
Computer
Organization and Structure

Bing-Yu Chen
National Taiwan University

1

Multiprocessors and Clusters
 Parallel Processing Programs
 Graphics Processing Units
 Multiprocessor Network Topologies

Why parallel computing?
 Moore's law is

dead (for CPU
frequency)

Top500 Supercomputers
1. Titan (Cray + NVIDIA)
 560,640 cores, 710 TB memory

2. Sequoia (IBM)
 1,572,864 cores, 1,573 TB memory

3. K computer (Fujitsu)
 705,024 cores, 1,410 TB memory

4. Mira (IBM)
 786,432 cores

5. JUQUEEN (IBM)
 393,216 cores, 393 TB memory

Introduction
 Goal: connecting multiple computers

to get higher performance
 Multiprocessors
 Scalability, availability, power efficiency

 Job-level (process-level) parallelism
 High throughput for independent jobs

 Parallel processing program
 Single program run on multiple processors

 Multicore microprocessors
 Chips with multiple processors (cores)

Parallel Programming
 Parallel software is the problem
 Need to get significant performance

improvement
 Otherwise, just use a faster

uniprocessor, since it’s easier!
 Difficulties
 Partitioning
 Coordination
 Communications overhead

Amdahl’s Law

Serial

Serial

Serial

Serial

Parallelizable work

2 processors

4 processors

many processors

Amdahl’s Law

Total speedup = 1
1−𝑃 +𝑃/𝑆

Parallelizable work

Speedup for Parallelizable work

Example:
P: 0.8 (80% work is parallelizable)
S: 8 (8 processors)
Total speedup: 3.33x

Amdahl’s Law

Amdahl’s Law
 Sequential part can limit speedup
 Example: 100 processors, 90x

speedup?


 Solving: Fparallelizable = 0.999

 Need sequential part to be 0.1% of
original time

90
/100F)F(1

1Speedup
ableparallelizableparalleliz

=
+−

=

Scaling Example
 Workload: sum of 10 scalars, and 10x10

matrix sum
 Speed up from 10 to 100 processors

 Single processor: Time = (10+100) x tadd
 10 processors
 Time = 10 x tadd + 100/10 x tadd = 20 x tadd
 Speedup = 110/20 = 5.5x (5.5% of potential)

 100 processors
 Time = 10 x tadd + 100/100 x tadd = 11 x tadd
 Speedup = 110/11 = 10x (10% of potential)

 Assumes load can be balanced across
processors

Scaling Example
 What if matrix size is 100 × 100?
 Single processor: Time = (10 + 10000) x tadd

 10 processors
 Time = 10 x tadd + 10000/10 x tadd = 1010 x tadd
 Speedup = 10010/1010 = 9.9x (9.9% of potential)

 100 processors
 Time = 10 x tadd + 10000/100 x tadd = 110 x tadd

 Speedup = 10010/110 = 91x (91% of potential)
 Assuming load balanced

Strong vs Weak Scaling
 Strong scaling: problem size fixed
 As in example

 Weak scaling: problem size proportional
to number of processors
 10 processors, 10x10 matrix
 Time = 20 x tadd

 100 processors, 32x32 matrix
 Time = 10 x tadd + 1000/100 x tadd = 20 x tadd

 Constant performance in this example

Parallelization design for processors

 Instruction level parallelism
add $t0, $t1, $t2

add $t3, $t4, $t5

 Data level parallelism
add 0($t1), 0($t2), $t3

add 4($t1), 4($t2), $t3

add 8($t1), 8($t2), $t3

...

Computer Graphics Rendering

History of GPUs
 Early video cards
 Frame buffer memory with address generation

for video output
 3D graphics processing
 Originally high-end computers (e.g., SGI)
 Moore’s Law ⇒ lower cost, higher density
 3D graphics cards for PCs and game consoles

 Graphics Processing Units
 Processors oriented to 3D graphics tasks
 Vertex/pixel processing, shading, texture

mapping, rasterization

GPU Architectures
 Processing is highly data-parallel
 GPUs are highly multithreaded
 Use thread switching to hide memory latency
 Less reliance on multi-level caches

 Graphics memory is wide and high-bandwidth
 Trend toward general purpose GPUs
 Heterogeneous CPU/GPU systems
 CPU for sequential code, GPU for parallel code

 Programming languages/APIs
 DirectX, OpenGL
 C for Graphics (Cg), High Level Shader

Language (HLSL)
 Compute Unified Device Architecture (CUDA)

Graphics pipeline
Input processor

Do geometry stuff

Do pixel stuff

Accumulate pixel result

Instructions
States
Data

Transforms
Lighting,
etc

Rasterize
Pixel
shading

Z-buffer
Transparency

Make it faster
Input processor

Do geometry stuff

Do pixel stuff

Accumulate pixel result

Do geometry stuff Do geometry stuff

Do pixel stuff Do pixel stuff

Add framebuffer support

FB
(memory)

Input processor

Do geometry stuff

Do pixel stuff

Accumulate pixel result

Do geometry stuff Do geometry stuff

Do pixel stuff Do pixel stuff

Get data
Process data
Output data

Add programmability

FB
(memory)

Front end

Do geometry stuff

Do pixel stuff

Raster operations

Do geometry stuff Geometry shader ALU

Do pixel stuff Pixel shader ALU

Uniform shader

FB
(memory)

Front end

Uniform shader ALU

Raster operations

Uniform shader ALU Uniform shader ALU
Buffer

Scaling it up again

FB
(memory)

Front end

Uniform shader ALU

Raster operations

Uniform shader ALU Uniform shader ALU
Buffer

Example: NVIDIA Tesla
Streaming

multiprocessor

8 × Streaming
processors

Interconnection Networks
 Network topologies
 Arrangements of processors, switches,

and links

Bus Ring

2D Mesh
N-cube (N = 3)

Fully connected

Network Characteristics
 Performance
 Latency per message (unloaded network)
 Throughput
 Link bandwidth
 Total network bandwidth
 Bisection bandwidth

 Congestion delays (depending on traffic)
 Cost
 Power
 Routability in silicon

	Computer�Organization and Structure
	Multiprocessors and Clusters
	Why parallel computing?
	Top500 Supercomputers
	Introduction
	Parallel Programming
	Amdahl’s Law
	Amdahl’s Law
	Amdahl’s Law
	Amdahl’s Law
	Scaling Example
	Scaling Example
	Strong vs Weak Scaling
	Parallelization design for processors
	Computer Graphics Rendering
	History of GPUs
	GPU Architectures
	Graphics pipeline
	Make it faster
	Add framebuffer support
	Add programmability
	Uniform shader
	Scaling it up again
	Example: NVIDIA Tesla
	Interconnection Networks
	Network Characteristics

