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Multiprocessors and Clusters 
 Parallel Processing Programs 
 Graphics Processing Units 
 Multiprocessor Network Topologies 



Why parallel computing? 
 Moore's law is 

dead (for CPU 
frequency) 



Top500 Supercomputers 
1. Titan (Cray + NVIDIA) 
 560,640 cores, 710 TB memory 

2. Sequoia (IBM) 
 1,572,864 cores, 1,573 TB memory 

3. K computer (Fujitsu) 
 705,024 cores, 1,410 TB memory 

4. Mira (IBM) 
 786,432 cores 

5. JUQUEEN (IBM) 
 393,216 cores, 393 TB memory 



Introduction 
 Goal: connecting multiple computers 

to get higher performance 
 Multiprocessors 
 Scalability, availability, power efficiency 

 Job-level (process-level) parallelism 
 High throughput for independent jobs 

 Parallel processing program 
 Single program run on multiple processors 

 Multicore microprocessors 
 Chips with multiple processors (cores) 



Parallel Programming 
 Parallel software is the problem 
 Need to get significant performance 

improvement 
 Otherwise, just use a faster 

uniprocessor, since it’s easier! 
 Difficulties 
 Partitioning 
 Coordination 
 Communications overhead 



Amdahl’s Law 
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Amdahl’s Law 

Total speedup = 1
1−𝑃 +𝑃/𝑆

 
Parallelizable work 

Speedup for Parallelizable work 

Example: 
P: 0.8 (80% work is parallelizable) 
S: 8 (8 processors) 
Total speedup: 3.33x 



Amdahl’s Law 



Amdahl’s Law 
 Sequential part can limit speedup 
 Example: 100 processors, 90x 

speedup? 
   

 Solving: Fparallelizable = 0.999 

 Need sequential part to be 0.1% of 
original time 
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Scaling Example 
 Workload: sum of 10 scalars, and 10x10 

matrix sum 
 Speed up from 10 to 100 processors 

 Single processor: Time = (10+100) x tadd 
 10 processors 
 Time = 10 x tadd + 100/10 x tadd = 20 x tadd 
 Speedup = 110/20 = 5.5x (5.5% of potential) 

 100 processors 
 Time = 10 x tadd + 100/100 x tadd = 11 x tadd 
 Speedup = 110/11 = 10x (10% of potential) 

 Assumes load can be balanced across 
processors 



Scaling Example 
 What if matrix size is 100 × 100? 
 Single processor: Time = (10 + 10000) x tadd 

 10 processors 
 Time = 10 x tadd + 10000/10 x tadd = 1010 x tadd 
 Speedup = 10010/1010 = 9.9x (9.9% of potential) 

 100 processors 
 Time = 10 x tadd + 10000/100 x tadd = 110 x tadd 

 Speedup = 10010/110 = 91x (91% of potential) 
 Assuming load balanced 



Strong vs Weak Scaling 
 Strong scaling: problem size fixed 
 As in example 

 Weak scaling: problem size proportional 
to number of processors 
 10 processors, 10x10 matrix 
 Time = 20 x tadd 

 100 processors, 32x32 matrix 
 Time = 10 x tadd + 1000/100 x tadd = 20 x tadd 

 Constant performance in this example 



Parallelization design for processors 

 Instruction level parallelism 
add $t0, $t1, $t2 

add $t3, $t4, $t5 

 Data level parallelism 
add 0($t1), 0($t2), $t3 

add 4($t1), 4($t2), $t3 

add 8($t1), 8($t2), $t3 

... 



Computer Graphics Rendering 



History of GPUs 
 Early video cards 
 Frame buffer memory with address generation 

for video output 
 3D graphics processing 
 Originally high-end computers (e.g., SGI) 
 Moore’s Law ⇒ lower cost, higher density 
 3D graphics cards for PCs and game consoles 

 Graphics Processing Units 
 Processors oriented to 3D graphics tasks 
 Vertex/pixel processing, shading, texture 

mapping, rasterization 



GPU Architectures 
 Processing is highly data-parallel 
 GPUs are highly multithreaded 
 Use thread switching to hide memory latency 
 Less reliance on multi-level caches 

 Graphics memory is wide and high-bandwidth 
 Trend toward general purpose GPUs 
 Heterogeneous CPU/GPU systems 
 CPU for sequential code, GPU for parallel code 

 Programming languages/APIs 
 DirectX, OpenGL 
 C for Graphics (Cg), High Level Shader 

Language (HLSL) 
 Compute Unified Device Architecture (CUDA) 



Graphics pipeline 
Input processor 

Do geometry stuff 

Do pixel stuff 

Accumulate pixel result 

Instructions 
States 
Data 

Transforms 
Lighting, 
etc 

Rasterize 
Pixel 
shading 

Z-buffer 
Transparency 



Make it faster 
Input processor 

Do geometry stuff 

Do pixel stuff 

Accumulate pixel result 

Do geometry stuff Do geometry stuff 

Do pixel stuff Do pixel stuff 



Add framebuffer support 

FB 
(memory) 

Input processor 

Do geometry stuff 

Do pixel stuff 

Accumulate pixel result 

Do geometry stuff Do geometry stuff 

Do pixel stuff Do pixel stuff 



 
 
Get data 
Process data 
Output data 

Add programmability 

FB 
(memory) 

Front end 

Do geometry stuff 

Do pixel stuff 

Raster operations 

Do geometry stuff Geometry shader ALU 

Do pixel stuff Pixel shader ALU 



Uniform shader 

FB 
(memory) 

Front end 

Uniform shader ALU 

Raster operations 

Uniform shader ALU Uniform shader ALU 
Buffer 



Scaling it up again 

FB 
(memory) 

Front end 

Uniform shader ALU 

Raster operations 

Uniform shader ALU Uniform shader ALU 
Buffer 



Example: NVIDIA Tesla 
Streaming 

multiprocessor 

8 × Streaming 
processors 



Interconnection Networks 
 Network topologies 
 Arrangements of processors, switches, 

and links 

Bus Ring 

2D Mesh 
N-cube (N = 3) 

Fully connected 



Network Characteristics 
 Performance 
 Latency per message (unloaded network) 
 Throughput 
 Link bandwidth 
 Total network bandwidth 
 Bisection bandwidth 

 Congestion delays (depending on traffic) 
 Cost 
 Power 
 Routability in silicon 
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