
Computer
Organization and Structure

Bing-Yu Chen
National Taiwan University

Large and Fast:
Exploiting Memory Hierarchy

 The Basic of Caches

 Measuring & Improving
Cache Performance

 Virtual Memory

 A Common Framework for
Memory Hierarchies

1

Memory Technology

 Static RAM (SRAM)
 0.5ns – 2.5ns, $2000 – $5000 per GB

 Dynamic RAM (DRAM)
 50ns – 70ns, $20 – $75 per GB

 Magnetic disk
 5ms – 20ms, $0.20 – $2 per GB

 Ideal memory
 Access time of SRAM

 Capacity and cost/GB of disk

2

Principle of Locality

 Programs access a small proportion of
their address space at any time

 Temporal locality
 Items accessed recently are likely to be

accessed again soon
 e.g., instructions in a loop, induction

variables

 Spatial locality
 Items near those accessed recently are

likely to be accessed soon
 e.g., sequential instruction access, array

data

3

Taking Advantage of Locality

 Memory hierarchy

 Store everything on disk

 Copy recently accessed (and nearby)
items from disk to smaller DRAM
memory
 Main memory

 Copy more recently accessed (and
nearby) items from DRAM to smaller
SRAM memory
 Cache memory attached to CPU

4

Memory Hierarchy Levels

 Block (aka line): unit of copying
 May be multiple words

 If accessed data is present in
upper level
 Hit: access satisfied by upper level

 Hit ratio: hits/accesses

 If accessed data is absent
 Miss: block copied from lower level

 Time taken: miss penalty
 Miss ratio: misses/accesses

= 1 – hit ratio

 Then accessed data supplied from
upper level

Processor

Data is transferred

5

Cache Memory

 Cache memory

 The level of the memory hierarchy closest to
the CPU

 Given accesses X1, …, Xn–1, Xn

 How do we know if
the data is present?

 Where do we look?

X4

X1

Xn-2

Xn-1

X2

X3

X4

X1

Xn-2

Xn-1

X2

Xn

X3

Xn

6

Direct Mapped Cache

 Location determined by address

 Direct mapped: only one choice
 (Block address) modulo (#Blocks in cache)

 #Blocks is a
power of 2

 Use low-order
address bits

memory

cache

0
0

0

0
0

1

0
1

0

0
1

1

1
0

0

1
0

1

1
1

0

1
1

1

0
0

0
0

1

0
0

1
0

1

0
1

0
0

1

0
1

1
0

1

1
0

0
0

1

1
0

1
0

1

1
1

0
0

1

1
1

1
0

1

7

Tags and Valid Bits

 How do we know which particular
block is stored in a cache location?

 Store block address as well as the data

 Actually, only need the high-order bits

 Called the tag

 What if there is no data in a location?

 Valid bit: 1 = present, 0 = not present

 Initially 0

8

Accessing a Cache (initial)

index V tag data

000 N

001 N

010 N

011 N

100 N

101 N

110 N

111 N

8-blocks, 1 word/block, direct mapped 9

Accessing a Cache (22 miss)

index V tag data

000 N

001 N

010 N

011 N

100 N

101 N

110 Y 10two Memory(10110two)

111 N

10

Accessing a Cache (26 miss)

index V tag data

000 N

001 N

010 Y 11two Memory(11010two)

011 N

100 N

101 N

110 Y 10two Memory(10110two)

111 N

11

Accessing a Cache (22 hit)

index V tag data

000 N

001 N

010 Y 11two Memory(11010two)

011 N

100 N

101 N

110 Y 10two Memory(10110two)

111 N

12

Accessing a Cache (26 hit)

index V tag data

000 N

001 N

010 Y 11two Memory(11010two)

011 N

100 N

101 N

110 Y 10two Memory(10110two)

111 N

13

Accessing a Cache (16 miss)

index V tag data

000 Y 10two Memory(10000two)

001 N

010 Y 11two Memory(11010two)

011 N

100 N

101 N

110 Y 10two Memory(10110two)

111 N

14

Accessing a Cache (3 miss)

index V tag data

000 Y 10two Memory(10000two)

001 N

010 Y 11two Memory(11010two)

011 Y 00two Memory(00011two)

100 N

101 N

110 Y 10two Memory(10110two)

111 N

15

Accessing a Cache (16 hit)

index V tag data

000 Y 10two Memory(10000two)

001 N

010 Y 11two Memory(11010two)

011 Y 00two Memory(00011two)

100 N

101 N

110 Y 10two Memory(10110two)

111 N

16

Accessing a Cache (18 miss)

index V tag data

000 Y 10two Memory(10000two)

001 N

010 Y 10two Memory(10010two)

011 Y 00two Memory(00011two)

100 N

101 N

110 Y 10two Memory(10110two)

111 N

17

Direct Mapped Cache

=

Hit

Data

Tag

Index

V Tag Data

20 bits 32 bits

1K
entries

Byte
offset

20 32

31…12 11…4

20 10

3210
Address

What kind of locality are
we taking advantage of?

18

Spatial Locality

=

Hit Data

MUX

Block offset

Tag

Index

V Tag Data

16 bits 128 bits

4K
entries

Byte
offset

16 32 32 32 32

32

31…16 15…4

16
12

2

3210
Address

19

Bits in a Cache

 Assuming the 32-bit byte address, a direct-
mapped cache of size 2n blocks with 2m-word
(2m+2-byte) blocks will require a tag field
whose size is 32-(n+m+2) bits
 n bits are used for the index
 m bits are used for the word within the block
 2 bits are used for the byte part of the address

 The total number of bits in a direct-mapped
cache is
 2nx(block size + tag size + valid field size)
= 2nx(2mx32+(32-n-m-2)+1)

20

Bits in a Cache

 How many total bits are required for a direct-mapped
cache with 16KB of data and 4-word blocks, assuming
a 32-bit address?

 We know that 16KB is 4K words, which is 212 words,
and, with a block size of 4 words, 210 blocks. Each
block has 4x32 bits of data plus a tag, which is
32-10-2-2 bits, plus a valid bit. Thus the total cache
size is

210x(128+(32-10-2-2)+1)=
210x147=147Kbits=18.4KB

21

Example: Larger Block Size

 64 blocks, 16 bytes/block

 To what block number does address
1200 map?

 Block address = 1200/16 = 75

 Block number = 75 modulo 64 = 11

Tag Index Offset

0 3 4 9 10 31

4 bits 6 bits 22 bits

22

Block Size Considerations

 Larger blocks should reduce miss rate

 Due to spatial locality

 But in a fixed-sized cache

 Larger blocks fewer of them

 More competition increased miss rate

 Larger blocks pollution

 Larger miss penalty

 Can override benefit of reduced miss rate

 Early restart and critical-word-first can help

23

 Make reading multiple words easier by using banks of memory

 It can get a lot more complicated...

Increasing Memory Bandwidth

CPU

Cache

Mem

bus

CPU

Cache

Mem
bank0

bus

Mem
bank1

Mem
bank2

Mem
bank3

CPU

Cache

bus

Memory

Multiplexor

one-word-wide
memory organization

interleaved
memory organization

wide
memory organization

24

Increasing Memory Bandwidth

 Assume a set of hypothetical memory
access times:
 1 bus cycle for address transfer

 15 bus cycles per DRAM access

 1 bus cycle per data transfer

 For 4-word block, 1-word-wide DRAM
 Miss penalty = 1 + 4×15 + 4×1 = 65 bus

cycles

 Bandwidth = 16 bytes / 65 cycles = 0.25
B/cycle

25

Increasing Memory Bandwidth

 4-word wide memory
 Miss penalty = 1 + 15 + 1 = 17 bus cycles

 Bandwidth = 16 bytes / 17 cycles = 0.94
B/cycle

 4-bank interleaved memory
 Miss penalty = 1 + 15 + 4×1 = 20 bus

cycles

 Bandwidth = 16 bytes / 20 cycles = 0.8
B/cycle

26

Hits vs. Misses

 Read hits
 this is what we want!

 Read misses
 stall the CPU, fetch block from memory, deliver

to cache, restart

 Write hits:
 can replace data in cache and memory (write-

through)
 write the data only into the cache (write-back

the cache later)

 Write misses:
 read the entire block into the cache, then write

the word

27

Cache Misses

 On cache hit, CPU proceeds normally

 On cache miss

 Stall the CPU pipeline

 Fetch block from next level of hierarchy

 Instruction cache miss

 Restart instruction fetch

 Data cache miss

 Complete data access

28

Write-Through

 On data-write hit, could just update the
block in cache
 But then cache and memory would be

inconsistent

 Write through: also update memory
 But makes writes take longer

 e.g., if base CPI = 1, 10% of instructions are
stores, write to memory takes 100 cycles
 Effective CPI = 1 + 0.1×100 = 11

 Solution: write buffer
 Holds data waiting to be written to memory
 CPU continues immediately

 Only stalls on write if write buffer is already full

29

Write-Back

 Alternative: On data-write hit, just
update the block in cache

 Keep track of whether each block is dirty

 When a dirty block is replaced

 Write it back to memory

 Can use a write buffer to allow replacing
block to be read first

30

DRAM Generations

0

50

100

150

200

250

300

'80 '83 '85 '89 '92 '96 '98 '00 '04 '07

Trac

Tcac

Year Capacity $/GB

1980 64Kbit $1500000

1983 256Kbit $500000

1985 1Mbit $200000

1989 4Mbit $50000

1992 16Mbit $15000

1996 64Mbit $10000

1998 128Mbit $4000

2000 256Mbit $1000

2004 512Mbit $250

2007 1Gbit $50

34

Measuring Cache Performance

 Components of CPU time
 Program execution cycles

 Includes cache hit time

 Memory stall cycles
 Mainly from cache misses

 With simplifying assumptions:

penalty Miss
nInstructio

Misses

Program

nsInstructio

penalty Missrate Miss
Program

accessesMemory

cycles stallMemory

35

Calculating Cache Performance

 assume

 instruction cache† miss rate = 2%

 data cache‡ miss rate = 4%

 miss penalty = 100 cycles for all misses

 base CPI (ideal cache) = 2

 frequency of all loads & stores = 36%

 how much faster a machine would run with
a perfect cache that never missed?

†I-Cache
‡D-Cache

37

Calculating Cache Performance

 If Instruction count = I

 instruction miss cycles = I x 2% x 100

 data miss cycles = I x 36% x 4% x 100

 memory-stall cycles = 2I+1.44 I = 3.44I

 CPI with memory-stall = 2+3.44 = 5.44

 so stall

perfect

stall

perfect

I CPI Clock cycleCPU time with stalls

CPU time with perfect cache I CPI Clock cycle

CPI 5.44
2.72

CPI 2

38

Cache Performance
with Increased Clock Rate

 how about doubling the clock rate?

 assume the time to handle the cache miss does not
change

 miss penalty = 200

 total miss cycles per instruction
= (2% x 200) + 36% x (4% x 200) = 6.88

 CPI with memory-stall = 2+6.88 = 8.88

 so

slow

fast

I CPI Clock cyclePerformance with fast clock

Clock cyclePerformance with slow clock
I CPI

2

5.44
1.23

18.88
2

39

Average Access Time

 Hit time is also important for performance

 Average memory access time (AMAT)

 AMAT = Hit time + Miss rate × Miss penalty

 Example

 CPU with 1ns clock, hit time = 1 cycle, miss
penalty = 20 cycles, I-cache miss rate = 5%

 AMAT = 1 + 0.05 × 20 = 2ns

 2 cycles per instruction

40

Performance Summary

 When CPU performance increased

 Miss penalty becomes more significant

 Decreasing base CPI

 Greater proportion of time spent on memory
stalls

 Increasing clock rate

 Memory stalls account for more CPU cycles

 Can’t neglect cache behavior when
evaluating system performance

42

Associative Caches

 Fully associative
 Allow a given block to go in any cache entry

 Requires all entries to be searched at once

 Comparator per entry (expensive)

 n-way set associative
 Each set contains n entries

 Block number determines which set
 (Block number) modulo (#Sets in cache)

 Search all entries in a given set at once

 n comparators (less expensive)

43

Direct-Mapped, Set-Associative,
and Fully Associative Placements

Data

1
2

Tag

Search

Direct mapped

Block# 0 1 2 3 4 5 6 7

Data

1
2

Tag

Search

Set associative

Set# 0 1 2 3

Data

1
2

Tag

Search

Fully associative

44

Spectrum of Associativity

Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data

Tag Data

0

1

2

3

4

5

6

7

Block

Tag Data Tag Data

0

1

2

3

Set

Tag Data Tag Data Tag Data Tag Data

0

1

Set

Eight-way set associative (full associative)

Four-way set associative

Two-way set associative One-way set associative
(direct mapped)

For a cache with 8 entries 45

Associativity in Caches

 There are 3 small caches, each consisting of 4 1-
word blocks with fully associative / 2-way set
associative / direct mapped. Find the number of
misses for the sequence of block addresses:

 0,8,0,6,8

block
address

direct-mapped
cache block

2-way set associative
cache set

0 (0 mod 4)=0 (0 mod 2)=0

6 (6 mod 4)=2 (6 mod 2)=0

8 (8 mod 4)=0 (8 mod 2)=0
Assuming we use the “Least Recently Used” replacement strategy 47

Direct-Mapped Case

a
d
d
.

hit /
miss

contents of cache blocks after ref.

0 1 2 3

0 miss Mem[0]

8 miss Mem[8]

0 miss Mem[0]

6 miss Mem[0] Mem[6]

8 miss Mem[8] Mem[6]

48

Two-Way Set-Associative Case

a
d
d
.

hit /
miss

contents of cache blocks after ref.

set 0 set 0 set 1 set 1

0 miss Mem[0]

8 miss Mem[0] Mem[8]

0 hit Mem[0] Mem[8]

6 miss Mem[0] Mem[6]

8 miss Mem[8] Mem[6]

49

Fully Associative Case

a
d
d
.

hit /
miss

contents of cache blocks after ref.

block 0 block 1 block 2 block 3

0 miss Mem[0]

8 miss Mem[0] Mem[8]

0 hit Mem[0] Mem[8]

6 miss Mem[0] Mem[8] Mem[6]

8 hit Mem[0] Mem[8] Mem[6]

50

How Much Associativity

 Increased associativity decreases
miss rate

 But with diminishing returns

 Simulation of a system with 64KB
D-cache, 16-word blocks, SPEC2000

 1-way: 10.3%

 2-way: 8.6%

 4-way: 8.3%

 8-way: 8.1%

51

Replacement Policy

 Direct mapped: no choice
 Set associative

 Prefer non-valid entry, if there is one
 Otherwise, choose among entries in the set

 Least-recently used (LRU)
 Choose the one unused for the longest time

 Simple for 2-way, manageable for 4-way, too
hard beyond that

 Random
 Gives approximately the same performance

as LRU for high associativity

52

V Tag Data V Tag Data V Tag Data

Implementation of
a 4-Way Set-Associative Cache

=

Hit Data

MUX

V Tag Data

22 32

31…16 15…4

22 8

3210
Address

= = =

53

Size of Tags vs. Set Associativity

 Increasing associativity requires more
comparators, as well as more tag bits per
cache block.

 Assuming a cache of 4K blocks, a 4-word
block size, and a 32-bit address, find the
total number of sets and the total number
of tag bits for caches that are direct
mapped, 2-way and 4-way set associative,
and fully associative.

54

Size of Tags vs. Set Associativity

 direct mapped

 4K sets need log2(4K)=12 bits for index

 (28-12) x 1 x 4K = 64K tag bits

 2-way set associative

 2K sets

 (28-11) x 2 x 2K = 68K tag bits

 4-way set associative

 1K sets

 (28-10) x 4 x 1K = 72K tag bits

 fully associative

 1 set with 4K blocks

 28 x 4K x 1 = 112K tag bits

55

Multilevel Caches

 Primary cache attached to CPU

 Small, but fast

 Level-2 cache services misses from
primary cache

 Larger, slower, but still faster than main
memory

 Main memory services L-2 cache misses

 Some high-end systems include L-3
cache

57

Multilevel Cache Example

 Given

 CPU base CPI = 1, clock rate = 4GHz

 Miss rate/instruction = 2%

 Main memory access time = 100ns

 With just primary cache

 Miss penalty = 100ns/0.25ns = 400 cycles

 Effective CPI = 1 + 0.02 × 400 = 9

60

Example (cont.)

 Now add L-2 cache
 Access time = 5ns

 Global miss rate to main memory = 0.5%

 Primary miss with L-2 hit
 Penalty = 5ns/0.25ns = 20 cycles

 Primary miss with L-2 miss
 Extra penalty = 400 cycles

 CPI = 1 + 0.02 × 20 + 0.005 × 400 = 3.4

 Performance ratio = 9/3.4 = 2.6

61

Multilevel Cache Considerations

 Primary cache

 Focus on minimal hit time

 L-2 cache

 Focus on low miss rate to avoid main memory
access

 Hit time has less overall impact

 Results

 L-1 cache usually smaller than a single cache

 L-1 block size smaller than L-2 block size

62

Interactions with Software

 Misses depend on
memory access
patterns

 Algorithm behavior

 Compiler optimization
for memory access

64

Virtual Memory

 Use main memory as a “cache” for
secondary (disk) storage
 Managed jointly by CPU hardware and the

operating system (OS)

 Programs share main memory
 Each gets a private virtual address space

holding its frequently used code and data
 Protected from other programs

 CPU and OS translate virtual addresses
to physical addresses
 VM “block” is called a page
 VM translation “miss” is called a page fault

66

Virtual Memory
Virtual addresses Physical addresses

Address translation

Disk addresses

67

Mapping
from a Virtual to a Physical Address

Page offset

Page offset

Virtual page number

Physical page number

31 30 29 28 27 ………… 15 14 13 12 11 10 9 8 … 3 2 1 0

11 10 9 8 … 3 2 1 0 29 28 27 ………… 15 14 13 12

Physical address

Virtual address

Translation

68

Page Fault Penalty

 On page fault, the page† must be
fetched from disk

 Takes millions of clock cycles

 Handled by OS code

 Try to minimize page fault rate

 Fully associative placement

 Smart replacement algorithms

†Page: Virtual Memory Block 70

Page Tables

 Stores placement information
 Array of page table entries, indexed by virtual

page number

 Page table register in CPU points to page table
in physical memory

 If page is present in memory
 PTE stores the physical page number

 Plus other status bits (referenced, dirty, …)

 If page is not present
 PTE can refer to location in swap space on disk

71

Page Tables

Page offset

Page offset

Virtual page number

Physical page number

31 30 29 28 27 ………… 15 14 13 12 11 10 9 8 … 3 2 1 0

11 10 9 8 … 3 2 1 0 29 28 27 ………… 15 14 13 12

Physical address

Virtual address

Page table register

12 20

18

Page table

Physical page number Valid

72

Mapping Pages to Storage
Page table Physical memory

Disk storage

1

0

1

1

1

1

1

0

1

1

0

1

Virtual page
number

73

Replacement and Writes

 To reduce page fault rate, prefer least-
recently used (LRU) replacement
 Reference bit (aka use bit) in PTE set to 1

on access to page
 Periodically cleared to 0 by OS
 A page with reference bit = 0 has not been

used recently

 Disk writes take millions of cycles
 Block at once, not individual locations
 Write through is impractical
 Use write-back
 Dirty bit in PTE set when page is written

74

Fast Translation Using a TLB

 Address translation would appear to
require extra memory references
 One to access the PTE
 Then the actual memory access

 But access to page tables has good
locality
 So use a fast cache of PTEs within the CPU
 Called a Translation Look-aside Buffer (TLB)
 Typical: 16–512 PTEs, 0.5–1 cycle for hit, 10–

100 cycles for miss, 0.01%–1% miss rate
 Misses could be handled by hardware or

software

75

Fast Translation Using a TLB

1

Page table

Physical memory

Disk storage

1

0

1
1
1

1
1
0
1

0
1

Virtual page
number

1

0

1
1
1

1

TLB=Translation-Lookaside Buffer

76

TLB Misses

 If page is in memory
 Load the PTE from memory and retry

 Could be handled in hardware
 Can get complex for more complicated page

table structures

 Or in software
 Raise a special exception, with optimized handler

 If page is not in memory (page fault)
 OS handles fetching the page and updating

the page table

 Then restart the faulting instruction

77

TLB Miss Handler

 TLB miss indicates

 Page present, but PTE not in TLB

 Page not preset

 Must recognize TLB miss before
destination register overwritten

 Raise exception

 Handler copies PTE from memory to TLB

 Then restarts instruction

 If page not present, page fault will occur

78

Page Fault Handler

 Use faulting virtual address to find PTE

 Locate page on disk

 Choose page to replace

 If dirty, write to disk first

 Read page into memory and update
page table

 Make process runnable again

 Restart from faulting instruction

79

TLB and Cache Interaction

 If cache tag uses
physical address
 Need to translate

before cache
lookup

 Alternative: use
virtual address tag
 Complications due

to aliasing
 Different virtual

addresses for
shared physical
address

Physical address

=

Cache hit Data

V Tag
Data

32

18

Cache

TLB

V D Tag Physical page number
=
=
=
=
=
=

TLB hit

20

physical address tag cache index
block
offset

byte
offset

physical page number page offset

Virtual Address
31...........12 11.........0

virtual page number page offset

20 12

8
4

80

TLBs and Caches

TLB access

try to read data
from cache

cache miss stall
while read block

write data into cache,
update the tag, and put

the data and the address
into the write buffer

TLB hit?

write?

write access
bit on?

cache hit?

deliver data
to the CPU

write protection
exception

TLB miss
exception

virtual address

yes no

no yes

yes no

Cache hit?

try to write data
to cache

cache miss stall
while read block

yes no

yes no

physical address

81

Possible Combinations of Events in
TLB / Page Table / Cache

TLB
Page
table

Cache possible?

hit hit miss
possible, although the page table is never really
checked if TLB hits

miss hit hit
TLB misses, but entry found in page table; after
retry, data is found in cache

miss hit miss
TLB misses, but entry found in page table; after
retry, data misses in cache

miss miss miss
TLB misses and is followed by a page fault; after
retry, data must miss in cache

hit miss miss
impossible: cannot have a translation in TLB if page
is not present in memory

hit miss hit
impossible: cannot have a translation in TLB if page
is not present in memory

miss miss hit
impossible: data cannot be allowed in cache if the
page is not in memory

82

The Memory Hierarchy

 Common principles apply at all levels
of the memory hierarchy

 Based on notions of caching

 At each level in the hierarchy

 Block placement

 Finding a block

 Replacement on a miss

 Write policy

84

Where can a Block be Placed?

 Higher associativity reduces miss rate

 Increases complexity, cost, and access
time

scheme name number of sets blocks per set

direct mapped number of blocks in cache 1

set associative number of blocks in cache

associativity

associativity

fully
associative

1 number of
blocks in cache

85

How is a Block Found?

 Hardware caches
 Reduce comparisons to reduce cost

 Virtual memory
 Full table lookup makes full associativity feasible
 Benefit in reduced miss rate

associativity location method comparisons
required

direct
mapped

index 1

set
associative

index the set,
search among elements

degree of
associativity

fully
associative

search all cache entries size of the cache

separate lookup table 0

86

Which Block should be Replaced
on a Cache Miss?

 Choice of entry to replace on a miss

 Least recently used (LRU)

 Complex and costly hardware for high
associativity

 Random

 Close to LRU, easier to implement

 Virtual memory

 LRU approximation with hardware
support

87

What Happens on a Write?

 Write-through
 Update both upper and lower levels
 Simplifies replacement, but may require

write buffer
 Write-back
 Update upper level only
 Update lower level when block is

replaced
 Need to keep more state

 Virtual memory
 Only write-back is feasible, given disk

write latency

88

Sources of Misses

 Compulsory misses (aka cold start
misses)
 First access to a block

 Capacity misses
 Due to finite cache size
 A replaced block is later accessed again

 Conflict misses (aka collision misses)
 In a non-fully associative cache
 Due to competition for entries in a set
 Would not occur in a fully associative cache

of the same total size

91

Cache Design Trade-offs

Design change Effect on miss rate Negative

performance effect

Increase cache size Decrease capacity

misses

May increase access

time

Increase associativity Decrease conflict

misses

May increase access

time

Increase block size Decrease compulsory

misses

Increases miss

penalty. For very

large block size, may

increase miss rate

due to pollution.

92

