
Computer
Organization and Structure

Bing-Yu Chen
National Taiwan University

Instructions:
Language of the Computer

 Operations and Operands
 of the Computer Hardware

 Signed and Unsigned Numbers
 Representing Instructions

 in the Computer

 Logical Operations
 Instructions for Making Decisions
 Supporting Procedures

 in Computer Hardware

 Communicating with People
 MIPS Addressing

 for 32-Bit Immediates and Addresses

 Translating and Starting a Program
 Arrays vs. Pointers

1

Instruction Set

 The repertoire of instructions of a
computer

 Different computers have different
instruction sets
 But with many aspects in common

 Early computers had very simple
instruction sets
 Simplified implementation

 Many modern computers also have
simple instruction sets

2

The MIPS Instruction Set

 Used as the example throughout the
book

 Stanford MIPS commercialized by MIPS
Technologies (www.mips.com)

 Large share of embedded core market
 Applications in consumer electronics,

network/storage equipment, cameras,
printers, …

 Typical of many modern ISAs
 See MIPS Reference Data tear-out card, and

Appendixes B and E
3

http://www.mips.com/

Arithmetic Operations

 Add and Subtract, 3 operands
 2 sources and 1 destination

 operand order is fixed
 destination first

 all arithmetic operations have this form

 Example:
 C code: a = b + c

 MIPS code: add a, b, c

4

Arithmetic Operations

 Design Principle 1:

 simplicity favors regularity

 Regularity makes implementation simpler

 Simplicity enables higher performance at
lower cost

5

Arithmetic Examples

 compiling two C assignments into MIPS
 C code: a = b + c;

d = a - e;

 MIPS code: add a, b, c
sub d, a, e

 compiling a complex C assignment into MIPS
 C code: f = (g + h) – (i + j)

 MIPS code: add $t0, g, h # temp t0 = g + h
add $t1, i, j # temp t1 = i + j
sub f, $t0, $t1 # f = t0 - t1

6

Register Operands

 Of course this complicates some things...

 C code: a = b + c + d;

 MIPS code: add a, b, c
add a, a, d

 where a & b & c & d mean registers

 Arithmetic instructions use register
operands

 operands must be registers

7

8

Register Operands

 MIPS has a 32 × 32-bit register file
 Use for frequently accessed data

 Numbered 0 to 31

 32-bit data called a “word”

 Assembler names
 $t0, $t1, …, $t9 for temporary values

 $s0, $s1, …, $s7 for saved variables

 Design Principle 2:

 smaller is faster

 c.f. main memory: millions of locations

Register Operand Example

 C code: f = (g + h) – (i + j)

 assume f, …, j in $s0, …, $s4

 MIPS code: add $t0, $s1, $s2
add $t1, $s3, $s4
sub $s0, $t0, $t1

9

10

Registers vs. Memory

 Arithmetic instructions operands must be
registers
 only 32 registers provided

 Compiler associates variables with registers

 What about programs with lots of variables

processor I/O

Control

Datapath

Input

Output

Memory

Memory Operands

 Main memory used for composite data
 Arrays, structures, dynamic data

 To apply arithmetic operations
 Load values from memory into registers
 Store result from register to memory

 Memory is byte addressed
 Each address identifies an 8-bit byte

 Words are aligned in memory
 Address must be a multiple of 4

 MIPS is Big Endian
 Most-Significant Byte at least address of a word
 c.f. Little Endian: Least-Significant Byte at least

address
11

Big Endian vs. Little Endian

13

A B C D

Data

A

B

C

D

...

a

a+1

a+2

a+3

...

D

C

B

A

...

a

a+1

a+2

a+3

...

Memory

Memory

Big Endianness

Little Endianness

Load & Store Instructions

 C code: g = h + A[8];
 g in $s1, h in $s2, base address of A in $s3

 MIPS code: lw $t0, 32($s3)
add $s1, $s2, $t0

 index 8 requires offset of 32
 4 bytes per word

 can refer to registers by name
(e.g., $s2, $t0) instead of number

16

17

Load & Store Instructions

 C code: A[12] = h + A[8];
 h in $s2, base address of A in $s3

 MIPS code: lw $t0, 32($s3)
add $t0, $s2, $t0
sw $t0, 48($s3)

 store word has destination last
 remember arithmetic operands are registers,

not memory
 can’t write: add 48($s3), $s2, 32($s3)

Registers vs. Memory

 Registers are faster to access than
memory

 Operating on memory data requires
loads and stores
 More instructions to be executed

 Compiler must use registers for
variables as much as possible
 Only spill to memory for less frequently

used variables

 Register optimization is important!

18

Immediate Operands

 Constant data specified in an instruction
 addi $s3, $s3, 4

 No subtract immediate* instruction
 Just use a negative constant

 addi $s2, $s1, -1

 Design Principle 3:
 Make the common case fast

 Small constants are common

 Immediate operand avoids a load instruction

*e.g. subi 20

The Constant Zero

 MIPS register 0 ($zero) is the
constant 0

 Cannot be overwritten

 Useful for common operations

 add $t2, $s1, $zero

 e.g., move between registers

21

Unsigned Binary Integers

 Given an n-bit number

 Range: 0 to +2n – 1

 Example
 0000 0000 0000 0000 0000 0000 0000 10112

= 0 + … + 1×23 + 0×22 +1×21 +1×20

= 0 + … + 8 + 0 + 2 + 1 = 1110

 Using 32 bits
 0 to +4,294,967,295

1 2 1 0

1 2 1 0
2 2 2 2

n n

n n
x x x x x

 

 
    

23

2’s-Complement Signed Integers

 Given an n-bit number

 Range: -2n-1 to +2n-1 – 1

 Example
 1111 1111 1111 1111 1111 1111 1111 11002

= –1×231 + 1×230 + … + 1×22 +0×21 +0×20

= –2,147,483,648 + 2,147,483,644 = –410

 Using 32 bits
 –2,147,483,648 to +2,147,483,647

1 2 1 0

1 2 1 0
2 2 2 2

n n

n n
x x x x x

 

 
     

24

2’s-Complement Signed Integers

 Bit 31 is sign bit
 1 for negative numbers
 0 for non-negative numbers

 –(–2n – 1) can’t be represented
 Non-negative numbers have the same

unsigned and 2’s-complement
representation

 Some specific numbers
 0: 0000 0000 … 0000
 –1: 1111 1111 … 1111
 Most-negative: 1000 0000 … 0000
 Most-positive: 0111 1111 … 1111

25

Signed Negation

 Complement and add 1
 Complement means 1 → 0, 0 → 1

 Example: negate +2
 +2 = 0000 0000 … 00102

 –2 = 1111 1111 … 11012 + 1
= 1111 1111 … 11102

 “negate” and “complement” are quite different!

2
1111...111 1

1

x x

x x

   

  

26

Sign Extension

 Representing a number using more bits
 Preserve the numeric value

 In MIPS instruction set
 addi: extend immediate value
 lb, lh: extend loaded byte/halfword
 beq, bne: extend the displacement

 Replicate the sign bit to the left
 c.f. unsigned values: extend with 0s

 Examples: 8-bit to 16-bit
 +2: 0000 0010 => 0000 0000 0000 0010
 –2: 1111 1110 => 1111 1111 1111 1110

27

Representing Instructions

 Instructions are encoded in binary
 Called machine code

 MIPS instructions
 Encoded as 32-bit instruction words
 Small number of formats encoding operation

code (opcode), register numbers, …
 Regularity!

 Register numbers
 $t0 – $t7 are reg’s 8 – 15
 $t8 – $t9 are reg’s 24 – 25
 $s0 – $s7 are reg’s 16 – 23

MIPS instruction encoding@Fig.2.19@P.135
MIPS register conventions@Fig.2.14@P.121

28

29

MIPS R-format Instructions

 op = operation code (opcode)
 basic operation of the instruction

 rs / rt / rd
 register source / destination operand

 shamt = shift amount
 00000 for now

 funct = function code
 extends opcode

op rs rt rd shamt funct

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

30

R-format Example

 add $t0, $s1, $s2

 000000100011001001000000001000002

= 0232402016

op rs rt rd shamt funct

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

000000 10001 10010 01000 00000 100000

special $s1 $s2 $t0 0 add

0 17 18 8 0 32

Hexadecimal

 Base 16

 Compact representation of bit strings

 4 bits per hex digit

 Example: eca8 6420

 1110 1100 1010 1000 0110 0100 0010 0000

0 0000 4 0100 8 1000 c 1100

1 0001 5 0101 9 1001 d 1101

2 0010 6 0110 a 1010 e 1110

3 0011 7 0111 b 1011 f 1111

31

6 bits 5 bits 5 bits 16 bits

op rs rt constant or address

32

MIPS I-format Instructions

 Immediate arithmetic and load/store
instructions
 rs / rt: source or destination register number
 Constant: –215 to +215 – 1
 Address: offset added to base address in rs

 Design Principle 4:
 Good design demands good compromises

 Different formats complicate decoding, but allow 32-
bit instructions uniformly

 Keep formats as similar as possible

33

I-format Example

 lw $t0, 32($s2)

6 bits 5 bits 5 bits 16 bits

op rs rt constant or address

lw $s2 $t0 32

35 18 8 32

100011 10010 01000 0000000000100000

35

C / MIPS / Machine Languages

 C: A[300] = h + A[300]

 MIPS: lw $t0, 1200($t1)
add $t0, $s2, $t0
sw $t0, 1200($t1)

 Machine Language:

0 18 8 8 0 32

35 9 8 1200

43 9 8 1200

Stored Program Concept

 Instructions represented
in binary, just like data

 Instructions and data
stored in memory

 Programs can
operate on
programs
 e.g., compilers, linkers, …

 Binary compatibility allows
compiled programs to
work on different computers
 Standardized ISAs

36memory for data, programs,

compilers, editors, etc.

Processor

Memory

Accounting program
(machine code)

Editor program
(machine code)

C compiler
(machine code)

Payroll data

Book text

C code for
editor program

 Instructions for bitwise manipulation

 Useful for extracting and inserting
groups of bits in a word

Logical Operations

Operation C MIPS

Shift left << sll

Shift right >> srl

Bitwise AND & and, andi

Bitwise OR | or, ori

Bitwise NOT ~ nor

37

39

Shift Operations

 shamt: how many positions to shift

 Shift left logical
 Shift left and fill with 0 bits

 sll by i bits multiplies by 2i

 Shift right logical
 Shift right and fill with 0 bits

 srl by i bits divides by 2i (unsigned only)

op rs rt rd shamt funct

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

40

Shift Operations

 NOTICE

 shift left/right logical is not I-type

 Example: sll $t2, $s0, 4

 Machine Language:

0 0 16 10 4 0

op rs rt rd shamt funct

special none $s0 $t2 4 sll

AND Operations

 Useful to mask bits in a word

 Select some bits, clear others to 0

 and $t0, $t1, $t2
 $t2 = 0000 0000 0000 0000 0000 1101 1100 0000

 $t1 = 0000 0000 0000 0000 0011 1100 0000 0000

 $t0 = 0000 0000 0000 0000 0000 1100 0000 0000

41

OR Operations

 Useful to include bits in a word

 Set some bits to 1, leave others unchanged

 or $t0, $t1, $t2
 $t2 = 0000 0000 0000 0000 0000 1101 1100 0000

 $t1 = 0000 0000 0000 0000 0011 1100 0000 0000

 $t0 = 0000 0000 0000 0000 0011 1101 1100 0000

42

NOT Operations

 Useful to invert bits in a word

 Change 0 to 1, and 1 to 0

 MIPS has NOR 3-operand instruction

 a NOR b == NOT (a OR b)

 nor $t0, $t1, $zero
 $t1 = 0000 0000 0000 0000 0011 1100 0000 0000

 $t0 = 1111 1111 1111 1111 1100 0011 1111 1111

43

44

Conditional Operations

 Branch to a labeled instruction if a
condition is true
 Otherwise, continue sequentially

 MIPS conditional branch instructions:
 bne $t0, $t1, Label
 beq $t0, $t1, Label

Example: if (i==j) h = i + j;

bne $s0, $s1, Label
add $s3, $s0, $s1

Label:

45

Unconditional Operations

 MIPS unconditional branch instructions:

 j Label

 (Un-)Conditional Branch Example:

if (i==j) bne $s3, $s4, Else

f=g+h; add $s0, $s1, $s2

else j Exit
f=g-h; Else: sub $s0, $s1, $s2

Exit: ...

 Can you build a simple for / while loop ?

Assembler
calculates
addresses

46

Compiling Loop Statements

C:

while (save [i] == k) i += 1;

 assume i in $s3, k in $s5, address of save in $s6

MIPS:

Loop: sll $t1, $s3, 2 # $t1=4*i

add $t1, $t1, $s6 # $t1=addr. of save[i]

lw $t0, 0($t1) # $t0=save[i]

bne $t0, $s5, Exit # go to Exit if save[i]!=k

addi $s3, $s3, 1 # i+=1

j Loop # go to Loop

Exit:

Basic Blocks

 A basic block is a sequence of
instructions with
 No embedded branches (except at end)

 No branch targets (except at beginning)

 A compiler identifies
basic blocks for optimization

 An advanced processor
can accelerate execution of
basic blocks

47

48

More Conditional Operations

 set on less than:
if ($s3 < $s4) slt $t1, $s3, $s4

$t1=1;
else

$t1=0;

 can use this instruction to build
“blt $s1, $s2, Label”

 can now build general control structures

 NOTE
 the assembler needs a register to do this,
 there are policy of use conventions for registers

$s slti $s

Branch Instruction Design

 Why not blt, bge, etc?

 Hardware for <, ≥, … slower than =, ≠

 Combining with branch involves more work
per instruction, requiring a slower clock

 All instructions penalized!

 beq and bne are the common case

 This is a good design compromise

49

Signed vs. Unsigned

 Signed comparison: slt, slti

 Unsigned comparison: sltu, sltui

 Example
 $s0 = 1111 1111 1111 1111 1111 1111 1111 1111

 $s1 = 0000 0000 0000 0000 0000 0000 0000 0001

 slt $t0, $s0, $s1 # signed

 –1 < +1  $t0 = 1

 sltu $t0, $s0, $s1 # unsigned

 +4,294,967,295 > +1  $t0 = 0

52

Procedure Calling

 Steps required

 Place parameters in registers

 Transfer control to procedure

 Acquire storage for procedure

 Perform procedure’s operations

 Place result in register for caller

 Return to place of call

53

54

Register Usage

Name Register No. Usage

$zero 0 the constant value 0

$v0-$v1 2-3 values for results & expression evaluation

$a0-$a3 4-7 arguments

$t0-$t7 8-15 temporaries (can be overwritten by callee)

$s0-$s7 16-23 saved (must be saved/restored by callee)

$t8-$t9 24-25 more temporaries

$gp 28 global pointer

$sp 29 stack pointer

$fp 30 frame pointer

$ra 31 return address

Register 1 ($at) reserved for assembler, 26-27 for operating system

Procedure Call Instructions

 Procedure call: jump and link

 jal ProcedureLabel

 Address of following instruction put in $ra

 Jumps to target address

 Procedure return: jump register

 jr $ra

 Copies $ra to program counter

 Can also be used for computed jumps

 e.g., for case/switch statements

55

56

Leaf Procedure Example

int leaf_example (int g, int h, int i, int j) {
int f;

f = (g+h)-(i+j);
return f;

}

 Assume
 Arguments g, …, j in $a0, …, $a3
 f in $s0 (hence, need to save $s0 on stack)
 Result in $v0

57

Leaf Procedure Example

addi $sp, $sp, -4 # adjust stack for saving $s0
sw $s0, 0($sp)
add $t0, $a0, $a1 # g+h
add $t1, $a2, $a3 # i+j
sub $s0, $t0, $t1 # (g+h)-(i+j)
add $v0, $s0, $zero # return f ($v0=$s0+0)
lw $s0, 0($sp)
addi $sp, $sp, 4 # adjust stack again
jr $ra # jump back to calling routine

Non-Leaf Procedures

 Procedures that call other procedures

 For nested call, caller needs to save
on the stack:

 Its return address

 Any arguments and temporaries needed
after the call

 Restore from the stack after the call

59

60

Non-Leaf Procedure Example

int fact (int n) {
if (n < 1)

return 1;
else

return (n * fact (n - 1));
}

 Assume
 Argument n in $a0
 Result in $v0

61

Non-Leaf Procedure Example

fact:
addi $sp, $sp, -8 # adjust stack for 2 items
sw $ra, 4($sp) # save the return address
sw $a0, 0($sp) # save the argument n
slti $t0, $a0, 1 # test for n < 1
beq $t0, $zero, L1 # if n >= 1, go to L1
addi $sp, $sp, 8 # pop 2 items off stack
addi $v0, $zero, 1 # return 1
jr $ra # return to after jal

L1: addi $a0, $a0, -1 # n >= 1: argument gets (n - 1)
jal fact # call fact with (n - 1)
lw $a0, 0($sp) # return from jal: restore argument n
lw $ra, 4($sp) # restore the return address
addi $sp, $sp, 8 # adjust stack pointer to pop 2 items
mul $v0, $a0, $v0 # return n * fact (n - 1)
jr $ra # return to the caller

Local Data on the Stack

 Local data allocated by callee
 e.g., C automatic variables

 Procedure frame (activation record)
 Used by some compilers to manage stack storage

62

saved argument
registers (if any)

saved return address

saved saved
registers (if any)

local arrays and
structures (if any)$sp

High address

Low address

$sp

$fp

$fp

Memory Layout

 Text: program code

 Static data: global variables
 e.g., static variables in C, constant

arrays and strings

 $gp initialized to address allowing
±offsets into this segment

 Dynamic data: heap
 E.g., malloc in C

 Stack: automatic storage

Stack





Dynamic data

Static data

Text

$sp7fff fffchex

$gp1000 8000hex
1000 0000hex

$pc0040 0000hex

0
Reserved

63

Character Data

 Byte-encoded character sets

 ASCII: 128 characters

 95 graphic, 33 control

 Latin-1: 256 characters

 ASCII, +96 more graphic characters

 Unicode: 32-bit character set

 Used in C++ wide characters, …

 Most of the world’s alphabets, plus symbols

 UTF-8, UTF-16: variable-length encodings

64

Byte/Halfword Operations

 Could use bitwise operations

 MIPS byte/halfword load/store
 String processing is a common case

 lb rt, offset(rs) lh rt, offset(rs)
 Sign extend to 32 bits in rt

 lbu rt, offset(rs) lhu rt, offset(rs)
 Zero extend to 32 bits in rt

 sb rt, offset(rs) sh rt, offset(rs)
 Store just rightmost byte/halfword

65

66

String Copy Example

void strcpy (char x[], char y []) {
int i;

i = 0;
while (x[i] = y[i] != ‘¥0’) {

i = i + 1;
}

}

 Assume
 Null-terminated string
 Addresses of x, y in $a0, $a1, i in $s0

67

String Copy Example

addi $sp, $sp, -4
sw $s0, 0($sp)
add $s0, $zero, $zero # i = 0

L1:add $t1, $s0, $a1 # address of y[i] in $t1
lb $t2, 0($t1) # $t2 = y[i]
add $t3, $s0, $a0 # address of x[i] in $t3
sb $t2, 0($t3) # x[i] = y[i]
beq $t2, $zero, L2 # if y[i] == 0, go to L2
addi $s0, $s0, 1 # i = i + 1
j L1 # go to L1

L2:lw $s0, 0($sp) # restore old $s0
addi $sp, $sp, 4
jr $ra

32-bit Constants

 Most constants are small

 16-bit immediate is sufficient

 For the occasional 32-bit constant

 lui rt, constant

 Copies 16-bit constant to left 16 bits of rt

 Clears right 16 bits of rt to 0

lui $s0, 61

ori $s0, $s0, 2304

0000 0000 0000 00000000 0000 0111 1101

0000 1001 0000 00000000 0000 0111 1101

68

Branch Addressing

 Instructions:
 bne $s0,$s1,L1
 beq $s0,$s1,L2

 Formats:

 Most branch targets are near branch
 Forward or backward

 PC-relative addressing
 Target address = PC + offset × 4
 PC already incremented by 4 by this time

69

op rs rt 16 bit numberI

Jump Addressing

 Instructions:
 j L1
 jal L2

 Formats:

 Jump targets could be anywhere in text
segment
 Encode full address in instruction

 (Pseudo)Direct jump addressing
 Target address = PC31…28 : (address × 4)

70

op 26 bit numberJ

71

Target Addressing Example

C:

while (save [i] == k) i += 1;

MIPS:

Loop: sll $t1, $s3, 2

add $t1, $t1, $s6

lw $t0, 0($t1)

bne $t0, $s5, Exit

addi $s3, $s3, 1

j Loop

Exit:

0 9 22 9 0 32

35 9 8 0

2 20000

5 8 21 2

8 19 19 1

0 0 19 9 4 080000

80004

80008

80012

80016

80020

80024 …

Branching Far Away

 If branch target is too far to encode
with 16-bit offset, assembler rewrites
the code

 Example

beq $s0,$s1, L1

↓

bne $s0,$s1, L2
j L1

L2: ...

72

73

Addressing Mode Summary

 Immediate addressing

 Register addressing

op rs rt immediate

op rs rt rd shamt funct

Register

Registers

74

Addressing Mode Summary

 Base addressing

op rs rt address

Register

WordHalfwordByte

Memory

+

75

Addressing Mode Summary

 PC-relative addressing

 Pseudodirect addressing

op rs rt address

PC

Word

Memory

+

op address

PC

Word

Memory

:

76

Decoding Machine Code

 What is the assembly language statement
corresponding to this machine instruction?

 00af8020hex

 0000 0000 1010 1111 1000 0000 0010 0000

 op = 000000  R-format

 rs = 00101 (a1)/ rt = 01111 (t7)/ rd = 10000 (s0)

 shamt = 00000 / funct = 100000  add

 add $s0, $a1, $t7

MIPS instruction encoding@Fig.2.19@P.135
MIPS register conventions@Fig.2.14@P.121

C Sort Example

 Illustrates use of assembly
instructions for a C bubble sort
function

 Swap procedure (leaf)
 void swap(int v[], int k) {

int temp;
temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

}

 v in $a0, k in $a1, temp in $t0
86

The Procedure Swap

swap: sll $t1, $a1, 2 # $t1=k*4

add $t1, $a0, $t1 # $t1=v+(k*4)

(addr. of v[k])

lw $t0, 0($t1) # $t0=v[k]

lw $t2, 4($t1) # $t2=v[k+1]

sw $t2, 0($t1) # v[k]=$t2

sw $t0, 4($t1) # v[k+1] = $t0

jr $ra # return to
calling routine

87

The Sort Procedure in C

 Non-leaf (calls swap)
 void sort (int v[], int n) {

int i, j;
for (i = 0; i < n; i += 1) {

for (j = i – 1;
j >= 0 && v[j] > v[j + 1];
j -= 1) {

swap(v,j);
}

}
}

 v in $a0, k in $a1, i in $s0, j in $s1
88

The Procedure Body
move $s2, $a0 # save $a0 into $s2
move $s3, $a1 # save $a1 into $s3
move $s0, $zero # i = 0

for1tst: slt $t0, $s0, $s3 # $t0 = 0 if $s0 ≥ $s3 (i ≥ n)
beq $t0, $zero, exit1 # go to exit1 if $s0 ≥ $s3 (i ≥ n)
addi $s1, $s0, –1 # j = i – 1

for2tst: slti $t0, $s1, 0 # $t0 = 1 if $s1 < 0 (j < 0)
bne $t0, $zero, exit2 # go to exit2 if $s1 < 0 (j < 0)
sll $t1, $s1, 2 # $t1 = j * 4
add $t2, $s2, $t1 # $t2 = v + (j * 4)
lw $t3, 0($t2) # $t3 = v[j]
lw $t4, 4($t2) # $t4 = v[j + 1]
slt $t0, $t4, $t3 # $t0 = 0 if $t4 ≥ $t3
beq $t0, $zero, exit2 # go to exit2 if $t4 ≥ $t3
move $a0, $s2 # 1st param of swap is v (old $a0)
move $a1, $s1 # 2nd param of swap is j
jal swap # call swap procedure
addi $s1, $s1, –1 # j –= 1
j for2tst # jump to test of inner loop

exit2: addi $s0, $s0, 1 # i += 1
j for1tst # jump to test of outer loop

exit1: 89

The Full Procedure

sort: addi $sp,$sp, –20 # make room on stack for 5 registers
sw $ra, 16($sp) # save $ra on stack
sw $s3,12($sp) # save $s3 on stack
sw $s2, 8($sp) # save $s2 on stack
sw $s1, 4($sp) # save $s1 on stack
sw $s0, 0($sp) # save $s0 on stack
… # procedure body
…

exit1: lw $s0, 0($sp) # restore $s0 from stack
lw $s1, 4($sp) # restore $s1 from stack
lw $s2, 8($sp) # restore $s2 from stack
lw $s3,12($sp) # restore $s3 from stack
lw $ra,16($sp) # restore $ra from stack
addi $sp,$sp, 20 # restore stack pointer
jr $ra # return to calling routine

90

Arrays vs. Pointers

 Array indexing involves

 Multiplying index by element size

 Adding to array base address

 Pointers correspond directly to
memory addresses

 Can avoid indexing complexity

91

92

Array vs. Pointers in C

void clear1 (int array[], int size) {

int i;

for (i = 0; i < size; i += 1)

array[i] = 0;

}

void clear2 (int *array, int size) {

int *p;

for (p = &array[0]; p < &array[size]; p += 1)

*p = 0;

}

93

Array Version of Clear in MIPS

add $t0, $zero, $zero

loop1: sll $t1, $t0, 2

add $t2, $a0, $t1

sw $zero, 0($t2)

addi $t0, $t0, 1

slt $t3, $t0, $a1

bne $t3, $zero, loop1

94

Pointer Version of Clear in MIPS

add $t0, $a0, $zero

loop2: sw $zero, 0($t0)

addi $t0, $t0, 4

sll $t1, $a1, 2

add $t2, $a0, $t1

slt $t3, $t0, $t2

bne $t3, $zero, loop2

95

New Pointer Version of Clear

add $t0, $a0, $zero

sll $t1, $a1, 2

add $t2, $a0, $t1

loop2: sw $zero, 0($t0)

addi $t0, $t0, 4

slt $t3, $t0, $t2

bne $t3, $zero, loop2

96

Comparing the Two Versions

add $t0, $zero, $zero

lp1: sll $t1, $t0, 2

add $t2, $a0, $t1

sw $zero, 0($t2)

addi $t0, $t0, 1

slt $t3, $t0, $a1

bne $t3, $zero, lp1

add $t0, $a0, $zero

sll $t1, $a1, 2

add $t2, $a0, $t1

lp2: sw $zero, 0($t0)

addi $t0, $t0, 4

slt $t3, $t0, $t2

bne $t3, $zero, lp2

Comparison of Array vs. Pointer

 Multiply “strength reduced” to shift

 Array version requires shift to be inside
loop

 Part of index calculation for incremented i

 c.f. incrementing pointer

 Compiler can achieve same effect as
manual use of pointers

 Induction variable elimination

 Better to make program clearer and safer

97

