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Large and Fast: 
Exploiting Memory Hierarchy 

 The Basic of Caches 

 Measuring & Improving 
Cache Performance 

 Virtual Memory 

 A Common Framework for 
Memory Hierarchies 
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Memory Technology 

 Static RAM (SRAM) 
 0.5ns – 2.5ns, $2000 – $5000 per GB 

 Dynamic RAM (DRAM) 
 50ns – 70ns, $20 – $75 per GB 

 Magnetic disk 
 5ms – 20ms, $0.20 – $2 per GB 

 Ideal memory 
 Access time of SRAM 

 Capacity and cost/GB of disk 
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Principle of Locality 

 Programs access a small proportion of 
their address space at any time 

 Temporal locality 
 Items accessed recently are likely to be 

accessed again soon 
 e.g., instructions in a loop, induction 

variables 

 Spatial locality 
 Items near those accessed recently are 

likely to be accessed soon 
 e.g., sequential instruction access, array 

data 
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Taking Advantage of Locality 

 Memory hierarchy 

 Store everything on disk 

 Copy recently accessed (and nearby) 
items from disk to smaller DRAM 
memory 
 Main memory 

 Copy more recently accessed (and 
nearby) items from DRAM to smaller 
SRAM memory 
 Cache memory attached to CPU 
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Memory Hierarchy Levels 

 Block (aka line): unit of copying 
 May be multiple words 

 If accessed data is present in 
upper level 
 Hit: access satisfied by upper level 

 Hit ratio: hits/accesses 

 If accessed data is absent 
 Miss: block copied from lower level 

 Time taken: miss penalty 
 Miss ratio: misses/accesses 

= 1 – hit ratio 

 Then accessed data supplied from 
upper level 

Processor 

Data is transferred 
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Cache Memory 

 Cache memory 

 The level of the memory hierarchy closest to 
the CPU 

 Given accesses X1, …, Xn–1, Xn 

 How do we know if 
the data is present? 

 Where do we look? 
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Direct Mapped Cache 

 Location determined by address 

 Direct mapped: only one choice 
 (Block address) modulo (#Blocks in cache) 

 #Blocks is a 
power of 2 

 Use low-order 
address bits 
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Tags and Valid Bits 

 How do we know which particular 
block is stored in a cache location? 

 Store block address as well as the data 

 Actually, only need the high-order bits 

 Called the tag 

 What if there is no data in a location? 

 Valid bit: 1 = present, 0 = not present 

 Initially 0 
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Accessing a Cache (initial) 

index V tag data 

000 N 

001 N 

010 N 

011 N 

100 N 

101 N 

110 N 

111 N 

8-blocks, 1 word/block, direct mapped 9 



Accessing a Cache (22 miss) 

index V tag data 

000 N 

001 N 

010 N 

011 N 

100 N 

101 N 

110 Y 10two Memory(10110two) 

111 N 
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Accessing a Cache (26 miss) 

index V tag data 

000 N 

001 N 

010 Y 11two Memory(11010two) 

011 N 

100 N 

101 N 

110 Y 10two Memory(10110two) 

111 N 
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Accessing a Cache (22 hit) 

index V tag data 

000 N 

001 N 

010 Y 11two Memory(11010two) 

011 N 

100 N 

101 N 

110 Y 10two Memory(10110two) 

111 N 
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Accessing a Cache (26 hit) 

index V tag data 

000 N 

001 N 

010 Y 11two Memory(11010two) 

011 N 

100 N 

101 N 

110 Y 10two Memory(10110two) 

111 N 
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Accessing a Cache (16 miss) 

index V tag data 

000 Y 10two Memory(10000two) 

001 N 

010 Y 11two Memory(11010two) 

011 N 

100 N 

101 N 

110 Y 10two Memory(10110two) 

111 N 
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Accessing a Cache (3 miss) 

index V tag data 

000 Y 10two Memory(10000two) 

001 N 

010 Y 11two Memory(11010two) 

011 Y 00two Memory(00011two) 

100 N 

101 N 

110 Y 10two Memory(10110two) 

111 N 
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Accessing a Cache (16 hit) 

index V tag data 

000 Y 10two Memory(10000two) 

001 N 

010 Y 11two Memory(11010two) 

011 Y 00two Memory(00011two) 

100 N 

101 N 

110 Y 10two Memory(10110two) 

111 N 
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Accessing a Cache (18 miss) 

index V tag data 

000 Y 10two Memory(10000two) 

001 N 

010 Y 10two Memory(10010two) 

011 Y 00two Memory(00011two) 

100 N 

101 N 

110 Y 10two Memory(10110two) 

111 N 
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Direct Mapped Cache 

= 

Hit 

Data 

Tag 

Index 

V Tag Data 

20 bits 32 bits 

1K 
entries 

Byte 
offset 

20 32 

31…12 11…4 

20 10 

3210 
Address 

What kind of locality are 
we taking advantage of? 
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Spatial Locality 

= 

Hit Data 

MUX 

Block offset 

Tag 

Index 

V Tag Data 

16 bits 128 bits 

4K 
entries 

Byte 
offset 

16 32 32 32 32 

32 

31…16 15…4 

16 
12 

2 

3210 
Address 
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Bits in a Cache 

 Assuming the 32-bit byte address, a direct-
mapped cache of size 2n blocks with 2m-word 
(2m+2-byte) blocks will require a tag field 
whose size is 32-(n+m+2) bits 
 n bits are used for the index 
 m bits are used for the word within the block 
 2 bits are used for the byte part of the address 

 

 The total number of bits in a direct-mapped 
cache is 
 2nx(block size + tag size + valid field size) 
= 2nx(2mx32+(32-n-m-2)+1) 
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Bits in a Cache 

 How many total bits are required for a direct-mapped 
cache with 16KB of data and 4-word blocks, assuming 
a 32-bit address? 

 

 We know that 16KB is 4K words, which is 212 words, 
and, with a block size of 4 words, 210 blocks. Each 
block has 4x32 bits of data plus a tag, which is 
32-10-2-2 bits, plus a valid bit. Thus the total cache 
size is 
 
210x(128+(32-10-2-2)+1)= 
210x147=147Kbits=18.4KB 
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Example: Larger Block Size 

 64 blocks, 16 bytes/block 

 To what block number does address 
1200 map? 

 Block address = 1200/16 = 75 

 Block number = 75 modulo 64 = 11 

Tag Index Offset 

0 3 4 9 10 31 

4 bits 6 bits 22 bits 
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Block Size Considerations 

 Larger blocks should reduce miss rate 

 Due to spatial locality 

 But in a fixed-sized cache 

 Larger blocks  fewer of them 

 More competition  increased miss rate 

 Larger blocks  pollution 

 Larger miss penalty 

 Can override benefit of reduced miss rate 

 Early restart and critical-word-first can help 
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 Make reading multiple words easier by using banks of memory 
 
 
 
 
 
 
 

 
 

 
 
 
 

 
 
 

 
 It can get a lot more complicated... 

Increasing Memory Bandwidth 

CPU 

Cache 

Mem 

bus 

CPU 

Cache 

Mem 
bank0 

bus 

Mem 
bank1 

Mem 
bank2 

Mem 
bank3 

CPU 

Cache 

bus 

Memory 

Multiplexor 

one-word-wide 
memory organization 

interleaved 
memory organization 

wide 
memory organization 
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Increasing Memory Bandwidth 

 Assume a set of hypothetical memory 
access times: 
 1 bus cycle for address transfer 

 15 bus cycles per DRAM access 

 1 bus cycle per data transfer 

 

 For 4-word block, 1-word-wide DRAM 
 Miss penalty = 1 + 4×15 + 4×1 = 65 bus 

cycles 

 Bandwidth = 16 bytes / 65 cycles = 0.25 
B/cycle 
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Increasing Memory Bandwidth 

 4-word wide memory 
 Miss penalty = 1 + 15 + 1 = 17 bus cycles 

 Bandwidth = 16 bytes / 17 cycles = 0.94 
B/cycle 

 

 4-bank interleaved memory 
 Miss penalty = 1 + 15 + 4×1 = 20 bus 

cycles 

 Bandwidth = 16 bytes / 20 cycles = 0.8 
B/cycle 
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Hits vs. Misses 

 Read hits 
 this is what we want! 

 Read misses 
 stall the CPU, fetch block from memory, deliver 

to cache, restart  

 Write hits: 
 can replace data in cache and memory (write-

through) 
 write the data only into the cache (write-back 

the cache later) 

 Write misses: 
 read the entire block into the cache, then write 

the word 
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Cache Misses 

 On cache hit, CPU proceeds normally 

 On cache miss 

 Stall the CPU pipeline 

 Fetch block from next level of hierarchy 

 Instruction cache miss 

 Restart instruction fetch 

 Data cache miss 

 Complete data access 
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Write-Through 

 On data-write hit, could just update the 
block in cache 
 But then cache and memory would be 

inconsistent 

 Write through: also update memory 
 But makes writes take longer 

 e.g., if base CPI = 1, 10% of instructions are 
stores, write to memory takes 100 cycles 
  Effective CPI = 1 + 0.1×100 = 11 

 Solution: write buffer 
 Holds data waiting to be written to memory 
 CPU continues immediately 

 Only stalls on write if write buffer is already full 
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Write-Back 

 Alternative: On data-write hit, just 
update the block in cache 

 Keep track of whether each block is dirty 

 When a dirty block is replaced 

 Write it back to memory 

 Can use a write buffer to allow replacing 
block to be read first 

30 



DRAM Generations 

0

50

100

150

200

250

300

'80 '83 '85 '89 '92 '96 '98 '00 '04 '07

Trac

Tcac

Year Capacity $/GB 

1980 64Kbit $1500000 

1983 256Kbit $500000 

1985 1Mbit $200000 

1989 4Mbit $50000 

1992 16Mbit $15000 

1996 64Mbit $10000 

1998 128Mbit $4000 

2000 256Mbit $1000 

2004 512Mbit $250 

2007 1Gbit $50 
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Measuring Cache Performance 

 Components of CPU time 
 Program execution cycles 

 Includes cache hit time 

 Memory stall cycles 
 Mainly from cache misses 

 With simplifying assumptions: 

penalty Miss
nInstructio

Misses

Program

nsInstructio

penalty Missrate Miss
Program

accessesMemory 

cycles stallMemory 




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Calculating Cache Performance 

 assume 

 instruction cache† miss rate = 2% 

 data cache‡ miss rate = 4% 

 miss penalty = 100 cycles for all misses 

 base CPI (ideal cache) = 2 

 frequency of all loads & stores = 36% 

 

 how much faster a machine would run with 
a perfect cache that never missed? 

†I-Cache 
‡D-Cache 
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Calculating Cache Performance 

 If Instruction count = I 

 instruction miss cycles = I x 2% x 100 

 data miss cycles = I x 36% x 4% x 100 

 memory-stall cycles = 2I+1.44 I = 3.44I 

 CPI with memory-stall = 2+3.44 = 5.44 

 so stall

perfect

stall

perfect

I CPI Clock cycleCPU time with stalls

CPU time with perfect cache I CPI Clock cycle

CPI 5.44
2.72

CPI 2

 


 

  
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Cache Performance 
with Increased Clock Rate 

 how about doubling the clock rate? 

 assume the time to handle the cache miss does not 
change 

 miss penalty = 200 

 total miss cycles per instruction 
= (2% x 200) + 36% x (4% x 200) = 6.88  

 CPI with memory-stall = 2+6.88 = 8.88 

 so 

 

 

 

  

slow

fast

I CPI Clock cyclePerformance with fast clock

Clock cyclePerformance with slow clock
I CPI

2

5.44
1.23

18.88
2

 


 

 

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Average Access Time 

 Hit time is also important for performance 

 Average memory access time (AMAT) 

 AMAT = Hit time + Miss rate × Miss penalty 

 

 Example 

 CPU with 1ns clock, hit time = 1 cycle, miss 
penalty = 20 cycles, I-cache miss rate = 5% 

 AMAT = 1 + 0.05 × 20 = 2ns 

 2 cycles per instruction 
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Performance Summary 

 When CPU performance increased 

 Miss penalty becomes more significant 

 Decreasing base CPI 

 Greater proportion of time spent on memory 
stalls 

 Increasing clock rate 

 Memory stalls account for more CPU cycles 

 Can’t neglect cache behavior when 
evaluating system performance 
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Associative Caches 

 Fully associative 
 Allow a given block to go in any cache entry 

 Requires all entries to be searched at once 

 Comparator per entry (expensive) 

 n-way set associative 
 Each set contains n entries 

 Block number determines which set 
 (Block number) modulo (#Sets in cache) 

 Search all entries in a given set at once 

 n comparators (less expensive) 
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Direct-Mapped, Set-Associative, 
and Fully Associative Placements 

Data 

1 
2 

Tag 

Search 

Direct mapped 

Block# 0 1 2 3 4 5 6 7 

Data 

1 
2 

Tag 

Search 

Set associative 

Set# 0 1 2 3 

Data 

1 
2 

Tag 

Search 

Fully associative 
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Spectrum of Associativity 

Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data 

Tag Data 

0 

1 

2 

3 

4 

5 

6 

7 

Block 

Tag Data Tag Data 

0 

1 

2 

3 

Set 

Tag Data Tag Data Tag Data Tag Data 

0 

1 

Set 

Eight-way set associative (full associative) 

Four-way set associative 

Two-way set associative One-way set associative 
(direct mapped) 

For a cache with 8 entries 45 



Associativity in Caches 

 There are 3 small caches, each consisting of 4 1-
word blocks with fully associative / 2-way set 
associative / direct mapped. Find the number of 
misses for the sequence of block addresses: 

  0,8,0,6,8 

block 
address 

direct-mapped 
cache block 

2-way set associative 
cache set 

0 (0 mod 4)=0 (0 mod 2)=0 

6 (6 mod 4)=2 (6 mod 2)=0 

8 (8 mod 4)=0 (8 mod 2)=0 
Assuming we use the “Least Recently Used” replacement strategy 47 



Direct-Mapped Case 

a
d
d
. 

hit / 
miss 

contents of cache blocks after ref. 

0 1 2 3 

0 miss Mem[0] 

8 miss Mem[8] 

0 miss Mem[0] 

6 miss Mem[0] Mem[6] 

8 miss Mem[8] Mem[6] 
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Two-Way Set-Associative Case 

a
d
d
. 

hit / 
miss 

contents of cache blocks after ref. 

set 0 set 0 set 1 set 1 

0 miss Mem[0] 

8 miss Mem[0] Mem[8] 

0 hit Mem[0] Mem[8] 

6 miss Mem[0] Mem[6] 

8 miss Mem[8] Mem[6] 
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Fully Associative Case 

a
d
d
. 

hit / 
miss 

contents of cache blocks after ref. 

block 0 block 1 block 2 block 3 

0 miss Mem[0] 

8 miss Mem[0] Mem[8] 

0 hit Mem[0] Mem[8] 

6 miss Mem[0] Mem[8] Mem[6] 

8 hit Mem[0] Mem[8] Mem[6] 
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How Much Associativity 

 Increased associativity decreases 
miss rate 

 But with diminishing returns 

 Simulation of a system with 64KB 
D-cache, 16-word blocks, SPEC2000 

 1-way: 10.3% 

 2-way: 8.6% 

 4-way: 8.3% 

 8-way: 8.1% 
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Replacement Policy 

 Direct mapped: no choice 
 Set associative 

 Prefer non-valid entry, if there is one 
 Otherwise, choose among entries in the set 

 Least-recently used (LRU) 
 Choose the one unused for the longest time 

 Simple for 2-way, manageable for 4-way, too 
hard beyond that 

 Random 
 Gives approximately the same performance 

as LRU for high associativity 
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V Tag Data V Tag Data V Tag Data 

Implementation of 
a 4-Way Set-Associative Cache 

= 

Hit Data 

MUX 

V Tag Data 

22 32 

31…16 15…4 

22 8 

3210 
Address 

= = = 
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Size of Tags vs. Set Associativity 

 Increasing associativity requires more 
comparators, as well as more tag bits per 
cache block. 

 Assuming a cache of 4K blocks, a 4-word 
block size, and a 32-bit address, find the 
total number of sets and the total number 
of tag bits for caches that are direct 
mapped, 2-way and 4-way set associative, 
and fully associative. 
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Size of Tags vs. Set Associativity 

 direct mapped 

 4K sets need log2(4K)=12 bits for index 

 (28-12) x 1 x 4K = 64K tag bits 

 2-way set associative 

 2K sets 

 (28-11) x 2 x 2K = 68K tag bits 

 4-way set associative 

 1K sets 

 (28-10) x 4 x 1K = 72K tag bits 

 fully associative 

 1 set with 4K blocks 

 28 x 4K x 1 = 112K tag bits 
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Multilevel Caches 

 Primary cache attached to CPU 

 Small, but fast 

 Level-2 cache services misses from 
primary cache 

 Larger, slower, but still faster than main 
memory 

 Main memory services L-2 cache misses 

 Some high-end systems include L-3 
cache 
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Multilevel Cache Example 

 Given 

 CPU base CPI = 1, clock rate = 4GHz 

 Miss rate/instruction = 2% 

 Main memory access time = 100ns 

 With just primary cache 

 Miss penalty = 100ns/0.25ns = 400 cycles 

 Effective CPI = 1 + 0.02 × 400 = 9 
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Example (cont.) 

 Now add L-2 cache 
 Access time = 5ns 

 Global miss rate to main memory = 0.5% 

 Primary miss with L-2 hit 
 Penalty = 5ns/0.25ns = 20 cycles 

 Primary miss with L-2 miss 
 Extra penalty = 400 cycles 

 CPI = 1 + 0.02 × 20 + 0.005 × 400 = 3.4 

 Performance ratio = 9/3.4 = 2.6 
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Multilevel Cache Considerations 

 Primary cache 

 Focus on minimal hit time 

 L-2 cache 

 Focus on low miss rate to avoid main memory 
access 

 Hit time has less overall impact 

 Results 

 L-1 cache usually smaller than a single cache 

 L-1 block size smaller than L-2 block size 
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Interactions with Software 

 Misses depend on 
memory access 
patterns 

 Algorithm behavior 

 Compiler optimization 
for memory access 
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Virtual Memory 

 Use main memory as a “cache” for 
secondary (disk) storage 
 Managed jointly by CPU hardware and the 

operating system (OS) 

 Programs share main memory 
 Each gets a private virtual address space 

holding its frequently used code and data 
 Protected from other programs 

 CPU and OS translate virtual addresses 
to physical addresses 
 VM “block” is called a page 
 VM translation “miss” is called a page fault 
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Virtual Memory 
Virtual addresses Physical addresses 

Address translation 

Disk addresses 
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Mapping 
from a Virtual to a Physical Address 

Page offset 

Page offset 

Virtual page number 

Physical page number 

31 30 29 28 27 ………… 15 14 13 12 11 10 9 8  …  3 2 1 0 

11 10 9 8  …  3 2 1 0 29 28 27 ………… 15 14 13 12 

Physical address 

Virtual address 

Translation 
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Page Fault Penalty 

 On page fault, the page† must be 
fetched from disk 

 Takes millions of clock cycles 

 Handled by OS code 

 Try to minimize page fault rate 

 Fully associative placement 

 Smart replacement algorithms 

†Page: Virtual Memory Block 70 



Page Tables 

 Stores placement information 
 Array of page table entries, indexed by virtual 

page number 

 Page table register in CPU points to page table 
in physical memory 

 If page is present in memory 
 PTE stores the physical page number 

 Plus other status bits (referenced, dirty, …) 

 If page is not present 
 PTE can refer to location in swap space on disk 
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Page Tables 

Page offset 

Page offset 

Virtual page number 

Physical page number 

31 30 29 28 27 ………… 15 14 13 12 11 10 9 8  …  3 2 1 0 

11 10 9 8  …  3 2 1 0 29 28 27 ………… 15 14 13 12 

Physical address 

Virtual address 

Page table register 

12 20 

18 

Page table 

Physical page number Valid 
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Mapping Pages to Storage 
Page table Physical memory 

Disk storage 

1 

0 

1 

1 

1 

1 

1 

0 

1 

1 

0 

1 

Virtual page 
number 
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Replacement and Writes 

 To reduce page fault rate, prefer least-
recently used (LRU) replacement 
 Reference bit (aka use bit) in PTE set to 1 

on access to page 
 Periodically cleared to 0 by OS 
 A page with reference bit = 0 has not been 

used recently 

 Disk writes take millions of cycles 
 Block at once, not individual locations 
 Write through is impractical 
 Use write-back 
 Dirty bit in PTE set when page is written 
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Fast Translation Using a TLB 

 Address translation would appear to 
require extra memory references 
 One to access the PTE 
 Then the actual memory access 

 But access to page tables has good 
locality 
 So use a fast cache of PTEs within the CPU 
 Called a Translation Look-aside Buffer (TLB) 
 Typical: 16–512 PTEs, 0.5–1 cycle for hit, 10–

100 cycles for miss, 0.01%–1% miss rate 
 Misses could be handled by hardware or 

software 
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Fast Translation Using a TLB 

1 

Page table 

Physical memory 

Disk storage 

1 

0 

1 
1 
1 

1 
1 
0 
1 

0 
1 

Virtual page 
number 

1 

0 

1 
1 
1 

1 

TLB=Translation-Lookaside Buffer 
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TLB Misses 

 If page is in memory 
 Load the PTE from memory and retry 

 Could be handled in hardware 
 Can get complex for more complicated page 

table structures 

 Or in software 
 Raise a special exception, with optimized handler 

 If page is not in memory (page fault) 
 OS handles fetching the page and updating 

the page table 

 Then restart the faulting instruction 
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TLB Miss Handler 

 TLB miss indicates 

 Page present, but PTE not in TLB 

 Page not preset 

 Must recognize TLB miss before 
destination register overwritten 

 Raise exception 

 Handler copies PTE from memory to TLB 

 Then restarts instruction 

 If page not present, page fault will occur 
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Page Fault Handler 

 Use faulting virtual address to find PTE 

 Locate page on disk 

 Choose page to replace 

 If dirty, write to disk first 

 Read page into memory and update 
page table 

 Make process runnable again 

 Restart from faulting instruction 
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TLB and Cache Interaction 

 If cache tag uses 
physical address 
 Need to translate 

before cache 
lookup 

 Alternative: use 
virtual address tag 
 Complications due 

to aliasing 
 Different virtual 

addresses for 
shared physical 
address 

Physical address 

= 

Cache hit Data 

V Tag 
Data 

32 

18 

Cache 

TLB 

V D Tag Physical page number 
= 
= 
= 
= 
= 
= 

TLB hit 

20 

physical address tag cache index 
block 
offset 

byte 
offset 

physical page number page offset 

Virtual Address 
31...........12 11.........0 

virtual page number page offset 

20 12 

8 
4 
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TLBs and Caches 

TLB access 

try to read data 
from cache 

cache miss stall 
while read block 

write data into cache, 
update the tag, and put 

the data and the address 
into the write buffer 

TLB hit? 

write? 

write access 
bit on? 

cache hit? 

deliver data 
to the CPU 

write protection 
exception 

TLB miss 
exception 

virtual address 

yes no 

no yes 

yes no 

Cache hit? 

try to write data 
to cache 

cache miss stall 
while read block 

yes no 

yes no 

physical address 
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Possible Combinations of Events in 
TLB / Page Table / Cache 

TLB 
Page 
table 

Cache possible? 

hit hit miss 
possible, although the page table is never really 
checked if TLB hits 

miss hit hit 
TLB misses, but entry found in page table; after 
retry, data is found in cache 

miss hit miss 
TLB misses, but entry found in page table; after 
retry, data misses in cache 

miss miss miss 
TLB misses and is followed by a page fault; after 
retry, data must miss in cache 

hit miss miss 
impossible: cannot have a translation in TLB if page 
is not present in memory 

hit miss hit 
impossible: cannot have a translation in TLB if page 
is not present in memory 

miss miss hit 
impossible: data cannot be allowed in cache if the 
page is not in memory 
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The Memory Hierarchy 

 Common principles apply at all levels 
of the memory hierarchy 

 Based on notions of caching 

 At each level in the hierarchy 

 Block placement 

 Finding a block 

 Replacement on a miss 

 Write policy 
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Where can a Block be Placed? 

 Higher associativity reduces miss rate 

 Increases complexity, cost, and access 
time 

scheme name number of sets blocks per set 

direct mapped number of blocks in cache 1 

set associative number of blocks in cache 
 

associativity 

associativity 

fully 
associative 

1 number of 
blocks in cache 
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How is a Block Found? 

 Hardware caches 
 Reduce comparisons to reduce cost 

 Virtual memory 
 Full table lookup makes full associativity feasible 
 Benefit in reduced miss rate 

associativity location method comparisons 
required 

direct 
mapped 

index 1 

set 
associative 

index the set, 
search among elements 

degree of 
associativity 

fully 
associative 

search all cache entries size of the cache 

separate lookup table 0 
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Which Block should be Replaced 
on a Cache Miss? 

 Choice of entry to replace on a miss 

 Least recently used (LRU) 

 Complex and costly hardware for high 
associativity 

 Random 

 Close to LRU, easier to implement 

 Virtual memory 

 LRU approximation with hardware 
support 
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What Happens on a Write? 

 Write-through 
 Update both upper and lower levels 
 Simplifies replacement, but may require 

write buffer 
 Write-back 
 Update upper level only 
 Update lower level when block is 

replaced 
 Need to keep more state 

 Virtual memory 
 Only write-back is feasible, given disk 

write latency  

88 



Sources of Misses 

 Compulsory misses (aka cold start 
misses) 
 First access to a block 

 Capacity misses 
 Due to finite cache size 
 A replaced block is later accessed again 

 Conflict misses (aka collision misses) 
 In a non-fully associative cache 
 Due to competition for entries in a set 
 Would not occur in a fully associative cache 

of the same total size 
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Cache Design Trade-offs 

Design change Effect on miss rate Negative 

performance effect 

Increase cache size Decrease capacity 

misses 

May increase access 

time 

Increase associativity Decrease conflict 

misses 

May increase access 

time 

Increase block size Decrease compulsory 

misses 

Increases miss 

penalty. For very 

large block size, may 

increase miss rate 

due to pollution. 
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