Computer Organization and Structure

Homework #3 Due: 2005/11/22

- 1. Convert 512_{ten}, -1,023_{ten}, and -4,000,000_{ten} into 32-bit two's complement binary numbers, respectively, and convert the following two's complement binary numbers to be decimal numbers:
 - a. 1111 1111 1111 1111 1111 1110 0000 1100_{two};
- 2. Find the shortest sequence of MIPS instructions to determine the absolute value of a two's complement integer. Convert this instruction (accepted by the MIPS assembler):

abs \$t2, \$t3

This instruction means that register t^2 has a copy of register t^3 if register t^3 is positive, and the two's complement of register t^3 if t^3 is negative. (Hint: It can be done with three instructions.)

3. The ALU supported set on less than (slt) using just the sign bit of the adder. Let's try a set on less than operation using the values -7_{ten} and 6_{ten} . To make it simpler to follow the example, let's limit the binary representations to 4 bits: 1001_{two} and 0110_{two} .

 $1001_{two} - 0110_{two} = 1001_{two} + 1010_{two} = 0011_{two}$

This result would suggest that $-7_{ten} > 6_{ten}$, which is clearly wrong. Hence we must factor in overflow in the decision. Modify the 1-bit ALU in the following figures to handle slt correctly.

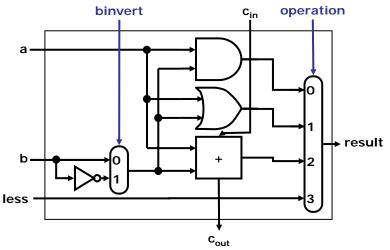


Figure 1: A 1-bit ALU that performs AND, OR, and addition on a and b or b'.

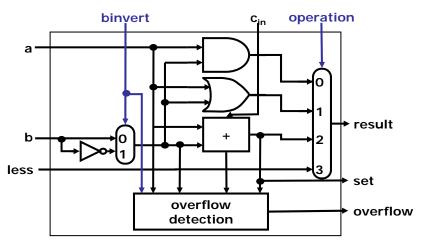


Figure 2: A 1-bit ALU for the most significant bit.

- 4. Add $2.85_{ten} \ge 10^3$ to $9.84_{ten} \ge 10^4$ and add $3.63_{ten} \ge 10^4$ to $6.87_{ten} \ge 10^3$, respectively, assuming that you have only three significant digits, first with guard and round digits and then without them.
- 5. Show the IEEE 754 binary representation for the floating-point number 10_{ten} , 10.5_{ten} , 0.1_{ten} , and -2/3, respectively.