
國立台灣大學 National Taiwan University 

Parallel computing and  
GPU introduction 

黃子桓 ‹tzhuan@gmail.com› 



Agenda 
• Parallel computing 
• GPU introduction 
• Interconnection networks 
• Parallel benchmark 
• Parallel programming 
• GPU programming 



國立台灣大學 National Taiwan University 

Parallel computing 



Goal of computing 

Faster, faster and faster 



Why parallel computing? 
• Moore's law is dead (for CPU frequency) 



Top500 (Nov 2013) 
1. Tianhe-2(NUDT) 
 3,120,000 cores (Intel Xeon E5, Intel Xeon Phi) 

2. Titan (Cray) 
 560,640 cores (Opetron 6274, NVIDIA K20x) 

3. Sequoia (IBM) 
 1,572,864 cores (Power BQC) 

4. K computer (Fujitsu) 
 705,024 cores (Sparc64) 

5. Mira (IBM) 
 786,432 cores (Power BQC) 

 



Amdahl's law 
 
Serial 

Serial 

Serial 

Serial 

Parallelizable work 

2 processors 

4 processors 

many processors 



Amdahl's law 

Total speedup = 1
1−𝑃 +𝑃/𝑆

 

Parallelizable work 

Speedup for Parallelizable work 

Example: 
P: 0.8 (80% work is parallelizable) 
S: 8 (8 processors) 
Total speedup:  3.33x 



Amdahl's law 
 



Scaling exapmle 
• Workload: sum of 10 scalars, and 10×10 

matrix sum 
• Single processor 
 Time = (10+100)×Tadd = 110×Tadd 

• 10 processors 
 Time = 10×Tadd + (100/10)×Tadd = 20×Tadd 

 Speedup = 110/20 = 5.5× (55% of potential) 

• 100 processors 
 Time = 10×Tadd + (100/100)×Tadd = 11×Tadd 

 Speedup = 110/11 = 10× (10% of potential) 



Scaling example 
• What if matrix size is 100×100? 
• Single processor 
 Time = (10+10000)×Tadd = 10010×Tadd 

• 10 processors 
 Time = 10×Tadd + (10000/10)×Tadd = 1010×Tadd 

 Speedup = 10010/1010 = 9.9× (99% of potential) 

• 100 processors 
 Time = 10×Tadd + (10000/100)×Tadd = 110×Tadd 

 Speedup = 10010/110 = 91× (91% of potential) 



Scalability 
• The ability of a system to handle growing 

amount of work 
 

• Strong scaling 
 Fixed total problem size 
 Run a fixed problem faster 

• Weak scaling 
 Fixed problem size per processor 
 Run a bigger (or smaller) problem 



Parallel computing system 
• Parallelization design for processors 
• Hardware multithreading 
• Multi-processor system 
• Cluster computing system 
• Grid computing system 



Parallelization design for processors 
• Instruction level parallelism 

add $t0, $t1, $t2 

mul $t3, $t4, $t5 

• Data level parallelism 
add 0($t1), 0($t2), 0($t3) 

add 4($t1), 4($t2), 4($t3) 

add 8($t1), 8($t2), 8($t3) 



Flynn's taxonomy 

Single instruction Multiple instruction 

Single data SISD 
(Single-core processor) 

MISD 
(very rare) 

Multiple data SIMD 
(Superscalar, vector 
processor, GPU, etc.) 

MIMD 
(Multi-core processor) 



SIMD 
• Operate element-wise on vectors of data 
MMX and SSE instructions in x86 
Multiple data elements in 128-bit wide registers 

• All processors execute the same instruction at 
the same time, each with different data 
address 

• Simplifies synchronization 
• Reduced instruction control hardware 
• Works best for highly data-parallel applications 



Example: dot product 
   mov esi, dword ptr [src] 

   mov edi, dword ptr [dst] 

   mov ecx, Count 

start: 

   movaps xmm0, [esi] //a3, a2, a1, a0 

   mulps xmm0, [esi + 16] //a3*b3,a2*b2,a1*b1,a0*b0 

   haddps xmm0, xmm0 //a3*b3+a2*b2,a1*b1+a0*b0, 

                     //a3*b3+a2*b2,a1*b1+a0*b0 

   movaps xmm1, xmm0 

   psrldq xmm0, 8 

   addss xmm0, xmm1 

   movss [edi],xmm0 

   add esi, 32 

   add edi, 4 

   sub ecx, 1 

   jnz start 



Vector processors 
• Highly pipelined function units 
• Stream data from/to vector registers to units 
 Data collected from memory into registers 
 Results stored from registers to memory 

• Example: Vector extension to MIPS 
 32 × 64-element registers (64-bit elements) 
 Vector instructions 

• lv, sv: load/store vector 
• addv.d: add vectors of double 
• addvs.d: add scalar to each element of vector of double 

• Significantly reduces instruction-fetch bandwidth 
 



Example: DAXPY (Y = a × X + Y) 
•  Conventional MIPS code 
      l.d   $f0,a($sp)     ;load scalar a 
      addiu r4,$s0,#512    ;upper bound of what to load 
loop: l.d   $f2,0($s0)     ;load x(i) 
      mul.d $f2,$f2,$f0    ;a × x(i) 
      l.d   $f4,0($s1)     ;load y(i) 
      add.d $f4,$f4,$f2    ;a × x(i) + y(i) 
      s.d   $f4,0($s1)     ;store into y(i) 
      addiu $s0,$s0,#8     ;increment index to x 
      addiu $s1,$s1,#8     ;increment index to y 
      subu  $t0,r4,$s0     ;compute bound 
      bne   $t0,$zero,loop ;check if done 
 
•  Vector MIPS code 
      l.d     $f0,a($sp)   ;load scalar a 
      lv      $v1,0($s0)   ;load vector x 
      mulvs.d $v2,$v1,$f0  ;vector-scalar multiply 
      lv      $v3,0($s1)   ;load vector y 
      addv.d  $v4,$v2,$v3  ;add y to product 
      sv      $v4,0($s1)   ;store the result 



Hardware multithreading 
• Allows multiple threads to share the functional 

units of a single processor in an overlapping 
fashion 
 Coarse-grained multithreading 

• Switches threads only on costly stall 

 Fine-grained multithreading 
• Interleaved execution of multiple threads 

 Simultaneous multithreading 
• Multiple-issue, dynamically scheduled processor to 

exploit thread-level parallelism 



Hardware multithreading 



Multi-processor system 
• Shared memory multi-processor 



Multi-processor system 
• Non-uniform memory access multi-processor 



Cluster computing system 
 



Grid computing system 
 



國立台灣大學 National Taiwan University 

GPU introduction 



Computer graphics rendering 
 



History of computer graphics 
• 1960, Ivan Sutherland's Sketchpad 
 The beginning of computer graphics 

• 1992, OpenGL 1.0 
• 1996,  Voodoo I 
 The first consumer 3D graphics card 

• 1996, DirectX 3.0 
 The first version including Direct3D 



The history of computer graphics 
• 2000, DirectX 8.0 
 The first version supporting HLSL 

• 2001, GeForce 3 (NV20) 
 The first consumer GPU 

• 2004, OpenGL 2.0 
 The first version supporting GLSL 

• 2006, GeForce 8 (G80) 
 The first NVIDIA GPU supporting CUDA 

• 2008 
OpenCL (Apple, AMD, IBM, Qualcomm, Intel, …) 



Graphics pipeline 

Input processor 

Do geometry stuff 

Do pixel stuff 

Accumulate pixel result 

Instructions 
States 
Data 

Transforms 
Lighting, etc 

Rasterize 
Pixel shading 

Z-buffer 
Transparency 



Do pixel stuff 

Do geometry stuff 

Make it faster 

Input processor 

Do geometry stuff 

Do pixel stuff 

Accumulate pixel result 

Do geometry stuff 

Do pixel stuff 



Do pixel stuff 

Do geometry stuff 

Add framebuffer support 

Input processor 

Do geometry stuff 

Do pixel stuff 

Accumulate pixel result 

Do geometry stuff 

Do pixel stuff 

FB 
(memory) 



 
 
Get data 
Process data 
Output data 

Do pixel stuff 

Do geometry stuff 

Add programmability 

Front end 

Do geometry stuff 

Do pixel stuff 

Raster operations 

Geometry shader ALU 

Pixel shader ALU 

FB 
(memory) 



Do geometry stuff 

Uniform shader 

Front end 

Do geometry stuff 

Raster operations 

Uniform shader ALU 
FB 

(memory) 
Buffer 



Do geometry stuff 

Scaling it up again 

Front end 

Do geometry stuff 

Raster operations 

Uniform shader ALU 
FB 

(memory) 
Buffer 



NVIDIA tesla GPU 
 

Processors 

Sorting, 
Distribution Memory 

I/O 



國立台灣大學 National Taiwan University 

Interconnection networks 



Interconnection networks 

• Performance metric 
Network bandwidth, the peek transfer rate of a 

network (best case) 
 Bisection bandwidth, the bandwidth between two 

equal parts of a multiprocessor (worse case) 

Bus Ring 



Network topologies 

Bus Ring 

 

2D mesh N-cube Fully connected 



Multistage networks 

Crossbar Omega network 



Network characterisitics 
• Performance 
 Latency 
 Throughput 

• Link bandwidth 
• Total network bandwidth 
• Bisection bandwidth 

 Congestion delays 

• Cost 
• Power 
• Routability in silicon 



國立台灣大學 National Taiwan University 

Parallel benchmark 



Parallel benchmark 
• Linpack: matrix linear algebra 
• SPECrate: parallel run of SPEC CPU programs 
 Job-level parallelism 

• SPLASH: Stanford Parallel Applications for Shared 
Memory 
 Mix of kernels and applications, strong scaling 

• NAS (NASA Advanced Supercomputing) suite 
 computational fluid dynamics kernels 

• PARSEC (Princeton Application Repository for 
Shared Memory Computers) suite 
 Multithreaded applications using Pthreads and OpenMP 



Modeling performance 
• What is the performance metric of interest? 
 Attainable GFLOPs/second 
Measured using computational kernels from 

Berkeley Design Pattern 

• Arithmetic intensity 
 FLOPs per byte of memory access 

• For a given computer, determine 
 Peak FLOPs 
 Peak memory bytes/second 

 



Roofline diagram 



Comparing systems 
• Opteron X2 vs. X4 
 2-core vs. 4-core 
 2.2GHz vs. 2.3GHz 
 Same memory system 



Optimizing performance 
 



Optimizing performance 
• Choices of optimization depends on 

arithmetic intensity of code 



Four example systems 

Intel Xeon e5345 AMD Opteron X4 2356 

Sun UltraSPARC T2 5140  IBM Cell QS20 



Roofline diagrams 
 



Conclusion 
• Goal: higher performance by using multiple 

processors 
• Difficulties 
 Developing parallel software 
 Devising appropriate architectures 

• Many reasons for optimism 
 Changing software and application environment 
 Chip-level multiprocessors with lower latency, higher 

bandwidth interconnect 

• An ongoing challenge for computer architects! 



國立台灣大學 National Taiwan University 

Parallel programming 



Can a program be parallelized? 
• Matrix multiplication 

for (int i = 0; i < M; ++i) 

for (int j = 0; j < N; ++j) 

for (int k = 0; k < K; ++k) 

C[i][j]  = A[i][k] * B[k][j]; 

• Fibonacci sequence 
A = 0, B = 1 

for (int i = 0; i < N; ++i) { 

C = A + B; 

A = B; 

B = C; 

} 



Parallel programming 
• Software/algorithm is the key 
• Significant performance improvement 
Otherwise, Just use a faster uniprocessor 

• Difficulties 
 Partitioning 
 Coordination 
 Communication overhead 



Parallel programming 
• Job-level parallelism 
• Single program runs on multiple processors 
• Single program runs on multiple computers 



Job-level parallelism 
• Operation system does it now 
• How to improve the throughput? 
 Processors number vs. jobs number 
Memory usage 
 I/O statistics 
 Scheduling and priority 
 ... 



Multi-process program 
• Process 
 a running instance of a program 

• Example: 
 
 

WWW 
server 

Browser 

Browser 

Browser 

Browser 

Process 

Process 

Process 

Process 



Multi-thread program 
• Thread 
 Light weight process 

• Example: 

WWW server 

Browser 

Browser 

Browser 

Browser 

Thread 

Thread 

Thread 

Thread 



Multi-process vs. multi-thread 
• Performance 
 Launch time 
 Context switch 
 Kernel-awareness scheduling 

• Communication 
 Inter-process vs. inter-thread communication 

• Stability 
 



Message passing interface (MPI) 
 

Node 

Node 

Node Node 

Node 

Node 
Broadcast 



MapReduce/hadoop 
 



國立台灣大學 National Taiwan University 

GPU programming 



GPGPU 
 



Cuda 
 



國立台灣大學 National Taiwan University 

Thanks! 


	Parallel computing and �GPU introduction
	Agenda
	Parallel computing
	Goal of computing
	Why parallel computing?
	Top500 (Nov 2013)
	Amdahl's law
	Amdahl's law
	Amdahl's law
	Scaling exapmle
	Scaling example
	Scalability
	Parallel computing system
	Parallelization design for processors
	Flynn's taxonomy
	SIMD
	Example: dot product
	Vector processors
	Example: DAXPY (Y = a × X + Y)
	Hardware multithreading
	Hardware multithreading
	Multi-processor system
	Multi-processor system
	Cluster computing system
	Grid computing system
	GPU introduction
	Computer graphics rendering
	History of computer graphics
	The history of computer graphics
	Graphics pipeline
	Make it faster
	Add framebuffer support
	Add programmability
	Uniform shader
	Scaling it up again
	NVIDIA tesla GPU
	Interconnection networks
	Interconnection networks
	Network topologies
	Multistage networks
	Network characterisitics
	Parallel benchmark
	Parallel benchmark
	Modeling performance
	Roofline diagram
	Comparing systems
	Optimizing performance
	Optimizing performance
	Four example systems
	Roofline diagrams
	Conclusion
	Parallel programming
	Can a program be parallelized?
	Parallel programming
	Parallel programming
	Job-level parallelism
	Multi-process program
	Multi-thread program
	Multi-process vs. multi-thread
	Message passing interface (MPI)
	MapReduce/hadoop
	GPU programming
	GPGPU
	Cuda
	Thanks!

