Computer Organization and Structure

Homework #3 Due: 2012/11/6

- 1. IEEE 754 is a floating-point standard which represents a floating-point number as $(-1)^{s} \times (1+F) \times 2^{E}$ and encodes the *S*, *F*, and *E* ordering using 1, 23, and 8 bits, respectively.
 - a. Show the IEEE 754 binary representation in single precision for the floating-point numbers 10_{ten} , 10.5_{ten} , 0.1_{ten} , and $-2/3_{\text{ten}}$, respectively.
 - b. Convert the following two IEEE 754 binary representations in single precision to the decimal numbers:

- 2. Add $2.85_{ten} \ge 10^3$ to $9.84_{ten} \ge 10^4$ and add $3.63_{ten} \ge 10^4$ to $6.87_{ten} \ge 10^3$, respectively, assuming that you have only three significant digits, first with guard and round digits and then without them.
- 3. Given two versions of the functional block diagrams of multiply algorithm as below:

- a. Please make a comparison and list the difference between these two versions. Please also explain which version is better and the reason.
- b. Calculate $0010_2 \times 0011_2$ using the version shown in (b), and list the contents of all the registers after each of four iterations (fill the table below).

Iteration	Multiplicand	Product	
0 (initial)	0010		
1			
2			
3			
4			

4. The following diagram gives a 1-bit ALU. Complete the table by specifying the control signals for the desired operations. For a don't care signal, use '**X**'.

Operations	Ainvert	Binvert	CarryIn	Operation0	Operation1
a + b					
a – b					
a or b					
a and b					
a nor b					