
Computer
Organization and Structure

Bing-Yu Chen
National Taiwan University

1

Multiprocessors and Clusters
 Parallel Processing Programs
 Graphics Processing Units
 Multiprocessor Network Topologies

Why parallel computing?
 Moore's law is

dead (for CPU
frequency)

Top500 Supercomputers
1. Titan (Cray + NVIDIA)
 560,640 cores, 710 TB memory

2. Sequoia (IBM)
 1,572,864 cores, 1,573 TB memory

3. K computer (Fujitsu)
 705,024 cores, 1,410 TB memory

4. Mira (IBM)
 786,432 cores

5. JUQUEEN (IBM)
 393,216 cores, 393 TB memory

Introduction
 Goal: connecting multiple computers

to get higher performance
 Multiprocessors
 Scalability, availability, power efficiency

 Job-level (process-level) parallelism
 High throughput for independent jobs

 Parallel processing program
 Single program run on multiple processors

 Multicore microprocessors
 Chips with multiple processors (cores)

Parallel Programming
 Parallel software is the problem
 Need to get significant performance

improvement
 Otherwise, just use a faster

uniprocessor, since it’s easier!
 Difficulties
 Partitioning
 Coordination
 Communications overhead

Amdahl’s Law

Serial

Serial

Serial

Serial

Parallelizable work

2 processors

4 processors

many processors

Amdahl’s Law

Total speedup = 1
1−𝑃 +𝑃/𝑆

Parallelizable work

Speedup for Parallelizable work

Example:
P: 0.8 (80% work is parallelizable)
S: 8 (8 processors)
Total speedup: 3.33x

Amdahl’s Law

Amdahl’s Law
 Sequential part can limit speedup
 Example: 100 processors, 90x

speedup?

 Solving: Fparallelizable = 0.999

 Need sequential part to be 0.1% of
original time

90
/100F)F(1

1Speedup
ableparallelizableparalleliz

=
+−

=

Scaling Example
 Workload: sum of 10 scalars, and 10x10

matrix sum
 Speed up from 10 to 100 processors

 Single processor: Time = (10+100) x tadd
 10 processors
 Time = 10 x tadd + 100/10 x tadd = 20 x tadd
 Speedup = 110/20 = 5.5x (5.5% of potential)

 100 processors
 Time = 10 x tadd + 100/100 x tadd = 11 x tadd
 Speedup = 110/11 = 10x (10% of potential)

 Assumes load can be balanced across
processors

Scaling Example
 What if matrix size is 100 × 100?
 Single processor: Time = (10 + 10000) x tadd

 10 processors
 Time = 10 x tadd + 10000/10 x tadd = 1010 x tadd
 Speedup = 10010/1010 = 9.9x (9.9% of potential)

 100 processors
 Time = 10 x tadd + 10000/100 x tadd = 110 x tadd

 Speedup = 10010/110 = 91x (91% of potential)
 Assuming load balanced

Strong vs Weak Scaling
 Strong scaling: problem size fixed
 As in example

 Weak scaling: problem size proportional
to number of processors
 10 processors, 10x10 matrix
 Time = 20 x tadd

 100 processors, 32x32 matrix
 Time = 10 x tadd + 1000/100 x tadd = 20 x tadd

 Constant performance in this example

Parallelization design for processors

 Instruction level parallelism
add $t0, $t1, $t2

add $t3, $t4, $t5

 Data level parallelism
add 0($t1), 0($t2), $t3

add 4($t1), 4($t2), $t3

add 8($t1), 8($t2), $t3

...

Computer Graphics Rendering

History of GPUs
 Early video cards
 Frame buffer memory with address generation

for video output
 3D graphics processing
 Originally high-end computers (e.g., SGI)
 Moore’s Law ⇒ lower cost, higher density
 3D graphics cards for PCs and game consoles

 Graphics Processing Units
 Processors oriented to 3D graphics tasks
 Vertex/pixel processing, shading, texture

mapping, rasterization

GPU Architectures
 Processing is highly data-parallel
 GPUs are highly multithreaded
 Use thread switching to hide memory latency
 Less reliance on multi-level caches

 Graphics memory is wide and high-bandwidth
 Trend toward general purpose GPUs
 Heterogeneous CPU/GPU systems
 CPU for sequential code, GPU for parallel code

 Programming languages/APIs
 DirectX, OpenGL
 C for Graphics (Cg), High Level Shader

Language (HLSL)
 Compute Unified Device Architecture (CUDA)

Graphics pipeline
Input processor

Do geometry stuff

Do pixel stuff

Accumulate pixel result

Instructions
States
Data

Transforms
Lighting,
etc

Rasterize
Pixel
shading

Z-buffer
Transparency

Make it faster
Input processor

Do geometry stuff

Do pixel stuff

Accumulate pixel result

Do geometry stuff Do geometry stuff

Do pixel stuff Do pixel stuff

Add framebuffer support

FB
(memory)

Input processor

Do geometry stuff

Do pixel stuff

Accumulate pixel result

Do geometry stuff Do geometry stuff

Do pixel stuff Do pixel stuff

Get data
Process data
Output data

Add programmability

FB
(memory)

Front end

Do geometry stuff

Do pixel stuff

Raster operations

Do geometry stuff Geometry shader ALU

Do pixel stuff Pixel shader ALU

Uniform shader

FB
(memory)

Front end

Uniform shader ALU

Raster operations

Uniform shader ALU Uniform shader ALU
Buffer

Scaling it up again

FB
(memory)

Front end

Uniform shader ALU

Raster operations

Uniform shader ALU Uniform shader ALU
Buffer

Example: NVIDIA Tesla
Streaming

multiprocessor

8 × Streaming
processors

Interconnection Networks
 Network topologies
 Arrangements of processors, switches,

and links

Bus Ring

2D Mesh
N-cube (N = 3)

Fully connected

Network Characteristics
 Performance
 Latency per message (unloaded network)
 Throughput
 Link bandwidth
 Total network bandwidth
 Bisection bandwidth

 Congestion delays (depending on traffic)
 Cost
 Power
 Routability in silicon

	Computer�Organization and Structure
	Multiprocessors and Clusters
	Why parallel computing?
	Top500 Supercomputers
	Introduction
	Parallel Programming
	Amdahl’s Law
	Amdahl’s Law
	Amdahl’s Law
	Amdahl’s Law
	Scaling Example
	Scaling Example
	Strong vs Weak Scaling
	Parallelization design for processors
	Computer Graphics Rendering
	History of GPUs
	GPU Architectures
	Graphics pipeline
	Make it faster
	Add framebuffer support
	Add programmability
	Uniform shader
	Scaling it up again
	Example: NVIDIA Tesla
	Interconnection Networks
	Network Characteristics

