
Computer
Organization and Structure

Bing-Yu Chen
National Taiwan University

Large and Fast:
Exploiting Memory Hierarchy

 The Basic of Caches

 Measuring & Improving
Cache Performance

 Virtual Memory

 A Common Framework for
Memory Hierarchies

1

Memory Technology

 Static RAM (SRAM)
 0.5ns – 2.5ns, $2000 – $5000 per GB

 Dynamic RAM (DRAM)
 50ns – 70ns, $20 – $75 per GB

 Magnetic disk
 5ms – 20ms, $0.20 – $2 per GB

 Ideal memory
 Access time of SRAM

 Capacity and cost/GB of disk

2

Principle of Locality

 Programs access a small proportion of
their address space at any time

 Temporal locality
 Items accessed recently are likely to be

accessed again soon
 e.g., instructions in a loop, induction

variables

 Spatial locality
 Items near those accessed recently are

likely to be accessed soon
 e.g., sequential instruction access, array

data

3

Taking Advantage of Locality

 Memory hierarchy

 Store everything on disk

 Copy recently accessed (and nearby)
items from disk to smaller DRAM
memory
 Main memory

 Copy more recently accessed (and
nearby) items from DRAM to smaller
SRAM memory
 Cache memory attached to CPU

4

Memory Hierarchy Levels

 Block (aka line): unit of copying
 May be multiple words

 If accessed data is present in
upper level
 Hit: access satisfied by upper level

 Hit ratio: hits/accesses

 If accessed data is absent
 Miss: block copied from lower level

 Time taken: miss penalty
 Miss ratio: misses/accesses

= 1 – hit ratio

 Then accessed data supplied from
upper level

Processor

Data is transferred

5

Cache Memory

 Cache memory

 The level of the memory hierarchy closest to
the CPU

 Given accesses X1, …, Xn–1, Xn

 How do we know if
the data is present?

 Where do we look?

X4

X1

Xn-2

Xn-1

X2

X3

X4

X1

Xn-2

Xn-1

X2

Xn

X3

Xn

6

Direct Mapped Cache

 Location determined by address

 Direct mapped: only one choice
 (Block address) modulo (#Blocks in cache)

 #Blocks is a
power of 2

 Use low-order
address bits

memory

cache

0
0

0

0
0

1

0
1

0

0
1

1

1
0

0

1
0

1

1
1

0

1
1

1

0
0

0
0

1

0
0

1
0

1

0
1

0
0

1

0
1

1
0

1

1
0

0
0

1

1
0

1
0

1

1
1

0
0

1

1
1

1
0

1

7

Tags and Valid Bits

 How do we know which particular
block is stored in a cache location?

 Store block address as well as the data

 Actually, only need the high-order bits

 Called the tag

 What if there is no data in a location?

 Valid bit: 1 = present, 0 = not present

 Initially 0

8

Accessing a Cache (initial)

index V tag data

000 N

001 N

010 N

011 N

100 N

101 N

110 N

111 N

8-blocks, 1 word/block, direct mapped 9

Accessing a Cache (22 miss)

index V tag data

000 N

001 N

010 N

011 N

100 N

101 N

110 Y 10two Memory(10110two)

111 N

10

Accessing a Cache (26 miss)

index V tag data

000 N

001 N

010 Y 11two Memory(11010two)

011 N

100 N

101 N

110 Y 10two Memory(10110two)

111 N

11

Accessing a Cache (22 hit)

index V tag data

000 N

001 N

010 Y 11two Memory(11010two)

011 N

100 N

101 N

110 Y 10two Memory(10110two)

111 N

12

Accessing a Cache (26 hit)

index V tag data

000 N

001 N

010 Y 11two Memory(11010two)

011 N

100 N

101 N

110 Y 10two Memory(10110two)

111 N

13

Accessing a Cache (16 miss)

index V tag data

000 Y 10two Memory(10000two)

001 N

010 Y 11two Memory(11010two)

011 N

100 N

101 N

110 Y 10two Memory(10110two)

111 N

14

Accessing a Cache (3 miss)

index V tag data

000 Y 10two Memory(10000two)

001 N

010 Y 11two Memory(11010two)

011 Y 00two Memory(00011two)

100 N

101 N

110 Y 10two Memory(10110two)

111 N

15

Accessing a Cache (16 hit)

index V tag data

000 Y 10two Memory(10000two)

001 N

010 Y 11two Memory(11010two)

011 Y 00two Memory(00011two)

100 N

101 N

110 Y 10two Memory(10110two)

111 N

16

Accessing a Cache (18 miss)

index V tag data

000 Y 10two Memory(10000two)

001 N

010 Y 10two Memory(10010two)

011 Y 00two Memory(00011two)

100 N

101 N

110 Y 10two Memory(10110two)

111 N

17

Direct Mapped Cache

=

Hit

Data

Tag

Index

V Tag Data

20 bits 32 bits

1K
entries

Byte
offset

20 32

31…12 11…4

20 10

3210
Address

What kind of locality are
we taking advantage of?

18

Spatial Locality

=

Hit Data

MUX

Block offset

Tag

Index

V Tag Data

16 bits 128 bits

4K
entries

Byte
offset

16 32 32 32 32

32

31…16 15…4

16
12

2

3210
Address

19

Bits in a Cache

 Assuming the 32-bit byte address, a direct-
mapped cache of size 2n blocks with 2m-word
(2m+2-byte) blocks will require a tag field
whose size is 32-(n+m+2) bits
 n bits are used for the index
 m bits are used for the word within the block
 2 bits are used for the byte part of the address

 The total number of bits in a direct-mapped
cache is
 2nx(block size + tag size + valid field size)
= 2nx(2mx32+(32-n-m-2)+1)

20

Bits in a Cache

 How many total bits are required for a direct-mapped
cache with 16KB of data and 4-word blocks, assuming
a 32-bit address?

 We know that 16KB is 4K words, which is 212 words,
and, with a block size of 4 words, 210 blocks. Each
block has 4x32 bits of data plus a tag, which is
32-10-2-2 bits, plus a valid bit. Thus the total cache
size is

210x(128+(32-10-2-2)+1)=
210x147=147Kbits=18.4KB

21

Example: Larger Block Size

 64 blocks, 16 bytes/block

 To what block number does address
1200 map?

 Block address = 1200/16 = 75

 Block number = 75 modulo 64 = 11

Tag Index Offset

0 3 4 9 10 31

4 bits 6 bits 22 bits

22

Block Size Considerations

 Larger blocks should reduce miss rate

 Due to spatial locality

 But in a fixed-sized cache

 Larger blocks  fewer of them

 More competition  increased miss rate

 Larger blocks  pollution

 Larger miss penalty

 Can override benefit of reduced miss rate

 Early restart and critical-word-first can help

23

 Make reading multiple words easier by using banks of memory

 It can get a lot more complicated...

Increasing Memory Bandwidth

CPU

Cache

Mem

bus

CPU

Cache

Mem
bank0

bus

Mem
bank1

Mem
bank2

Mem
bank3

CPU

Cache

bus

Memory

Multiplexor

one-word-wide
memory organization

interleaved
memory organization

wide
memory organization

24

Increasing Memory Bandwidth

 Assume a set of hypothetical memory
access times:
 1 bus cycle for address transfer

 15 bus cycles per DRAM access

 1 bus cycle per data transfer

 For 4-word block, 1-word-wide DRAM
 Miss penalty = 1 + 4×15 + 4×1 = 65 bus

cycles

 Bandwidth = 16 bytes / 65 cycles = 0.25
B/cycle

25

Increasing Memory Bandwidth

 4-word wide memory
 Miss penalty = 1 + 15 + 1 = 17 bus cycles

 Bandwidth = 16 bytes / 17 cycles = 0.94
B/cycle

 4-bank interleaved memory
 Miss penalty = 1 + 15 + 4×1 = 20 bus

cycles

 Bandwidth = 16 bytes / 20 cycles = 0.8
B/cycle

26

Hits vs. Misses

 Read hits
 this is what we want!

 Read misses
 stall the CPU, fetch block from memory, deliver

to cache, restart

 Write hits:
 can replace data in cache and memory (write-

through)
 write the data only into the cache (write-back

the cache later)

 Write misses:
 read the entire block into the cache, then write

the word

27

Cache Misses

 On cache hit, CPU proceeds normally

 On cache miss

 Stall the CPU pipeline

 Fetch block from next level of hierarchy

 Instruction cache miss

 Restart instruction fetch

 Data cache miss

 Complete data access

28

Write-Through

 On data-write hit, could just update the
block in cache
 But then cache and memory would be

inconsistent

 Write through: also update memory
 But makes writes take longer

 e.g., if base CPI = 1, 10% of instructions are
stores, write to memory takes 100 cycles
 Effective CPI = 1 + 0.1×100 = 11

 Solution: write buffer
 Holds data waiting to be written to memory
 CPU continues immediately

 Only stalls on write if write buffer is already full

29

Write-Back

 Alternative: On data-write hit, just
update the block in cache

 Keep track of whether each block is dirty

 When a dirty block is replaced

 Write it back to memory

 Can use a write buffer to allow replacing
block to be read first

30

DRAM Generations

0

50

100

150

200

250

300

'80 '83 '85 '89 '92 '96 '98 '00 '04 '07

Trac

Tcac

Year Capacity $/GB

1980 64Kbit $1500000

1983 256Kbit $500000

1985 1Mbit $200000

1989 4Mbit $50000

1992 16Mbit $15000

1996 64Mbit $10000

1998 128Mbit $4000

2000 256Mbit $1000

2004 512Mbit $250

2007 1Gbit $50

34

Measuring Cache Performance

 Components of CPU time
 Program execution cycles

 Includes cache hit time

 Memory stall cycles
 Mainly from cache misses

 With simplifying assumptions:

penalty Miss
nInstructio

Misses

Program

nsInstructio

penalty Missrate Miss
Program

accessesMemory

cycles stallMemory





35

Calculating Cache Performance

 assume

 instruction cache† miss rate = 2%

 data cache‡ miss rate = 4%

 miss penalty = 100 cycles for all misses

 base CPI (ideal cache) = 2

 frequency of all loads & stores = 36%

 how much faster a machine would run with
a perfect cache that never missed?

†I-Cache
‡D-Cache

37

Calculating Cache Performance

 If Instruction count = I

 instruction miss cycles = I x 2% x 100

 data miss cycles = I x 36% x 4% x 100

 memory-stall cycles = 2I+1.44 I = 3.44I

 CPI with memory-stall = 2+3.44 = 5.44

 so stall

perfect

stall

perfect

I CPI Clock cycleCPU time with stalls

CPU time with perfect cache I CPI Clock cycle

CPI 5.44
2.72

CPI 2

 


 

  

38

Cache Performance
with Increased Clock Rate

 how about doubling the clock rate?

 assume the time to handle the cache miss does not
change

 miss penalty = 200

 total miss cycles per instruction
= (2% x 200) + 36% x (4% x 200) = 6.88

 CPI with memory-stall = 2+6.88 = 8.88

 so

slow

fast

I CPI Clock cyclePerformance with fast clock

Clock cyclePerformance with slow clock
I CPI

2

5.44
1.23

18.88
2

 


 

 


39

Average Access Time

 Hit time is also important for performance

 Average memory access time (AMAT)

 AMAT = Hit time + Miss rate × Miss penalty

 Example

 CPU with 1ns clock, hit time = 1 cycle, miss
penalty = 20 cycles, I-cache miss rate = 5%

 AMAT = 1 + 0.05 × 20 = 2ns

 2 cycles per instruction

40

Performance Summary

 When CPU performance increased

 Miss penalty becomes more significant

 Decreasing base CPI

 Greater proportion of time spent on memory
stalls

 Increasing clock rate

 Memory stalls account for more CPU cycles

 Can’t neglect cache behavior when
evaluating system performance

42

Associative Caches

 Fully associative
 Allow a given block to go in any cache entry

 Requires all entries to be searched at once

 Comparator per entry (expensive)

 n-way set associative
 Each set contains n entries

 Block number determines which set
 (Block number) modulo (#Sets in cache)

 Search all entries in a given set at once

 n comparators (less expensive)

43

Direct-Mapped, Set-Associative,
and Fully Associative Placements

Data

1
2

Tag

Search

Direct mapped

Block# 0 1 2 3 4 5 6 7

Data

1
2

Tag

Search

Set associative

Set# 0 1 2 3

Data

1
2

Tag

Search

Fully associative

44

Spectrum of Associativity

Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data

Tag Data

0

1

2

3

4

5

6

7

Block

Tag Data Tag Data

0

1

2

3

Set

Tag Data Tag Data Tag Data Tag Data

0

1

Set

Eight-way set associative (full associative)

Four-way set associative

Two-way set associative One-way set associative
(direct mapped)

For a cache with 8 entries 45

Associativity in Caches

 There are 3 small caches, each consisting of 4 1-
word blocks with fully associative / 2-way set
associative / direct mapped. Find the number of
misses for the sequence of block addresses:

 0,8,0,6,8

block
address

direct-mapped
cache block

2-way set associative
cache set

0 (0 mod 4)=0 (0 mod 2)=0

6 (6 mod 4)=2 (6 mod 2)=0

8 (8 mod 4)=0 (8 mod 2)=0
Assuming we use the “Least Recently Used” replacement strategy 47

Direct-Mapped Case

a
d
d
.

hit /
miss

contents of cache blocks after ref.

0 1 2 3

0 miss Mem[0]

8 miss Mem[8]

0 miss Mem[0]

6 miss Mem[0] Mem[6]

8 miss Mem[8] Mem[6]

48

Two-Way Set-Associative Case

a
d
d
.

hit /
miss

contents of cache blocks after ref.

set 0 set 0 set 1 set 1

0 miss Mem[0]

8 miss Mem[0] Mem[8]

0 hit Mem[0] Mem[8]

6 miss Mem[0] Mem[6]

8 miss Mem[8] Mem[6]

49

Fully Associative Case

a
d
d
.

hit /
miss

contents of cache blocks after ref.

block 0 block 1 block 2 block 3

0 miss Mem[0]

8 miss Mem[0] Mem[8]

0 hit Mem[0] Mem[8]

6 miss Mem[0] Mem[8] Mem[6]

8 hit Mem[0] Mem[8] Mem[6]

50

How Much Associativity

 Increased associativity decreases
miss rate

 But with diminishing returns

 Simulation of a system with 64KB
D-cache, 16-word blocks, SPEC2000

 1-way: 10.3%

 2-way: 8.6%

 4-way: 8.3%

 8-way: 8.1%

51

Replacement Policy

 Direct mapped: no choice
 Set associative

 Prefer non-valid entry, if there is one
 Otherwise, choose among entries in the set

 Least-recently used (LRU)
 Choose the one unused for the longest time

 Simple for 2-way, manageable for 4-way, too
hard beyond that

 Random
 Gives approximately the same performance

as LRU for high associativity

52

V Tag Data V Tag Data V Tag Data

Implementation of
a 4-Way Set-Associative Cache

=

Hit Data

MUX

V Tag Data

22 32

31…16 15…4

22 8

3210
Address

= = =

53

Size of Tags vs. Set Associativity

 Increasing associativity requires more
comparators, as well as more tag bits per
cache block.

 Assuming a cache of 4K blocks, a 4-word
block size, and a 32-bit address, find the
total number of sets and the total number
of tag bits for caches that are direct
mapped, 2-way and 4-way set associative,
and fully associative.

54

Size of Tags vs. Set Associativity

 direct mapped

 4K sets need log2(4K)=12 bits for index

 (28-12) x 1 x 4K = 64K tag bits

 2-way set associative

 2K sets

 (28-11) x 2 x 2K = 68K tag bits

 4-way set associative

 1K sets

 (28-10) x 4 x 1K = 72K tag bits

 fully associative

 1 set with 4K blocks

 28 x 4K x 1 = 112K tag bits

55

Multilevel Caches

 Primary cache attached to CPU

 Small, but fast

 Level-2 cache services misses from
primary cache

 Larger, slower, but still faster than main
memory

 Main memory services L-2 cache misses

 Some high-end systems include L-3
cache

57

Multilevel Cache Example

 Given

 CPU base CPI = 1, clock rate = 4GHz

 Miss rate/instruction = 2%

 Main memory access time = 100ns

 With just primary cache

 Miss penalty = 100ns/0.25ns = 400 cycles

 Effective CPI = 1 + 0.02 × 400 = 9

60

Example (cont.)

 Now add L-2 cache
 Access time = 5ns

 Global miss rate to main memory = 0.5%

 Primary miss with L-2 hit
 Penalty = 5ns/0.25ns = 20 cycles

 Primary miss with L-2 miss
 Extra penalty = 400 cycles

 CPI = 1 + 0.02 × 20 + 0.005 × 400 = 3.4

 Performance ratio = 9/3.4 = 2.6

61

Multilevel Cache Considerations

 Primary cache

 Focus on minimal hit time

 L-2 cache

 Focus on low miss rate to avoid main memory
access

 Hit time has less overall impact

 Results

 L-1 cache usually smaller than a single cache

 L-1 block size smaller than L-2 block size

62

Interactions with Software

 Misses depend on
memory access
patterns

 Algorithm behavior

 Compiler optimization
for memory access

64

Virtual Memory

 Use main memory as a “cache” for
secondary (disk) storage
 Managed jointly by CPU hardware and the

operating system (OS)

 Programs share main memory
 Each gets a private virtual address space

holding its frequently used code and data
 Protected from other programs

 CPU and OS translate virtual addresses
to physical addresses
 VM “block” is called a page
 VM translation “miss” is called a page fault

66

Virtual Memory
Virtual addresses Physical addresses

Address translation

Disk addresses

67

Mapping
from a Virtual to a Physical Address

Page offset

Page offset

Virtual page number

Physical page number

31 30 29 28 27 ………… 15 14 13 12 11 10 9 8 … 3 2 1 0

11 10 9 8 … 3 2 1 0 29 28 27 ………… 15 14 13 12

Physical address

Virtual address

Translation

68

Page Fault Penalty

 On page fault, the page† must be
fetched from disk

 Takes millions of clock cycles

 Handled by OS code

 Try to minimize page fault rate

 Fully associative placement

 Smart replacement algorithms

†Page: Virtual Memory Block 70

Page Tables

 Stores placement information
 Array of page table entries, indexed by virtual

page number

 Page table register in CPU points to page table
in physical memory

 If page is present in memory
 PTE stores the physical page number

 Plus other status bits (referenced, dirty, …)

 If page is not present
 PTE can refer to location in swap space on disk

71

Page Tables

Page offset

Page offset

Virtual page number

Physical page number

31 30 29 28 27 ………… 15 14 13 12 11 10 9 8 … 3 2 1 0

11 10 9 8 … 3 2 1 0 29 28 27 ………… 15 14 13 12

Physical address

Virtual address

Page table register

12 20

18

Page table

Physical page number Valid

72

Mapping Pages to Storage
Page table Physical memory

Disk storage

1

0

1

1

1

1

1

0

1

1

0

1

Virtual page
number

73

Replacement and Writes

 To reduce page fault rate, prefer least-
recently used (LRU) replacement
 Reference bit (aka use bit) in PTE set to 1

on access to page
 Periodically cleared to 0 by OS
 A page with reference bit = 0 has not been

used recently

 Disk writes take millions of cycles
 Block at once, not individual locations
 Write through is impractical
 Use write-back
 Dirty bit in PTE set when page is written

74

Fast Translation Using a TLB

 Address translation would appear to
require extra memory references
 One to access the PTE
 Then the actual memory access

 But access to page tables has good
locality
 So use a fast cache of PTEs within the CPU
 Called a Translation Look-aside Buffer (TLB)
 Typical: 16–512 PTEs, 0.5–1 cycle for hit, 10–

100 cycles for miss, 0.01%–1% miss rate
 Misses could be handled by hardware or

software

75

Fast Translation Using a TLB

1

Page table

Physical memory

Disk storage

1

0

1
1
1

1
1
0
1

0
1

Virtual page
number

1

0

1
1
1

1

TLB=Translation-Lookaside Buffer

76

TLB Misses

 If page is in memory
 Load the PTE from memory and retry

 Could be handled in hardware
 Can get complex for more complicated page

table structures

 Or in software
 Raise a special exception, with optimized handler

 If page is not in memory (page fault)
 OS handles fetching the page and updating

the page table

 Then restart the faulting instruction

77

TLB Miss Handler

 TLB miss indicates

 Page present, but PTE not in TLB

 Page not preset

 Must recognize TLB miss before
destination register overwritten

 Raise exception

 Handler copies PTE from memory to TLB

 Then restarts instruction

 If page not present, page fault will occur

78

Page Fault Handler

 Use faulting virtual address to find PTE

 Locate page on disk

 Choose page to replace

 If dirty, write to disk first

 Read page into memory and update
page table

 Make process runnable again

 Restart from faulting instruction

79

TLB and Cache Interaction

 If cache tag uses
physical address
 Need to translate

before cache
lookup

 Alternative: use
virtual address tag
 Complications due

to aliasing
 Different virtual

addresses for
shared physical
address

Physical address

=

Cache hit Data

V Tag
Data

32

18

Cache

TLB

V D Tag Physical page number
=
=
=
=
=
=

TLB hit

20

physical address tag cache index
block
offset

byte
offset

physical page number page offset

Virtual Address
31...........12 11.........0

virtual page number page offset

20 12

8
4

80

TLBs and Caches

TLB access

try to read data
from cache

cache miss stall
while read block

write data into cache,
update the tag, and put

the data and the address
into the write buffer

TLB hit?

write?

write access
bit on?

cache hit?

deliver data
to the CPU

write protection
exception

TLB miss
exception

virtual address

yes no

no yes

yes no

Cache hit?

try to write data
to cache

cache miss stall
while read block

yes no

yes no

physical address

81

Possible Combinations of Events in
TLB / Page Table / Cache

TLB
Page
table

Cache possible?

hit hit miss
possible, although the page table is never really
checked if TLB hits

miss hit hit
TLB misses, but entry found in page table; after
retry, data is found in cache

miss hit miss
TLB misses, but entry found in page table; after
retry, data misses in cache

miss miss miss
TLB misses and is followed by a page fault; after
retry, data must miss in cache

hit miss miss
impossible: cannot have a translation in TLB if page
is not present in memory

hit miss hit
impossible: cannot have a translation in TLB if page
is not present in memory

miss miss hit
impossible: data cannot be allowed in cache if the
page is not in memory

82

The Memory Hierarchy

 Common principles apply at all levels
of the memory hierarchy

 Based on notions of caching

 At each level in the hierarchy

 Block placement

 Finding a block

 Replacement on a miss

 Write policy

84

Where can a Block be Placed?

 Higher associativity reduces miss rate

 Increases complexity, cost, and access
time

scheme name number of sets blocks per set

direct mapped number of blocks in cache 1

set associative number of blocks in cache

associativity

associativity

fully
associative

1 number of
blocks in cache

85

How is a Block Found?

 Hardware caches
 Reduce comparisons to reduce cost

 Virtual memory
 Full table lookup makes full associativity feasible
 Benefit in reduced miss rate

associativity location method comparisons
required

direct
mapped

index 1

set
associative

index the set,
search among elements

degree of
associativity

fully
associative

search all cache entries size of the cache

separate lookup table 0

86

Which Block should be Replaced
on a Cache Miss?

 Choice of entry to replace on a miss

 Least recently used (LRU)

 Complex and costly hardware for high
associativity

 Random

 Close to LRU, easier to implement

 Virtual memory

 LRU approximation with hardware
support

87

What Happens on a Write?

 Write-through
 Update both upper and lower levels
 Simplifies replacement, but may require

write buffer
 Write-back
 Update upper level only
 Update lower level when block is

replaced
 Need to keep more state

 Virtual memory
 Only write-back is feasible, given disk

write latency

88

Sources of Misses

 Compulsory misses (aka cold start
misses)
 First access to a block

 Capacity misses
 Due to finite cache size
 A replaced block is later accessed again

 Conflict misses (aka collision misses)
 In a non-fully associative cache
 Due to competition for entries in a set
 Would not occur in a fully associative cache

of the same total size

91

Cache Design Trade-offs

Design change Effect on miss rate Negative

performance effect

Increase cache size Decrease capacity

misses

May increase access

time

Increase associativity Decrease conflict

misses

May increase access

time

Increase block size Decrease compulsory

misses

Increases miss

penalty. For very

large block size, may

increase miss rate

due to pollution.

92

