndpkt)

Transport Layer 3-33

rdt2.1: receiver, handles garbled ACK/NAKs

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seqO(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

\
\

rdt_rcv(rcvpkt) && (corrupt(rcvpkt) \\

rdt_rcv(rcvpkt) && (corrupt(rcvpkt)

sndpkt = make_pkt(NAK, chksum)
udt_send(sndpkt)

sndpkt = make_pkt(NAK, chksum) \

udt_send(sndpkt) Q

rdt_rcv(rcvpkt) &&
not corrupt(rcvpkt) && (
has_seql(rcvpkt)

sndpkt = make_pkt(ACK, chksum)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
not corrupt(rcvpkt) &&
has_seqgO(rcvpkt)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seql(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

Transport Layer 3-34

rdt2.l: discussion

sender: receiver:
" seq # added to pkt " must check if received
= two seq. # s (0,1) will packet is duplicate
suffice. Why? * state indicates whether
" must check if received ge:r#l 's expected pke
ACK/NAK corrupted .
. " note: receiver can not
" twice as many states know if its last
° state must ACK/NAK received
remember whether OK at sender

“expected” pkt should
have seq # of 0 or |

Transport Layer 3-35

rdt2.2: a NAK-free protocol

= same functionality as rdt2.1, using ACKs only

" instead of NAK, receiver sends ACK for last pkt
received OK

* receiver must explicitly include seq # of pkt being ACKed

" duplicate ACK at sender results in same action as
NAK: retransmit current pkt

Transport Layer 3-36

rdt2.2: sender, receiver fragments

rdt_send(data)
sndpkt = make_pkt(0, data, checksum)

udt_send(sndpkt)
~. — — rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||

....................... o o)) Aol
..................................... above 0 udt_send(sndpkt)
... sender FSM

... fragment rdt_rcv(rcvpkt)
...................................... && notcorrupt(rcvpkt)
wrotengse T && IsACK(rcvpkt,0)

(Corrupt(rcvpkt) ” A
e o) receiver FSM

JT— fragment

(I T

rdt_rcv(rcvpkt) && notcorrupt(rcvpkty e
&& has_seql(rcvpkt)

extract(rcvpkt,data)

deliver_data(data)

sndpkt = make_ pkt(ACK1, chksum)

udt_send(sndpkt) Transport Layer 3-37

rdt3.0: channels with errors and loss

new assumption:
underlying channel can

also lose packets (data,

ACKs)

* checksum, seq. #,
ACKSs, retransmissions
will be of help ... but
not enough

approach sender waits

“reasonable” amount of
time for ACK

= retransmits if no ACK
received in this time

= if pkt (or ACK) just delayed
(not lost):

* retransmission will be
duplicate, but seq. # s
already handles this

* receiver must specify seq
of pkt being ACKed
" requires countdown timer

Transport Layer 3-38

rdt3.0 sender

rdt_send(data)

rdt_rcv(rcvpkt) &&

\ sndpkt = make_pkt(0, data, checksum)
\ udt_send(sndpkt)
\ start_timer

rdt_rcv(rcvpkt)
A

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& iIsACK(rcvpkt,1)

stop_timer

timeout
udt_send(sndpkt) C
start_timer (/

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
ISACK(rcvpkt,0))

A

Wait for
call Ofrom
above

(corrupt(rcvpkt) ||
ISACK(rcvpkt,1))
A

timeout
udt_send(sndpkt)
start_timer

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& iIsSACK(rcvpkt,0)

stop_timer

Wait for
call 1 from
above

rdt_rcv(rcvpkt)
A

rdt_send(data)

sndpkt = make_pkt(1, data, checksum)
udt_send(sndpkt)
start_timer

Transport Layer 3-39

rdt3.0 in action

sender receiver
send pkt0 ktO
\\ Frcv pkto
ack send ackO
rcv ackO
send pktl \Wl\‘
rcv pktl
A}k/ send ackl
rcv ackl
send pkt0 \NO\‘
rcv pktO
ack send ackO
(a) no loss

sender
send pktO

rcv ackO
send pktl_

receliver

ktO
\\ rcv pkt0

ack send ackO

fé

timeout_
resend pktl

rcv ackl
send pkt0

/

ktl

/

rcv pktl
ck send ackl

ktO

\i

rcv pkt0
ack send ackO

(b) packet loss

Transport Layer 3-40

rdt3.0 in action

sender receliver
send pktO ktO
\\ Fcv pkto
ack send ackO
rcv ackO
send pktl_ \K
rcv pktl
yockl—=" send ack1

loss
‘ t/meout_
resend pktl \K rcv pktl
s
rcv ackl
send pkt0 \!to\‘
rcv pktO

ack send ackO

(c) ACK loss

sender receiver
send pkt0
\\ rcv pkto
send ackO
rcv ackO /
send pktl_ \\
rcv pktl

send ack1l
ackl
‘ t/meou
resend pktl rcv pktl
rcv ackl (detect dupllcate)

send pktoﬁ< send ack
rcv ackl rcv pktO

send pkt0 send ack0
rcv pktO

/ (detect duplicate)
send ackO
(d) premature timeout/ delayed ACK

Transport Layer 3-41

Performance of rdt3.0

" rdt3.0 is correct, but performance stinks
" e.g.: | Gbps link, 15 ms prop. delay, 8000 bit packet:

8000 bits

L .
= — = ; = 8 microsecs
Dirans = R 1P bits/sec
= U 4o utilization — fraction of time sender busy sending
L/R .008
u_ = 2% = 0.00027

sender BTT + /R ~ 30.008

= if RTT=30 msec, | KB pkt every 30 msec: 33kB/sec thruput
over | Gbps link

" network protocol limits use of physical resources!

Transport Layer 3-42

rdt3.0: stop-and-wait operation

sender receiver
first packet bit transmitted, t =0

last packet bit transmitted, t = L/ R 1]

first packet bit arrives

RTT —last packet bit arrives, send ACK

ACK arrives, send next|
packet, t = RTT + L/ R [~
QO

U L/R .008

sender = ———T = ooos - 0.00027

Transport Layer 3-43

Pipelined protocols

pipelining: sender allows multiple, “in-flight”, yet-
to-be-acknowledged pkts
* range of sequence numbers must be increased
* buffering at sender and/or receiver

data pc:cke’r—»

data packets—» ‘p

<+— ACK packets

(a) a stop-and-wait protocol in operation {b) a pipelined protocol in operation

" two generic forms of pipelined protocols: go-Back-N,
selective repeat

Transport Layer 3-44

Pipelining: increased utilization

sender

first packet bit transmitted, t = 0
last bit transmitted, t=L/ R

RTT

ACK arrives, send next]
packet, t=RTT+L/R

U __B3LIR
sender RTT+L/R

receiver

first packet bit arrives
last packet bit arrives, send ACK

><_ last bit of 2nd packet arrives, send ACK

—last bit of 3" packet arrives, send ACK

3-packet pipelining increases
utilization by a factor of 3!

v /
.0024

= 0.00081

Transport Layer 3-45

Pipelined protocols: overview

Go-back-N:

= sender can have up to
N unacked packets in
pipeline

= receiver only sends
cumulative ack

* doesn’ t ack packet if
there’ s a gap

* sender has timer for
oldest unacked packet

* when timer expires,
retransmit all unacked
packets

Selective Repeat:

" sender can have up to N
unack ed packets in
pipeline

" rcvr sends individual ack
for each packet

" sender maintains timer
for each unacked packet

* when timer expires,
retransmit only that
unacked packet

Transport Layer 3-46

Go-Back-N: sender

= k-bit seq # in pkt header
= “window’ of up to N, consecutive unack’ ed pkts allowed

send_base hextsegnum dlready Usable. ho
L i ack’ed vet sent
JOOIRE L LTRELO0000I | semtogtae [otusam
t __ window size—%
N

ACK(n): ACKs all pkts up to, including seq # n - “cumulative
ACK”’

* may receive duplicate ACKs (see receiver)
= timer for oldest in-flight pkt

timeout(n): retransmit packet n and all higher seq # pkts in
window

Transport Layer 3-47

GBN: sender extended FSM

rdt_send(data)

if (nextsegnum < base+N) {
sndpkt[nextsegnum] = make_pkt(nextseqnum,data,chksum)

udt_send(sndpkt[nextsegnuml])
if (base == nextsegnum)

start_timer
nextsegqnum-++
~~~~~ }
A e else
bl e refuse_data(data)
nextsegnum=1 ., ( D _
AT . " timeout
start_timer
udt_send(sndpkt[base])
rdt_rcv(rcvpkt) O udt_send(sndpkt[base+1])
&& corrupt(rcvpkt)
udt_send(sndpkt[nextseqgnum-1])
rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)

base = getacknum(rcvpkt)+1
If (base == nextsegnum)
stop_timer
else

start_timer
- Transport Layer 3-48



GBN: receiver extended FSM

default
udt_send(sndpkt) rdt_rev(revpkt)
T~ < D && notcurrupt(rcvpkt)

A T~ ~o - o && hassegnum(rcvpkt,expectedsegnum)
=~ >

expectedseqnum=1 AQextract(rcvpkt,data)

sndpkt = deliver_data(data)

make_pkt(expectedseqnum,ACK,chksum) sndpkt = make_pkt(expectedseqnum,ACK,chksum)
udt_send(sndpkt)
expectedsegnum++

ACK-only: always send ACK for correctly-received
pkt with highest in-order seq #

* may generate duplicate ACKs
* need only remember expectedsegnum
" out-of-order pkt:

* discard (don’ t buffer): no receiver buffering!
* re-ACK pkt with highest in-order seq #

Transport Layer 3-49



GBN in action

sender window (N=4) sender receiver
012 3 WA send pkt0
F¥E): 5678 send pktl \ :
SHELC G 7 g send Ektz- receive pkt0, send ack0
FWE) 5678 send pkt3 \Xloss receive pktl, send ack1l
ait
(wait) receive pkt3, discard,
oMEEEE 678 rcv ack0, send pkt4 (re)send ack1
0 1EkEEI6 78 rcv ackl, send pkt5 receive pkt4, discard,

(re)send ackl
receive pkt5, discard,

(re)send ackl

ignore duplicate ACK

Pkt 2 timeout

0 1 EEEY6 7 8 send pkt2
12 3 45 WA send pkt3 \ _
rcv pkt2, deliver, send ack2

0 1EEEYF6 7 8 send pkt4 _
0 1EEEEF6 7 8 send pkt5 rcv pkt3, deliver, send ack3

rcv pkt4, deliver, send ack4
rcv pkt5, deliver, send ack5

Transport Layer 3-50



Selective repeat

" receiver individually acknowledges all correctly
received pkts

* buffers pkts, as needed, for eventual in-order delivery
to upper layer

* sender only resends pkts for which ACK not
received

* sender timer for each unACKed pkt

" sender window

N consecutive seq # s
* limits seq #s of sent, unACKed pkts

Transport Layer 3-51



Selective repeat: sender, receiver windows

send_base  nexfsegnum dlready Usable. not
' ack’ed yet sent
LTI | sz [ oo
* __ window size —4
N

(a) sender view of sequence numlbers

acceptable
(buffered) but R (\ithin window)
already ack’ed

ﬂﬂﬂﬂﬂﬂﬂﬂﬂlllllllllIIIIIIIIIII |opectes ner [ rereseer

t _ window size_4

1 N

rcv_base

I out of order

(b) receiver view of sequence numbers

Transport Layer 3-52



Selective repeat

— sender — receiver
data from above: PKt N in [revbase, revbase+N-1]
" if next available seq # in = send ACK(n)
window, send pkt = out-of-order: buffer
timeout(n): = in-order: deliver (also
= resend pkt n, restart timer deliver buffered, in-order

pkts), advance window to
next not-yet-received pkt

Pl(t N 1IN [rcvbase-N,revbase-1]

ACK(n) iNn [sendbase,sendbase+N]:
= mark pkt n as received
" if n smallest unACKed pkt,

: = ACK(n)
advance window base to .
next unACKed seq # otherwise:
" ignore

Transport Layer 3-53



Selective repeat in action

sender window (N=4) sender receiver
k) 5678 send pkt0
R} 5678 send pktl \ :
ktO, send ackO
FPE) 5678 send pkt2- receive pxty,
FPE): 5678 send pkt3 T~Xloss receive pktl, send ackl
] wait
(wait) receive pkt3, buffer,
oMEEX¥ 6738 rcv ack0, send pkt4 send ack3
0 1EKEE¥ 78 rcv ackl, send pkt5 receive pkt4, buffer,
send ack4
Precord ack3 arrived receive pkt5, buffer,
DKt 2 timeout send ack>
0 1EEEYF6 7 8 send pkt2
02345 SHRS record ack4 arrived _
012948678 record ack5 arrived rc|2/ pktZk, de“|\</er_ pktZC,I K2
0 1EEEEF6 7 8 pkt3, pkt4, pkt5; send ac

Q. what happens when ack2 arrives?

Transport Layer 3-54



Selective repeat:
dilemma

example:

seq# ' s:0, 1,2, 3
window size=3
receiver sees no

difference in two
scenarios!

duplicate data
accepted as new in (b)

Q: what relationship

between seq # size
and window size to
avoid problem in (b)?

sender window receiver window

(after receipt) (after receipt)
FEso12 X
30125*’(1\ o]0 1 2
[FEs 012 —pkt2 — 01EEN1 2
7 —— 01 2EKI2
ofEElo 12 kt3
0 1EEN1 T
pktO —— will accept packet
(a) no problem with seq number 0

receiver can’t see sender side.
receiver behavior identical in both cases’
something’s (very) wrong!

FFs012 —Rk0O

012 —RKkt1 0] 1 2 3[JpW

[FE)s012 —pkt2 0 1EEN1 2
—P?< 01 2ETH2

X
timeout X / [
will accept packet

retra nsmit pkt0
with seq number 0

[F¥)z012 \p\
(b) oops!

Transport Layer 3-55



Chapter 3 outline

3.l transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP

* segment structure

* reliable data transfer

* flow control

* connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-56



TC P: Ove rVieW RFCs: 793,1122,1323, 2018, 258

" point-to-point: " full duplex data:

 one sender, one receiver * bi-directional data flow
= reliable, in-order byte In same connection

steam: . MSS: maximum segment
“ size
* No "message . .
boundaries’ " connhection-oriented:

= pipelined: * handshaking (exchange

of control msgs) inits
sender, receiver state
before data exchange

= flow controlled:

* sender will not
overwhelm receiver

* TCP congestion and
flow control set window
size

Transport Layer 3-57



TCP segment structure

« 32 hits

URG: urgent data
(generally not used)\

source port # dest port #

ACK: ACK #

. Sequence number

valid

\olqlowledgement number

PSH: push data now
(generally not used) —

head) 1 il ‘EAPRSF receive window
7
Urg data pointer

RST, SYN, aN—T
connection estab

op}'{ s (variable length)

(setup, teardown
commands)

Internet /

checksum
(as in UDP)

/ application

data
(variable length)

counting

by bytes

of data

(not segments!)

# bytes
rcvr willing
to accept

Transport Layer 3-58



TCP seq. numbers, ACKs

outgoing segment from sender

sequence numbers° source port # dest port #
sequence number
¢ b)’te stream number of acknowledgement number
first byte in segment’s || | rwnd
checksum urg pointer
data
window size
acknowledgements: N

* seq # of next byte
expected from other side

e cumulative ACK

sender sequence number space

. . sent sent, not- usable not
Q: how receiver handles ACKed yet ACKed but not  usable
out-of-order segments ]g“ém-t”) yet sent
*A: TCP spec doesn’ t say, incoming segment to sender

source port # dest port #

sequence number

R acknowledgement number

- up to implementor

A

rwnd

checksum

urg pointer

Transport Layer 3-59



TCP seq. numbers, ACKs

Host A Host B
™ \
User &
types
‘C; \

host ACKs
receipt

of echoed
‘C’

Seq=42, ACK=79, w

Seq=79, ACK=43, data= ‘C’

\

Seq=43, ACK:K

simple telnet scenario

host ACKs
receipt of

‘C’, echoes
back ‘C

Transport Layer 3-60



TCP round trip time, timeout

Q: how to set TCP
timeout value?

" longer than RTT
* but RTT varies
" too short: premature

timeout, unnecessary
retransmissions

" too long: slow reaction
to segment loss

Q: how to estimate RTT?

" SampleRTT: measured
time from segment
transmission until ACK
receipt

* ignore retransmissions

* SampleRTT will vary, want
estimated RTT “smoother”

* average several recent
measurements, not just
current SampleRTT

Transport Layer 3-61



TCP round trip time, timeout

EstimatedRTT = (1- o) *EstimatedRTT + o*SampleRTT

= exponential weighted moving average
" influence of past sample decreases exponentially fast
= typical value:a =0.125

RTT (milliseconds)

350 +

300

250

200 +

150

100

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

¢ sampleRTT

EstimatedRTT

1

8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconds) Transport Layer 3-62



TCP round trip time, timeout

" timeout interval: EstimatedRTT plus “safety margin”
* large variation in EstimatedRTT -> larger safety margin

= estimate SampleRTT deviation from EstimatedRTT:

DevRTT = (1-P)*DevRTT +
f* | SampleRTT-EstimatedRTT |

(typically, B = 0.25)
TimeoutInterval = EstimatedRTT + 4*DevRTT

estimated RTT “safety margin”

* Check out the online interactive exercises for more
examples: http://gaia.cs.umass.edu/kurose_ross/interactive/ Transport Layer 3-63



Chapter 3 outline

3.l transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP

* segment structure
 reliable data transfer

* flow control

* connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-64



TCP reliable data transfer

= TCP creates rdt service
on top of IP” s unreliable

service
* pipelined segments S .
e cumulative acks let” s initially consider
+ single retransmission simplified TCP sender:
timer * ignore duplicate acks
] retransmissions ¢ ignor'e flow control,
triggered by: congestion control

* timeout events
* duplicate acks

Transport Layer 3-65



TCP sender events:

data rcvd from app:

" create segment with
seq #

" seq # is byte-stream
number of first data
byte in segment

= start timer if not
already running
* think of timer as for

oldest unacked
segment

* expiration interval:
TimeOutInterval

timeout;

" retransmit segment
that caused timeout

" restart timer
ack rcvd:

= if ack acknowledges
previously unacked
segments

* update what is known
to be ACKed

* start timer if there are
still unacked segments

Transport Layer 3-66



TCP sender (simplified)

data received from application above
create segment, seq. #: NextSegNum

pass segment to IP (i.e., “send”)
NextSegNum = NextSegNum + length(data)
if (timer currently not running)
A start timer
NextSegNum = InitialSegNum
SendBase = InitialSeqNum
timeout

retransmit not-yet-acked segment

with smallest seq. #
start timer
ACK received, with ACK field value y

if (y > SendBase) {
SendBase =y

[* SendBase-1: last cumulatively ACKed byte */

if (there are currently not-yet-acked segments)
start timer

else stop timer

}

Transport Layer 3-67



TCP: retransmission scenarios

Host A
\
Seq=92, 8 bytes of data
5 -
5] ACK=100
£ X

Seq=92, 8 bytes of data

/

ACK=100

—

lost ACK scenario

Host B

E

S

Host A Hos
% V’/

SendBase=92

——timeout ——

SendBase=100
SendBase=120

SendBase=120

/

Seq=92, 8 bytes of data

/
/

Seq=100, 20 bytes of dat

ACK=100
ACK=120

\

Seq=92, 8

bytes of data\

\

ACK=120

\

premature timeout

Transport Layer 3-68



TCP: retransmission scenarios

Host A Host B

o——— timeout —*

Seq=92, 8 bytes of data

/
/

Seq=100, 20 bytes of da

ACK=100
X<
ACK=120

it

\

Seq=120, 15 bytes of data

/

cumulative ACK

Transport Layer 3-69



TCP ACK generation [RFC 1122, RFC 2581]

event at receiver TCP receiver action

arrival of in-order segment with delayed ACK. Wait up to 500ms
expected seq #. All data up to for next segment. If no next segment,
expected seq # already ACKed send ACK

arrival of in-order segment with immediately send single cumulative
expected seq #. One other ACK, ACKing both in-order segments
segment has ACK pending

arrival of out-of-order segment iImmediately send duplicate ACK,
higher-than-expect seq. # . indicating seq. # of next expected byte

Gap detected

arrival of segment that immediate send ACK, provided that
partially or completely fills gap segment starts at lower end of gap

Transport Layer 3-70



TCP fast retransmit

" time-out period often
relatively long:

* long delay before
resending lost packet

" detect lost segments
via duplicate ACKs.

e sender often sends
many segments back-
to-back

* if segment is lost, there
will likely be many
duplicate ACKs.

—- JCP fast retransmit ——

if sender receives 3
ACKs for same data

(“triple duplicate ACKs"),
resend unacked
segment with smallest
seq #
" |ikely that unacked
segment lost, so don’ t

wait for timeout

Transport Layer 3-71



TCP fast retransmit

Host A Host B
'\

— Seq=92, 8 bytes of data

Seq= 100%%
\X

(ACK=1OO

timeout

’ACK=1OO
~Seq=100, 20 bytes of data

A 4

v VL
fast retransmit after sender

receipt of triple duplicate ACK

Transport Layer 3-72



Chapter 3 outline

3.l transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP

* segment structure

* reliable data transfer

e flow control

* connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-73



TCP flow control

application may

ey |

application
process

remove data from

I_

application

TCP socket buffers ....

... Slower than TCP
receiver is delivering —
(sender is sending)

— flow control

N—

TCP socket

receiver buffers
TAY

|

TCP
code

receiver controls sender, so
sender won’ t overflow
receiver’ s buffer by transmitting
too much, too fast

IP
code

|
from sender

I 4
!

receiver protocol stack

Transport Layer 3-74



TCP flow control

. 13 . ?”
= receiver advertises free

buffer space by including to application process
rwnd value in TCP header rlj
of receiver-to-sender f
segments RcvBuffer buffered data
* RevBuffer size set via T
socket options (typical default rwnd free buffer space
is 4096 bytes) |
° many operating systems '
autoadjust RevBuffer TCP segment payloads
" sender Iimits amount of
unacked ( in-flight”) data to receiver-side buffering

receiver s rwnd value

" guarantees receive buffer
will not overflow

Transport Layer 3-75



Chapter 3 outline

3.l transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP

* segment structure

* reliable data transfer

* flow control

* connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-76



Connection Management

before exchanging data, sender/receiver “handshake”:

" agree to establish connection (each knowing the other willing
to establish connection)

" agree on connection parameters

application application

O
connection state: ESTAB
connection Variables:
seq # client-to-server
server-to-client
rcvBuffer Size
at server,client

connection state: ESTAB
connection variables:
seq # client-to-server
server-to-client
rcvBuffer Size
at server,client

Vf network network
i
R |
Socket clientSocket = Socket connectionSocket =
newSocket ("hostname" , "port welcomeSocket.accept() ;

number") ;

Transport Layer 3-77



Agreeing to establish a connection

OK
ESTAB &

choose x

ESTAB &—

J\
Let’ s talk -
__"®ESTAB

g
iy

S

1
‘I

\req_conno_(L‘

—9 ESTAB
acc_conn(x)

Q: will 2-way handshake
always work in
network!?

= variable delays

" retransmitted messages (e.g.
req_conn(x)) due to
message loss

" message reordering
» 111 »” .
"= can t see other side

Transport Layer 3-78



Agreeing to establish a connection

2-way handshake failure scenarios:

N

choose x

retransmit
req_conn(x)

ESTAB

client™
terminates

\req_conn(>_<L‘

R ESTAB

acc_conn(x)

reg_conn(x)

\

connection
X completes

server
forgets x

ESTAB

half open connection!

(no client!)

req_conn(x)

/ V/

g

choose x

retransmit

ESTAB

retransmit

data(x+1) ™\

1
client
terminates

~ 7 x completes

\req_conno_(L’
/‘

acc_conn(x)

~data(x+ 1)\.'

connection

\
req_conn(x)

data(x+1)

ESTAB

accept
data(x+1)

server
forgets x

ESTAB
accept
data(x+1)

Transport Layer 3-79



TCP 3-way handshake

client state

LISTEN

SYNSENT

v

ESTAB

choose init seq num, x
send TCP SYN msg

received SYNACK(x)
indicates server is live;
send ACK for SYNACK;

this segment may contain

client-to-server data

g
N

4

\

SYNbit=1, Seq=x

P

SYNbit=1, Seq=y
ACKbit=1; ACKnum=x+1

/
\
ACKbit=1, ACKnum=y+1
\

choose init seq num, y
send TCP SYNACK
msg, acking SYN

received ACK(y)
indicates client is live

server state

LISTEN

SYN RCVD

v

ESTAB

Transport Layer 3-80



TCP 3-way handshake: FSM

Socket connectionSocket =
welcomeSocket.accept () ;
A .
Socket clientSocket =
SYN (X) Il newSocket ("hostname" , "port
ulnb 1] :
SYNACK(seq=y,ACKnum=x+1) number™)
create new socket for SYN(seq=x)
communication back to client
| | SYNACK(seq=y,ACKnum=x+1)

ACK(ACKnum=y+1) ACK(ACKnum=y+1)

A

Transport Layer 3-81



TCP: closing a connection

= client, server each close their side of connection
* send TCP segment with FIN bit = |

* respond to received FIN with ACK

* on receiving FIN, ACK can be combined with own FIN
= simultaneous FIN exchanges can be handled

Transport Layer 3-82



TCP: closing a connection

client state
ESTAB
clientSocket.close ()
FIN WAIT 1 can no longer
send but can
receive data
FINVWAIT p) wait for server
n - close
TIMED_ WAIT _N
timed wait
for 2*max
segment lifetime
CLOSED l

g

4

 FiNbit=1
it=1, Seq=X\’

/
ACKbit=1: ACKnum=x+1
—

/
4)Nbit=1, seq=y
\

ACKbit=1; ACKnum=y+1

\

can still
send data

can no longer
send data

server state

ESTAB

CLOSE_WAIT

LAST ACK

CLOSED

Transport Layer 3-83



Chapter 3 outline

3.l transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP

* segment structure

* reliable data transfer

* flow control

* connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-84



Principles of congestion control

congestion:

= informally: “too many sources sending too much
data too fast for network to handle

= different from flow control!
" manifestations:
* lost packets (buffer overflow at routers)

* long delays (queueing in router buffers)
" a top-10 problem!

Transport Layer 3-85



Causes/costs of congestion: scenario |

original data: Qn throughput: Xout
two senders, two <o ]
receivers Host A =
one router, infinite buffers - unlimited shared
output link capacity: R - %g - output link buffers — ﬁ
no retransmission 7 F\[ /_ '
— - ¥
| ~ = |
HOSth ' / / ! ﬂ
¥ 28 , |
| >, |
3 | © |
| ()] |
~ : S :
| |
= maximum per-connection < large delays as arrival rate, %,
throughput: R/2 approaches capacity

Transport Layer 3-86



Causes/costs of congestion: scenario 2

" one router, finite buffers

" sender retransmission of timed-out packet
* application-layer input = application-layer output: A;, =

A

out

* transport-layer input includes retransmissions : A, > A,

A, : original data

O mm

Ss=== “EEREEER

finite shared output
link buffers

pi—2

A',: original data, plus

retransmitted data

Transport Layer 3-87



Causes/costs of congestion: scenario 2

e R/2=mmemme .
idealization: perfect ;
knowledge 5 |
= sender sends only when ~
router buffers available |

B\, original data

copy

A'.: original data, plus out

retransmitted data

free buffer space! H
>

Ss=== “EEREEER

finite shared output
link buffers

Transport Layer 3-88

Host B



Causes/costs of congestion: scenario 2

Idealization: known loss
packets can be lost,
dropped at router due
to full buffers

= sender only resends if
packet known to be lost

B — )\, : original data
copy |Ed A'.,: original data, plus
retransmitted data

no buffer space!
>

SSS==- “EIREEER
L

Host B

Transport Layer 3-89



Causes/costs of congestion: scenario 2

Idealization: known loss mjo
packets can be lost,
dropped at router due
to full buffers

= sender only resends if
packet known to be lost

______________________________________

when gending at R/2,
some/packets are
retrapsmissions but
asymptotic goodput
is still R/2 (why?)

7\'0Ut

7\; RI/2

in
A, : original data \
1 .. A<— —
- A': original data, plus out
retransmitted data
free buffer space! H
S - -

LT
L

Transport Layer 3-90



Causes/costs of congestion: scenario 2

Realistic: duplicates

R/2 _______________________ ST TTTTTTTTT T
= packets can be lost, dropped at -~
router due to full buffers when sending at R/2,
. ‘g’ : some pa(_:ke_ts are
" sender times out prematurely, < . retransmissions
. . ! including duplicated
Sendmg two COPIeS, bOth Of i that are delivered!
which are delivered - R/
in
A<_‘_}\“Out
free buffer space! ] H

— > 4

SSS==- “EIREEER
L

Transport Layer 3-91



Causes/costs of congestion: scenario 2

Realistic: duplicates .
= packets can be lost, dropped at |
router due to full buffers when sending at R/2,
5 | some pagkgts are
" sender times out prematurely, < . retransmissions
. . ! including duplicated
Sendmg two copies, both of i that are delivered!
which are delivered , 0

“costs” of congestion:

= more work (retrans) for given “goodput”
" unneeded retransmissions: link carries multiple copies of pkt

* decreasing goodput

Transport Layer 3-92



Causes/costs of congestion: scenario 3

Q: what happens as 1, and A,
increase !
A:asred ), increases,all arriving

blue pkts at upper queue are
dropped, blue throughput = 0

= four senders
" multihop paths
= timeout/retransmit

Host A

. A
A : original data Ut Host B

A'..: original data, plus
retransmitted data

finite shared output
I

k buffers ‘ H

Host D
ﬂ Host C
A?
|
E ]

T —

Transport Layer 3-93



Causes/costs of congestion: scenario 3

C/2

}\“OUt

/2

(11 77 .
another "cost  of congestion:

= when packet dropped, any “upstream
transmission capacity used for that packet was
wasted!

Transport Layer 3-94



Chapter 3 outline

3.l transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP

* segment structure

* reliable data transfer

* flow control

* connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-95



TCP congestion control: additive increase
multiplicative decrease
" approach: sender increases transmission rate (window

size), probing for usable bandwidth, until loss occurs

* additive increase: increase cwnd by | MSS every
RTT until loss detected

* multiplicative decrease: cut cwnd in half after loss

additively increase window size ...
... until loss occurs (then cut window in half)

J

AIMD saw tooth
behavior: probing
for bandwidth

cwnd: TCP sender
congestion window size
|

time
Transport Layer 3-96



TCP Congestion Control: details

sender sequence number space

— cwnd ——i TCP sending rate:

""" " roughly: send cwnd
bytes, wait RTT for

jast byteJ t\ tLIastbyte ACKS, then send
ACKed sent, not-
0 JetACked M more bytes
(“in-
flight™) .. cwnd
® sender limits transmission: rate = bytes/sec
LastByteSent- < cwnd
LastByteAcked

* cwnd is dynamic, function
of perceived network
congestion

Transport Layer 3-97



TCP Slow Start

* when connection begins,

InCcrease rate
exponentially until first

loss event:
* initially cwnd = | MSS
* double cwnd every RTT

* done by incrementing
cwnd for every ACK

received
" summary: initial rate is
slow but ramps up
exponentially fast

Host A Host B
/‘ Ei
lI W
|_
o
|

Ur segments

time

Transport Layer 3-98



TCP: detecting, reacting to loss

" |oss indicated by timeout:
* cwnd set to | MSS;

* window then grows exponentially (as in slow start)
to threshold, then grows linearly

" loss indicated by 3 duplicate ACKs: TCP RENO

* dup ACKs indicate network capable of delivering
some segments

* cwnd is cut in half window then grows linearly

= TCP Tahoe always sets cwnd to | (timeout or 3
duplicate acks)

Transport Layer 3-99



TCP: switching from slow start to CA

Q: when should the
exponential
. . 14_
increase switch to TCP Reno
linear?

A: when cwnd gets
to |/2 of its value
before timeout.

—
N
l

ssthresh

ssthresh

Congestion window
(in segments)

TCP Tahoe

o N B O 00 O
| I N I

Implementation: 5 6 7 8 9 1IO 1|'| 1I2 1|3 '||4 '||5
n Variable SSthreSh Transmission round

= on loss event, ssthresh
is set to |/2 of cwnd just
before loss event

o
—
]
w
B

* Check out the online interactive exercises for more
examples: http:/gaia.cs.umass.edu/kurose_ross/interactive/ Transport Layer 3-100



S

ummary: TCP Congestion Control

| new ACH
duplicate ACK 7 cwnd = cwnd + MSS * (MSS/cwnd)

dupACKcount++  new ACK dupACKcount = 0
m cwnd = cwnd+MSS transmit new segment(s), as allowed

dupACKcount =0

A transmit new segment(s), as allowed
cwnd =1 MSS
ssthresh = 64 KB cwnd > ssthresh
dupACKcount =0 - A
———————————— -»> g
* A .
tP“) timeout
‘& ) ssthresh = cwnd/2 _
=Ta </ cwnd = 1 MSS duplicate ACK
ZoNy timeout dupACKcount=0 W+
< Sthresh = cwnd/2 A retransmit missing segment 4
cwnd =1 MSS
dupACKcount =0 =Za )

retransmit missing segment ((c N1
timeout'\, %)) =
ssthresh = cwnd/2 a 2\,
cwnd =1 New ACK
dupACKcount = 0 cwnd = ssthresh d

L L = upACKcount ==
dupACKcount == retransmit missing segment dupACKcount = 0 p
ssthresh= cwnd/2 ssth(rjesh=tcl;]wndr<2 3
cwnd = ssthresh + 3 cwnd = ssthresh +
retransmit missing segment retransmit missing segment

duplicate ACK

cwnd = cwnd + MSS
transmit new segment(s), as allowed

Transport Layer 3-101



TCP throughput

= avg. TCP thruput as function of window size, RTT?
* ignore slow start, assume always data to send

= W: window size (measured in bytes) Where loss occurs
* avg. window size (# in-flight bytes) is ¥4 W
* avg. thruput is 3/4WV per RTT

avg TCP thruput = % % bytes/sec

N14%4%4%%

Transport Layer 3-102



77

TCP Futures: TCP over “long, fat pipes

= example: 1500 byte segments, |00ms RTT, want
|0 Gbps throughput

" requires W = 83,333 in-flight segments

" throughput in terms of segment loss probability, L
[Mathis 1997]:

_1.22-MSS
TCP throughput = RTTJf

=?» to achieve 10 Gbps throughput, need a loss rate of L
=210 — a very small loss rate!

* new versions of TCP for high-speed

Transport Layer 3-103



TCP Fairness

fairness goal: if K TCP sessions share same
bottleneck link of bandwidth R, each should have
average rate of R/K

TCP connection 1

ENG—

- bottleneck
Q router

TCP connection 2 capacity R

Transport Layer 3-104



Why is TCP fair?

two competing sessions:
= additive increase gives slope of |, as throughout increases
" multiplicative decrease decreases throughput proportionally

equal bandwidth share

loss: decrease window by factor of 2
congestion avoidance: additive increase

loss: decrease window by factor of 2
congestion avoidance: additive increase

Connection 2 throughput 0

Connection 1 throughput R

Transport Layer 3-105



Fairness gmorez

Fairness and UDP

" multimedia apps often
do not use TCP

e do not want rate
throttled by congestion
control

= instead use UDP:

* send audio/video at
constant rate, tolerate
packet loss

Fairness, parallel TCP
connections

= application can open
multiple parallel
connections between
two hosts

= web browsers do this

" e.g, link of rate R with 9

existing connections:

* new app asks for | TCP, gets
rate R/10

* new app asks for 9 TCPs, gets
R/2

Transport Layer 3-106



Explicit Congestion Notification (ECN)

network-assisted congestion control:

= two bits in IP header (ToS field) marked by network router
to indicate congestion

" congestion indication carried to receiving host

" receiver (seeing congestion indication in IP datagram) )
sets ECE bit on receiver-to-sender ACK segment to
notify sender of congestion

TCP ACK segment

source / destination
A
4 * E
IP datagra{

Transport Layer 3-107



Chapter 3: summary

= principles behind transport
layer services:
* multiplexing,
demultiplexing

next:

0 Ieaving the network
“edge” (application,

* reliable data transfer transport layers)
* flow control = into the network
* congestion control “core”
* instantiation, " two network layer
implementation in the chapters:
Internet * data plane
« UDP * control plane

. TCP

Transport Layer 3-108



