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Multiprocessors and Clusters 
 Parallel Processing Programs 
 Graphics Processing Units 
 Multiprocessor Network Topologies 



Why parallel computing? 
 Moore's law is 

dead (for CPU 
frequency) 



Top500 Supercomputers 
1. Titan (Cray + NVIDIA) 
 560,640 cores, 710 TB memory 

2. Sequoia (IBM) 
 1,572,864 cores, 1,573 TB memory 

3. K computer (Fujitsu) 
 705,024 cores, 1,410 TB memory 

4. Mira (IBM) 
 786,432 cores 

5. JUQUEEN (IBM) 
 393,216 cores, 393 TB memory 



Introduction 
 Goal: connecting multiple computers 

to get higher performance 
 Multiprocessors 
 Scalability, availability, power efficiency 

 Job-level (process-level) parallelism 
 High throughput for independent jobs 

 Parallel processing program 
 Single program run on multiple processors 

 Multicore microprocessors 
 Chips with multiple processors (cores) 



Parallel Programming 
 Parallel software is the problem 
 Need to get significant performance 

improvement 
 Otherwise, just use a faster 

uniprocessor, since it’s easier! 
 Difficulties 
 Partitioning 
 Coordination 
 Communications overhead 



Amdahl’s Law 
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Amdahl’s Law 

Total speedup = 1
1−𝑃 +𝑃/𝑆

 
Parallelizable work 

Speedup for Parallelizable work 

Example: 
P: 0.8 (80% work is parallelizable) 
S: 8 (8 processors) 
Total speedup: 3.33x 



Amdahl’s Law 



Amdahl’s Law 
 Sequential part can limit speedup 
 Example: 100 processors, 90x 

speedup? 
   

 Solving: Fparallelizable = 0.999 

 Need sequential part to be 0.1% of 
original time 
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Scaling Example 
 Workload: sum of 10 scalars, and 10x10 

matrix sum 
 Speed up from 10 to 100 processors 

 Single processor: Time = (10+100) x tadd 
 10 processors 
 Time = 10 x tadd + 100/10 x tadd = 20 x tadd 
 Speedup = 110/20 = 5.5x (5.5% of potential) 

 100 processors 
 Time = 10 x tadd + 100/100 x tadd = 11 x tadd 
 Speedup = 110/11 = 10x (10% of potential) 

 Assumes load can be balanced across 
processors 



Scaling Example 
 What if matrix size is 100 × 100? 
 Single processor: Time = (10 + 10000) x tadd 

 10 processors 
 Time = 10 x tadd + 10000/10 x tadd = 1010 x tadd 
 Speedup = 10010/1010 = 9.9x (9.9% of potential) 

 100 processors 
 Time = 10 x tadd + 10000/100 x tadd = 110 x tadd 

 Speedup = 10010/110 = 91x (91% of potential) 
 Assuming load balanced 



Strong vs Weak Scaling 
 Strong scaling: problem size fixed 
 As in example 

 Weak scaling: problem size proportional 
to number of processors 
 10 processors, 10x10 matrix 
 Time = 20 x tadd 

 100 processors, 32x32 matrix 
 Time = 10 x tadd + 1000/100 x tadd = 20 x tadd 

 Constant performance in this example 



Parallelization design for processors 

 Instruction level parallelism 
add $t0, $t1, $t2 

add $t3, $t4, $t5 

 Data level parallelism 
add 0($t1), 0($t2), $t3 

add 4($t1), 4($t2), $t3 

add 8($t1), 8($t2), $t3 

... 



Computer Graphics Rendering 



History of GPUs 
 Early video cards 
 Frame buffer memory with address generation 

for video output 
 3D graphics processing 
 Originally high-end computers (e.g., SGI) 
 Moore’s Law ⇒ lower cost, higher density 
 3D graphics cards for PCs and game consoles 

 Graphics Processing Units 
 Processors oriented to 3D graphics tasks 
 Vertex/pixel processing, shading, texture 

mapping, rasterization 



GPU Architectures 
 Processing is highly data-parallel 
 GPUs are highly multithreaded 
 Use thread switching to hide memory latency 
 Less reliance on multi-level caches 

 Graphics memory is wide and high-bandwidth 
 Trend toward general purpose GPUs 
 Heterogeneous CPU/GPU systems 
 CPU for sequential code, GPU for parallel code 

 Programming languages/APIs 
 DirectX, OpenGL 
 C for Graphics (Cg), High Level Shader 

Language (HLSL) 
 Compute Unified Device Architecture (CUDA) 



Graphics pipeline 
Input processor 

Do geometry stuff 

Do pixel stuff 

Accumulate pixel result 

Instructions 
States 
Data 

Transforms 
Lighting, 
etc 

Rasterize 
Pixel 
shading 

Z-buffer 
Transparency 



Make it faster 
Input processor 

Do geometry stuff 

Do pixel stuff 

Accumulate pixel result 

Do geometry stuff Do geometry stuff 

Do pixel stuff Do pixel stuff 



Add framebuffer support 

FB 
(memory) 

Input processor 

Do geometry stuff 

Do pixel stuff 

Accumulate pixel result 

Do geometry stuff Do geometry stuff 

Do pixel stuff Do pixel stuff 



 
 
Get data 
Process data 
Output data 

Add programmability 

FB 
(memory) 

Front end 

Do geometry stuff 

Do pixel stuff 

Raster operations 

Do geometry stuff Geometry shader ALU 

Do pixel stuff Pixel shader ALU 



Uniform shader 

FB 
(memory) 

Front end 

Uniform shader ALU 

Raster operations 

Uniform shader ALU Uniform shader ALU 
Buffer 



Scaling it up again 

FB 
(memory) 

Front end 

Uniform shader ALU 

Raster operations 

Uniform shader ALU Uniform shader ALU 
Buffer 



Example: NVIDIA Tesla 
Streaming 

multiprocessor 

8 × Streaming 
processors 



Interconnection Networks 
 Network topologies 
 Arrangements of processors, switches, 

and links 

Bus Ring 

2D Mesh 
N-cube (N = 3) 

Fully connected 



Network Characteristics 
 Performance 
 Latency per message (unloaded network) 
 Throughput 
 Link bandwidth 
 Total network bandwidth 
 Bisection bandwidth 

 Congestion delays (depending on traffic) 
 Cost 
 Power 
 Routability in silicon 
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