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Memory Technology 

 Static RAM (SRAM) 
 0.5ns – 2.5ns, $2000 – $5000 per GB 

 Dynamic RAM (DRAM) 
 50ns – 70ns, $20 – $75 per GB 

 Magnetic disk 
 5ms – 20ms, $0.20 – $2 per GB 

 Ideal memory 
 Access time of SRAM 

 Capacity and cost/GB of disk 
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Principle of Locality 

 Programs access a small proportion of 
their address space at any time 

 Temporal locality 
 Items accessed recently are likely to be 

accessed again soon 
 e.g., instructions in a loop, induction 

variables 

 Spatial locality 
 Items near those accessed recently are 

likely to be accessed soon 
 e.g., sequential instruction access, array 

data 
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Taking Advantage of Locality 

 Memory hierarchy 

 Store everything on disk 

 Copy recently accessed (and nearby) 
items from disk to smaller DRAM 
memory 
 Main memory 

 Copy more recently accessed (and 
nearby) items from DRAM to smaller 
SRAM memory 
 Cache memory attached to CPU 
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Memory Hierarchy Levels 

 Block (aka line): unit of copying 
 May be multiple words 

 If accessed data is present in 
upper level 
 Hit: access satisfied by upper level 

 Hit ratio: hits/accesses 

 If accessed data is absent 
 Miss: block copied from lower level 

 Time taken: miss penalty 
 Miss ratio: misses/accesses 

= 1 – hit ratio 

 Then accessed data supplied from 
upper level 

Processor 

Data is transferred 
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Cache Memory 

 Cache memory 

 The level of the memory hierarchy closest to 
the CPU 

 Given accesses X1, …, Xn–1, Xn 

 How do we know if 
the data is present? 

 Where do we look? 
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Direct Mapped Cache 

 Location determined by address 

 Direct mapped: only one choice 
 (Block address) modulo (#Blocks in cache) 

 #Blocks is a 
power of 2 

 Use low-order 
address bits 
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Tags and Valid Bits 

 How do we know which particular 
block is stored in a cache location? 

 Store block address as well as the data 

 Actually, only need the high-order bits 

 Called the tag 

 What if there is no data in a location? 

 Valid bit: 1 = present, 0 = not present 

 Initially 0 
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Accessing a Cache (initial) 

index V tag data 

000 N 

001 N 

010 N 

011 N 

100 N 

101 N 

110 N 

111 N 

8-blocks, 1 word/block, direct mapped 9 



Accessing a Cache (22 miss) 

index V tag data 

000 N 

001 N 

010 N 

011 N 

100 N 

101 N 

110 Y 10two Memory(10110two) 

111 N 
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Accessing a Cache (26 miss) 

index V tag data 

000 N 

001 N 

010 Y 11two Memory(11010two) 

011 N 

100 N 

101 N 

110 Y 10two Memory(10110two) 

111 N 
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Accessing a Cache (22 hit) 

index V tag data 

000 N 

001 N 

010 Y 11two Memory(11010two) 

011 N 

100 N 

101 N 

110 Y 10two Memory(10110two) 

111 N 
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Accessing a Cache (26 hit) 

index V tag data 

000 N 

001 N 

010 Y 11two Memory(11010two) 

011 N 

100 N 

101 N 

110 Y 10two Memory(10110two) 

111 N 
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Accessing a Cache (16 miss) 

index V tag data 

000 Y 10two Memory(10000two) 

001 N 

010 Y 11two Memory(11010two) 

011 N 

100 N 

101 N 

110 Y 10two Memory(10110two) 

111 N 
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Accessing a Cache (3 miss) 

index V tag data 

000 Y 10two Memory(10000two) 

001 N 

010 Y 11two Memory(11010two) 

011 Y 00two Memory(00011two) 

100 N 

101 N 

110 Y 10two Memory(10110two) 

111 N 

15 



Accessing a Cache (16 hit) 

index V tag data 

000 Y 10two Memory(10000two) 

001 N 

010 Y 11two Memory(11010two) 

011 Y 00two Memory(00011two) 

100 N 

101 N 

110 Y 10two Memory(10110two) 

111 N 
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Accessing a Cache (18 miss) 

index V tag data 

000 Y 10two Memory(10000two) 

001 N 

010 Y 10two Memory(10010two) 

011 Y 00two Memory(00011two) 

100 N 

101 N 

110 Y 10two Memory(10110two) 

111 N 
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Direct Mapped Cache 

= 

Hit 

Data 

Tag 

Index 

V Tag Data 

20 bits 32 bits 

1K 
entries 

Byte 
offset 

20 32 

31…12 11…4 

20 10 

3210 
Address 

What kind of locality are 
we taking advantage of? 
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Spatial Locality 

= 

Hit Data 

MUX 

Block offset 

Tag 

Index 

V Tag Data 

16 bits 128 bits 

4K 
entries 

Byte 
offset 

16 32 32 32 32 

32 

31…16 15…4 

16 
12 

2 

3210 
Address 
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Bits in a Cache 

 Assuming the 32-bit byte address, a direct-
mapped cache of size 2n blocks with 2m-word 
(2m+2-byte) blocks will require a tag field 
whose size is 32-(n+m+2) bits 
 n bits are used for the index 
 m bits are used for the word within the block 
 2 bits are used for the byte part of the address 

 

 The total number of bits in a direct-mapped 
cache is 
 2nx(block size + tag size + valid field size) 
= 2nx(2mx32+(32-n-m-2)+1) 
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Bits in a Cache 

 How many total bits are required for a direct-mapped 
cache with 16KB of data and 4-word blocks, assuming 
a 32-bit address? 

 

 We know that 16KB is 4K words, which is 212 words, 
and, with a block size of 4 words, 210 blocks. Each 
block has 4x32 bits of data plus a tag, which is 
32-10-2-2 bits, plus a valid bit. Thus the total cache 
size is 
 
210x(128+(32-10-2-2)+1)= 
210x147=147Kbits=18.4KB 
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Example: Larger Block Size 

 64 blocks, 16 bytes/block 

 To what block number does address 
1200 map? 

 Block address = 1200/16 = 75 

 Block number = 75 modulo 64 = 11 

Tag Index Offset 

0 3 4 9 10 31 

4 bits 6 bits 22 bits 
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Block Size Considerations 

 Larger blocks should reduce miss rate 

 Due to spatial locality 

 But in a fixed-sized cache 

 Larger blocks  fewer of them 

 More competition  increased miss rate 

 Larger blocks  pollution 

 Larger miss penalty 

 Can override benefit of reduced miss rate 

 Early restart and critical-word-first can help 
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 Make reading multiple words easier by using banks of memory 
 
 
 
 
 
 
 

 
 

 
 
 
 

 
 
 

 
 It can get a lot more complicated... 

Increasing Memory Bandwidth 

CPU 

Cache 

Mem 

bus 

CPU 

Cache 

Mem 
bank0 

bus 

Mem 
bank1 

Mem 
bank2 

Mem 
bank3 

CPU 

Cache 

bus 

Memory 

Multiplexor 

one-word-wide 
memory organization 

interleaved 
memory organization 

wide 
memory organization 
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Increasing Memory Bandwidth 

 Assume a set of hypothetical memory 
access times: 
 1 bus cycle for address transfer 

 15 bus cycles per DRAM access 

 1 bus cycle per data transfer 

 

 For 4-word block, 1-word-wide DRAM 
 Miss penalty = 1 + 4×15 + 4×1 = 65 bus 

cycles 

 Bandwidth = 16 bytes / 65 cycles = 0.25 
B/cycle 
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Increasing Memory Bandwidth 

 4-word wide memory 
 Miss penalty = 1 + 15 + 1 = 17 bus cycles 

 Bandwidth = 16 bytes / 17 cycles = 0.94 
B/cycle 

 

 4-bank interleaved memory 
 Miss penalty = 1 + 15 + 4×1 = 20 bus 

cycles 

 Bandwidth = 16 bytes / 20 cycles = 0.8 
B/cycle 
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Hits vs. Misses 

 Read hits 
 this is what we want! 

 Read misses 
 stall the CPU, fetch block from memory, deliver 

to cache, restart  

 Write hits: 
 can replace data in cache and memory (write-

through) 
 write the data only into the cache (write-back 

the cache later) 

 Write misses: 
 read the entire block into the cache, then write 

the word 
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Cache Misses 

 On cache hit, CPU proceeds normally 

 On cache miss 

 Stall the CPU pipeline 

 Fetch block from next level of hierarchy 

 Instruction cache miss 

 Restart instruction fetch 

 Data cache miss 

 Complete data access 
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Write-Through 

 On data-write hit, could just update the 
block in cache 
 But then cache and memory would be 

inconsistent 

 Write through: also update memory 
 But makes writes take longer 

 e.g., if base CPI = 1, 10% of instructions are 
stores, write to memory takes 100 cycles 
  Effective CPI = 1 + 0.1×100 = 11 

 Solution: write buffer 
 Holds data waiting to be written to memory 
 CPU continues immediately 

 Only stalls on write if write buffer is already full 
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Write-Back 

 Alternative: On data-write hit, just 
update the block in cache 

 Keep track of whether each block is dirty 

 When a dirty block is replaced 

 Write it back to memory 

 Can use a write buffer to allow replacing 
block to be read first 
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DRAM Generations 

0

50

100

150

200

250

300

'80 '83 '85 '89 '92 '96 '98 '00 '04 '07

Trac

Tcac

Year Capacity $/GB 

1980 64Kbit $1500000 

1983 256Kbit $500000 

1985 1Mbit $200000 

1989 4Mbit $50000 

1992 16Mbit $15000 

1996 64Mbit $10000 

1998 128Mbit $4000 

2000 256Mbit $1000 

2004 512Mbit $250 

2007 1Gbit $50 
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Measuring Cache Performance 

 Components of CPU time 
 Program execution cycles 

 Includes cache hit time 

 Memory stall cycles 
 Mainly from cache misses 

 With simplifying assumptions: 

penalty Miss
nInstructio

Misses

Program

nsInstructio

penalty Missrate Miss
Program

accessesMemory 

cycles stallMemory 
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Calculating Cache Performance 

 assume 

 instruction cache† miss rate = 2% 

 data cache‡ miss rate = 4% 

 miss penalty = 100 cycles for all misses 

 base CPI (ideal cache) = 2 

 frequency of all loads & stores = 36% 

 

 how much faster a machine would run with 
a perfect cache that never missed? 

†I-Cache 
‡D-Cache 
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Calculating Cache Performance 

 If Instruction count = I 

 instruction miss cycles = I x 2% x 100 

 data miss cycles = I x 36% x 4% x 100 

 memory-stall cycles = 2I+1.44 I = 3.44I 

 CPI with memory-stall = 2+3.44 = 5.44 

 so stall

perfect

stall

perfect

I CPI Clock cycleCPU time with stalls

CPU time with perfect cache I CPI Clock cycle

CPI 5.44
2.72

CPI 2
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Cache Performance 
with Increased Clock Rate 

 how about doubling the clock rate? 

 assume the time to handle the cache miss does not 
change 

 miss penalty = 200 

 total miss cycles per instruction 
= (2% x 200) + 36% x (4% x 200) = 6.88  

 CPI with memory-stall = 2+6.88 = 8.88 

 so 

 

 

 

  

slow

fast

I CPI Clock cyclePerformance with fast clock

Clock cyclePerformance with slow clock
I CPI

2

5.44
1.23

18.88
2
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Average Access Time 

 Hit time is also important for performance 

 Average memory access time (AMAT) 

 AMAT = Hit time + Miss rate × Miss penalty 

 

 Example 

 CPU with 1ns clock, hit time = 1 cycle, miss 
penalty = 20 cycles, I-cache miss rate = 5% 

 AMAT = 1 + 0.05 × 20 = 2ns 

 2 cycles per instruction 

40 



Performance Summary 

 When CPU performance increased 

 Miss penalty becomes more significant 

 Decreasing base CPI 

 Greater proportion of time spent on memory 
stalls 

 Increasing clock rate 

 Memory stalls account for more CPU cycles 

 Can’t neglect cache behavior when 
evaluating system performance 
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Associative Caches 

 Fully associative 
 Allow a given block to go in any cache entry 

 Requires all entries to be searched at once 

 Comparator per entry (expensive) 

 n-way set associative 
 Each set contains n entries 

 Block number determines which set 
 (Block number) modulo (#Sets in cache) 

 Search all entries in a given set at once 

 n comparators (less expensive) 
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Direct-Mapped, Set-Associative, 
and Fully Associative Placements 

Data 

1 
2 

Tag 

Search 

Direct mapped 

Block# 0 1 2 3 4 5 6 7 

Data 

1 
2 

Tag 

Search 

Set associative 

Set# 0 1 2 3 

Data 

1 
2 

Tag 

Search 

Fully associative 
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Spectrum of Associativity 

Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data 

Tag Data 

0 

1 

2 

3 

4 

5 

6 

7 

Block 

Tag Data Tag Data 

0 

1 

2 

3 

Set 

Tag Data Tag Data Tag Data Tag Data 

0 

1 

Set 

Eight-way set associative (full associative) 

Four-way set associative 

Two-way set associative One-way set associative 
(direct mapped) 

For a cache with 8 entries 45 



Associativity in Caches 

 There are 3 small caches, each consisting of 4 1-
word blocks with fully associative / 2-way set 
associative / direct mapped. Find the number of 
misses for the sequence of block addresses: 

  0,8,0,6,8 

block 
address 

direct-mapped 
cache block 

2-way set associative 
cache set 

0 (0 mod 4)=0 (0 mod 2)=0 

6 (6 mod 4)=2 (6 mod 2)=0 

8 (8 mod 4)=0 (8 mod 2)=0 
Assuming we use the “Least Recently Used” replacement strategy 47 



Direct-Mapped Case 

a
d
d
. 

hit / 
miss 

contents of cache blocks after ref. 

0 1 2 3 

0 miss Mem[0] 

8 miss Mem[8] 

0 miss Mem[0] 

6 miss Mem[0] Mem[6] 

8 miss Mem[8] Mem[6] 
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Two-Way Set-Associative Case 

a
d
d
. 

hit / 
miss 

contents of cache blocks after ref. 

set 0 set 0 set 1 set 1 

0 miss Mem[0] 

8 miss Mem[0] Mem[8] 

0 hit Mem[0] Mem[8] 

6 miss Mem[0] Mem[6] 

8 miss Mem[8] Mem[6] 
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Fully Associative Case 

a
d
d
. 

hit / 
miss 

contents of cache blocks after ref. 

block 0 block 1 block 2 block 3 

0 miss Mem[0] 

8 miss Mem[0] Mem[8] 

0 hit Mem[0] Mem[8] 

6 miss Mem[0] Mem[8] Mem[6] 

8 hit Mem[0] Mem[8] Mem[6] 
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How Much Associativity 

 Increased associativity decreases 
miss rate 

 But with diminishing returns 

 Simulation of a system with 64KB 
D-cache, 16-word blocks, SPEC2000 

 1-way: 10.3% 

 2-way: 8.6% 

 4-way: 8.3% 

 8-way: 8.1% 
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Replacement Policy 

 Direct mapped: no choice 
 Set associative 

 Prefer non-valid entry, if there is one 
 Otherwise, choose among entries in the set 

 Least-recently used (LRU) 
 Choose the one unused for the longest time 

 Simple for 2-way, manageable for 4-way, too 
hard beyond that 

 Random 
 Gives approximately the same performance 

as LRU for high associativity 
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V Tag Data V Tag Data V Tag Data 

Implementation of 
a 4-Way Set-Associative Cache 

= 

Hit Data 

MUX 

V Tag Data 

22 32 

31…16 15…4 

22 8 

3210 
Address 

= = = 
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Size of Tags vs. Set Associativity 

 Increasing associativity requires more 
comparators, as well as more tag bits per 
cache block. 

 Assuming a cache of 4K blocks, a 4-word 
block size, and a 32-bit address, find the 
total number of sets and the total number 
of tag bits for caches that are direct 
mapped, 2-way and 4-way set associative, 
and fully associative. 
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Size of Tags vs. Set Associativity 

 direct mapped 

 4K sets need log2(4K)=12 bits for index 

 (28-12) x 1 x 4K = 64K tag bits 

 2-way set associative 

 2K sets 

 (28-11) x 2 x 2K = 68K tag bits 

 4-way set associative 

 1K sets 

 (28-10) x 4 x 1K = 72K tag bits 

 fully associative 

 1 set with 4K blocks 

 28 x 4K x 1 = 112K tag bits 
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Multilevel Caches 

 Primary cache attached to CPU 

 Small, but fast 

 Level-2 cache services misses from 
primary cache 

 Larger, slower, but still faster than main 
memory 

 Main memory services L-2 cache misses 

 Some high-end systems include L-3 
cache 
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Multilevel Cache Example 

 Given 

 CPU base CPI = 1, clock rate = 4GHz 

 Miss rate/instruction = 2% 

 Main memory access time = 100ns 

 With just primary cache 

 Miss penalty = 100ns/0.25ns = 400 cycles 

 Effective CPI = 1 + 0.02 × 400 = 9 
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Example (cont.) 

 Now add L-2 cache 
 Access time = 5ns 

 Global miss rate to main memory = 0.5% 

 Primary miss with L-2 hit 
 Penalty = 5ns/0.25ns = 20 cycles 

 Primary miss with L-2 miss 
 Extra penalty = 400 cycles 

 CPI = 1 + 0.02 × 20 + 0.005 × 400 = 3.4 

 Performance ratio = 9/3.4 = 2.6 
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Multilevel Cache Considerations 

 Primary cache 

 Focus on minimal hit time 

 L-2 cache 

 Focus on low miss rate to avoid main memory 
access 

 Hit time has less overall impact 

 Results 

 L-1 cache usually smaller than a single cache 

 L-1 block size smaller than L-2 block size 
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Interactions with Software 

 Misses depend on 
memory access 
patterns 

 Algorithm behavior 

 Compiler optimization 
for memory access 
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Virtual Memory 

 Use main memory as a “cache” for 
secondary (disk) storage 
 Managed jointly by CPU hardware and the 

operating system (OS) 

 Programs share main memory 
 Each gets a private virtual address space 

holding its frequently used code and data 
 Protected from other programs 

 CPU and OS translate virtual addresses 
to physical addresses 
 VM “block” is called a page 
 VM translation “miss” is called a page fault 
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Virtual Memory 
Virtual addresses Physical addresses 

Address translation 

Disk addresses 
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Mapping 
from a Virtual to a Physical Address 

Page offset 

Page offset 

Virtual page number 

Physical page number 

31 30 29 28 27 ………… 15 14 13 12 11 10 9 8  …  3 2 1 0 

11 10 9 8  …  3 2 1 0 29 28 27 ………… 15 14 13 12 

Physical address 

Virtual address 

Translation 
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Page Fault Penalty 

 On page fault, the page† must be 
fetched from disk 

 Takes millions of clock cycles 

 Handled by OS code 

 Try to minimize page fault rate 

 Fully associative placement 

 Smart replacement algorithms 

†Page: Virtual Memory Block 70 



Page Tables 

 Stores placement information 
 Array of page table entries, indexed by virtual 

page number 

 Page table register in CPU points to page table 
in physical memory 

 If page is present in memory 
 PTE stores the physical page number 

 Plus other status bits (referenced, dirty, …) 

 If page is not present 
 PTE can refer to location in swap space on disk 
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Page Tables 

Page offset 

Page offset 

Virtual page number 

Physical page number 

31 30 29 28 27 ………… 15 14 13 12 11 10 9 8  …  3 2 1 0 

11 10 9 8  …  3 2 1 0 29 28 27 ………… 15 14 13 12 

Physical address 

Virtual address 

Page table register 

12 20 

18 

Page table 

Physical page number Valid 
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Mapping Pages to Storage 
Page table Physical memory 

Disk storage 

1 

0 

1 

1 

1 

1 

1 

0 

1 

1 

0 

1 

Virtual page 
number 
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Replacement and Writes 

 To reduce page fault rate, prefer least-
recently used (LRU) replacement 
 Reference bit (aka use bit) in PTE set to 1 

on access to page 
 Periodically cleared to 0 by OS 
 A page with reference bit = 0 has not been 

used recently 

 Disk writes take millions of cycles 
 Block at once, not individual locations 
 Write through is impractical 
 Use write-back 
 Dirty bit in PTE set when page is written 
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Fast Translation Using a TLB 

 Address translation would appear to 
require extra memory references 
 One to access the PTE 
 Then the actual memory access 

 But access to page tables has good 
locality 
 So use a fast cache of PTEs within the CPU 
 Called a Translation Look-aside Buffer (TLB) 
 Typical: 16–512 PTEs, 0.5–1 cycle for hit, 10–

100 cycles for miss, 0.01%–1% miss rate 
 Misses could be handled by hardware or 

software 
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Fast Translation Using a TLB 

1 

Page table 

Physical memory 

Disk storage 

1 

0 

1 
1 
1 

1 
1 
0 
1 

0 
1 

Virtual page 
number 

1 

0 

1 
1 
1 

1 

TLB=Translation-Lookaside Buffer 
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TLB Misses 

 If page is in memory 
 Load the PTE from memory and retry 

 Could be handled in hardware 
 Can get complex for more complicated page 

table structures 

 Or in software 
 Raise a special exception, with optimized handler 

 If page is not in memory (page fault) 
 OS handles fetching the page and updating 

the page table 

 Then restart the faulting instruction 
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TLB Miss Handler 

 TLB miss indicates 

 Page present, but PTE not in TLB 

 Page not preset 

 Must recognize TLB miss before 
destination register overwritten 

 Raise exception 

 Handler copies PTE from memory to TLB 

 Then restarts instruction 

 If page not present, page fault will occur 
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Page Fault Handler 

 Use faulting virtual address to find PTE 

 Locate page on disk 

 Choose page to replace 

 If dirty, write to disk first 

 Read page into memory and update 
page table 

 Make process runnable again 

 Restart from faulting instruction 
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TLB and Cache Interaction 

 If cache tag uses 
physical address 
 Need to translate 

before cache 
lookup 

 Alternative: use 
virtual address tag 
 Complications due 

to aliasing 
 Different virtual 

addresses for 
shared physical 
address 

Physical address 

= 

Cache hit Data 

V Tag 
Data 

32 

18 

Cache 

TLB 

V D Tag Physical page number 
= 
= 
= 
= 
= 
= 

TLB hit 

20 

physical address tag cache index 
block 
offset 

byte 
offset 

physical page number page offset 

Virtual Address 
31...........12 11.........0 

virtual page number page offset 

20 12 

8 
4 
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TLBs and Caches 

TLB access 

try to read data 
from cache 

cache miss stall 
while read block 

write data into cache, 
update the tag, and put 

the data and the address 
into the write buffer 

TLB hit? 

write? 

write access 
bit on? 

cache hit? 

deliver data 
to the CPU 

write protection 
exception 

TLB miss 
exception 

virtual address 

yes no 

no yes 

yes no 

Cache hit? 

try to write data 
to cache 

cache miss stall 
while read block 

yes no 

yes no 

physical address 
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Possible Combinations of Events in 
TLB / Page Table / Cache 

TLB 
Page 
table 

Cache possible? 

hit hit miss 
possible, although the page table is never really 
checked if TLB hits 

miss hit hit 
TLB misses, but entry found in page table; after 
retry, data is found in cache 

miss hit miss 
TLB misses, but entry found in page table; after 
retry, data misses in cache 

miss miss miss 
TLB misses and is followed by a page fault; after 
retry, data must miss in cache 

hit miss miss 
impossible: cannot have a translation in TLB if page 
is not present in memory 

hit miss hit 
impossible: cannot have a translation in TLB if page 
is not present in memory 

miss miss hit 
impossible: data cannot be allowed in cache if the 
page is not in memory 
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The Memory Hierarchy 

 Common principles apply at all levels 
of the memory hierarchy 

 Based on notions of caching 

 At each level in the hierarchy 

 Block placement 

 Finding a block 

 Replacement on a miss 

 Write policy 
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Where can a Block be Placed? 

 Higher associativity reduces miss rate 

 Increases complexity, cost, and access 
time 

scheme name number of sets blocks per set 

direct mapped number of blocks in cache 1 

set associative number of blocks in cache 
 

associativity 

associativity 

fully 
associative 

1 number of 
blocks in cache 
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How is a Block Found? 

 Hardware caches 
 Reduce comparisons to reduce cost 

 Virtual memory 
 Full table lookup makes full associativity feasible 
 Benefit in reduced miss rate 

associativity location method comparisons 
required 

direct 
mapped 

index 1 

set 
associative 

index the set, 
search among elements 

degree of 
associativity 

fully 
associative 

search all cache entries size of the cache 

separate lookup table 0 
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Which Block should be Replaced 
on a Cache Miss? 

 Choice of entry to replace on a miss 

 Least recently used (LRU) 

 Complex and costly hardware for high 
associativity 

 Random 

 Close to LRU, easier to implement 

 Virtual memory 

 LRU approximation with hardware 
support 
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What Happens on a Write? 

 Write-through 
 Update both upper and lower levels 
 Simplifies replacement, but may require 

write buffer 
 Write-back 
 Update upper level only 
 Update lower level when block is 

replaced 
 Need to keep more state 

 Virtual memory 
 Only write-back is feasible, given disk 

write latency  

88 



Sources of Misses 

 Compulsory misses (aka cold start 
misses) 
 First access to a block 

 Capacity misses 
 Due to finite cache size 
 A replaced block is later accessed again 

 Conflict misses (aka collision misses) 
 In a non-fully associative cache 
 Due to competition for entries in a set 
 Would not occur in a fully associative cache 

of the same total size 
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Cache Design Trade-offs 

Design change Effect on miss rate Negative 

performance effect 

Increase cache size Decrease capacity 

misses 

May increase access 

time 

Increase associativity Decrease conflict 

misses 

May increase access 

time 

Increase block size Decrease compulsory 

misses 

Increases miss 

penalty. For very 

large block size, may 

increase miss rate 

due to pollution. 
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