
Computer
Organization and Structure

Bing-Yu Chen
National Taiwan University



1

The Processor

 Logic Design Conventions

 Building a Datapath

 A Simple Implementation Scheme

 An Overview of Pipelining

 Pipelined Datapath and Control

 Data Hazards: Forwarding vs. Stalls

 Control Hazards

 Exceptions



Instruction Execution

 PC  instruction memory, fetch instruction

 Register numbers  register file, read 
registers

 Depending on instruction class

 Use ALU to calculate

 Arithmetic result

 Memory address for load/store

 Branch target address

 Access data memory for load/store

 PC  target address or PC + 4
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Abstract / Simplified View

 Two types of functional units:
 elements that operate on data values (combinational)
 elements that contain state (sequential)
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Abstract / Simplified View

 Cannot just join wires together

 Use multiplexers
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Recall:
Logic Design Basics

 Information encoded in binary

 Low voltage = 0, High voltage = 1

 One wire per bit

 Multi-bit data encoded on multi-wire buses

 Combinational element

 Operate on data

 Output is a function of input

 State (sequential) elements

 Store information
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Recall:
Combinational Elements

 AND-gate

 Y = A & B

 Multiplexer

 Y = S ? I1 : I0

 Adder

 Y = A + B

 ALU

 Y = F(A, B)
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B
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F
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Sequential Elements

 Register: stores data in a circuit

 Uses a clock signal to determine when to 
update the stored value

 Edge-triggered: update when Clk 
changes from 0 to 1

D

Clk

Q

Clk

D

Q
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Sequential Elements

 Register with write control

 Only updates on clock edge when write 
control input is 1

 Used when stored value is required later

D

Clk

Q

Write

Write

D

Q

Clk
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 Combinational logic transforms data 
during clock cycles

 Between clock edges

 Input from state elements, output to 
state element

 Longest delay determines clock period

Clocking Methodology

state
element

1

state
element

2

combinational
logic

clock cycle

combinational
logic

state
element
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Register File

 built using D flip-flops
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Register File

M
U
X

register n-1

register n-2

register 0

register 1

…

M
U
X

read register
number 1

read register
number 2

read data1

read data2



Register File

 Note: we still use the real clock to determine when to write
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Instruction Fetch
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Instruction Fetch
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R-Format Instructions
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R-Format Instructions
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Load/Store Instructions
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Load/Store Instructions
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Branch Instructions
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Composing the Elements

 First-cut data path does an 
instruction in one clock cycle

 Each datapath element can only do one 
function at a time

 Hence, we need separate instruction and 
data memories

 Use multiplexers where alternate data 
sources are used for different 
instructions
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Building the Datapath
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Building the Datapath
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Building the Datapath
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Building the Datapath
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Building the Datapath
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Control

 Selecting the operations to perform (ALU, r/w)
 Controlling the flow of data (multiplexor inputs)
 Information comes from the 32 bits of instruction

add $8, $17, $18

 ALU's operation based on instruction type and 
function code
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000000 10001 10010 01000 00000 100000

op rs rt rd shamt funct
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ALU Control

 what should the ALU do with this instruction

lw $1, 100($2)

 ALU control input
0000 AND

0001 OR

0010 add

0110 subtract

0111 set-on-less-than

1100 NOR

 why is the code for subtract 110 and not 011?

35 2 1 100

op rs rt 16 bit number
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ALU Control

 must describe hardware to compute 
4-bit ALU control input

 given instruction type 
00 = lw, sw
01 = beq, 
10 = arithmetic

 function code for arithmetic

 describe it using a truth table (can 
turn into gates):

ALUOp 
computed from
instruction type



30

ALU Control

instruction
opcode

ALUOp Funct
field

desired
ALU action

ALU control
input

LW 00 XXXXXX add 0010

SW 00 XXXXXX add 0010

Branch equal 01 XXXXXX subtract 0110

R-type 10 100000 add 0010

R-type 10 100010 subtract 0110

R-type 10 100100 and 0000

R-type 10 100101 or 0001

R-type 10 101010 set on less than 0111
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ALU Control

ALUOp Funct field operation

ALUOp1 ALUOp2 F5 F4 F3 F2 F1 F0

0 0 X X X X X X 0010

X 1 X X X X X X 0110

1 X X X 0 0 0 0 0010

1 X X X 0 0 1 0 0110

1 X X X 0 1 0 0 0000

1 X X X 0 1 0 1 0001

1 X X X 1 0 1 0 0111



The Main Control Unit

 Control signals derived from instruction

0 rs rt rd shamt funct

31:26 5:025:21 20:16 15:11 10:6

35 or 43 rs rt address

31:26 25:21 20:16 15:0

4 rs rt address

31:26 25:21 20:16 15:0

R-type

Load/
Store

Branch

opcode always 
read

read, 
except 
for load

write for 
R-type 

and load

sign-
extend 
and add
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Building the Control
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Datapath With Control
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R-Type Instruction
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Load Instruction
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Branch-on-Equal Instruction
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Implementing Jumps
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op addressJ

31-26 25-0

shift
left 2

26 28

instruction [25-0]

PC+4[31-28]

jump address[31-0]



Datapath With Jumps Added
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Control

instruc-
tion

Reg
Dst

ALU
Src

Mem
to

Reg

Reg
Write

Mem
Read

Mem
Write

Branch ALU
Op1

ALU
Op2

R-format 1 0 0 1 0 0 0 1 0

lw 0 1 1 1 1 0 0 0 0

sw X 1 X 0 0 1 0 0 0

beq X 0 X 0 0 0 1 0 1
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Control
signal R-format lw sw beq

inputs Op5 0 1 1 0

Op4 0 0 0 0

Op3 0 0 1 0

Op2 0 0 0 1

Op1 0 1 1 0

Op0 0 1 1 0

outputs RegDst 1 0 X X

ALUSrc 0 1 1 0

MemtoReg 0 1 X X

RegWrite 1 1 0 0

MemRead 0 1 0 0

MemWrite 0 0 1 0

Branch 0 0 0 1

ALUOp1 1 0 0 0

ALUOp0 0 0 0 1



 Simple combinational logic (truth tables)

Control

Operation 1

Operation 2

Operation 3

Operation

ALUOp1

F3

F2

F1

F0

F (5-0)

ALUOp0

ALUOp

ALU control block

R-format t Iw sw beq

Op0

Op1

Op2

Op3

Op4

Op5

Inputs

Outputs

RegDst

ALUSrc

MemtoReg

RegWrite

MemRead

MemWrite

Branch

ALUOp1

ALUOp2

42



Performance Issues

 Longest delay determines clock period

 Critical path: load instruction

 Instruction memory  register file  ALU 
data memory  register file

 Not feasible to vary period for different 
instructions

 Violates design principle

 Making the common case fast

 We will improve performance by pipelining
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Performance of
Single-Cycle Machines

Instruction 
class

Instruction 
fetch

Register 
read

ALU 
operation

Data 
access

Register 
write

Total 
time

Load word
(lw)

200 ps 100 ps 200 ps 200 ps 100 ps 800 ps

Store Word
(sw)

200 ps 100 ps 200 ps 200 ps 700 ps

R-format
(add,sub,and,or,slt)

200 ps 100 ps 200 ps 100 ps 600 ps

Branch
(beq)

200 ps 100 ps 200 ps 500 ps
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Pipelining Analogy

 Pipelined laundry: overlapping execution
 Parallelism improves performance

 Four loads:
 Speedup

= 8/3.5 = 2.3

 Non-stop:
 Speedup

= 2n/(0.5n+1.5) ≈ 4
= number of stages
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MIPS Pipeline

 Five stages, one step per stage

1. IF: Instruction fetch from memory

2. ID: Instruction decode & register read

3. EX: Execute operation or calculate 
address

4. MEM: Access memory operand

5. WB: Write result back to register

93
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Recall:
Single Cycle Implementation
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Toward Pipeline Implementation
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Step 1:
Instruction Fetch

 use PC to get instruction and put it in the Instruction 
Register.

 increment the PC by 4 and put the result back in the 
PC.

 can be described succinctly using RTL "Register-
Transfer Language"

IR = Memory[PC];
PC = PC + 4;

Can we figure out the values of the control signals?
What is the advantage of updating the PC now?
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Step 2:
Instruction Decode & Register Fetch

 read registers rs and rt in case we need them

 compute the branch address in case the instruction is 
a branch

 RTL:

A = Reg[IR[25-21]];
B = Reg[IR[20-16]];
ALUOut = PC + (sign-extend(IR[15-0]) << 2);

 We aren't setting any control lines based on the 
instruction type 

 we are busy "decoding" it in our control logic
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Step 3: Execution Step
(instruction dependent)

 ALU is performing one of three functions, based on 
instruction type

 Memory Reference:
ALUOut = A + sign-extend(IR[15-0]);

 R-type:
ALUOut = A op B;

 Branch:
if (A==B) PC = ALUOut;

 Jump:
PC = PC[31-28] || (IR[25-0] << 2)
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Step 4:
Memory-Access

 Loads and stores access memory

MDR = Memory[ALUOut];
or

Memory[ALUOut] = B;
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Step 5: Write-back Step
(R-Type or Loads)

 Loads access memory

Reg[IR[20-16]]= MDR;

 R-type instructions finish

Reg[IR[15-11]] = ALUOut;
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Summary

step R-type
memory

reference
branch jump

1
IR=Memory[PC]

PC=PC+4

2
A=Reg[IR[25-21]]
B=Reg[IR[20-16]]

ALUOut=PC+(sign-extend(IR[15-0])<<2)

3 ALUOut=A op B
ALUOut=A+sign-extend

(IR[15-0])
if (A==B) 

PC=ALUOut
PC=PC[31-28]||
(IR[25-0]<<2)

4
lw:MDR=Memory[ALUOut]

or
sw:Memory[ALUOut]=B

5
Reg[IR[15-11]]=

ALUOut
lw:Reg[IR[20-16]]=MDR



Non-Pipelining

 Improve performance by increasing 
instruction throughput

 Ideal speedup is number of stages in the 
pipeline.

 Do we achieve this?
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Pipelining

instruction
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Reg ALU
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order

Time
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Reg ALU
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Reg ALU
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Reg
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Pipeline Speedup

 If all stages are balanced

 i.e., all take the same time

 Time between instructionspipelined

= Time between instructionsnonpipelined

Number of stages

 If not balanced, speedup is less

 Speedup due to increased throughput

 Latency (time for each instruction) does 
not decrease
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Hazards

 Situations that prevent starting the next 
instruction in the next cycle

 Structure hazards
 A required resource is busy

 Data hazard
 Need to wait for previous instruction to 

complete its data read/write

 Control hazard
 Deciding on control action depends on 

previous instruction
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Structure Hazards

 Conflict for use of a resource

 In MIPS pipeline with a single memory

 Load/store requires data access

 Instruction fetch would have to stall for that 
cycle

 Would cause a pipeline “bubble”

 Hence, pipelined datapaths require 
separate instruction/data memories

 Or separate instruction/data caches
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Data Hazards

 An instruction depends on completion 
of data access by a previous instruction

 add $s0, $t0, $t1

 sub $t2, $s0, $t3

 Solution

 Stalling

 Forwarding (a.k.a Bypassing)
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Graphically Representing Pipelines

 shading on right half means “READ”

 shading on left half means “WRITE”

 white background means “NOT USED”

 dotted line means always “NO READ”
and “NO WRITE” on ID and WB

Time

add $s0, $t0, $t1
IF MEMEX

2 4 6 8 10

ID WB



109

Stalling

Time 2 4 6 8 10

IF MEMEXID WB

Program
execution

order

add $s0, $t0, $t1

sub $t2, $s0, $t3 IF EXID

bubble bubble bubblebubblebubble

bubble bubble bubblebubble
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Forwarding

Time 2 4 6 8 10

IF MEMEXID WB

Program
execution

order

add $s0, $t0, $t1

sub $t2, $s0, $t3 IF MEMEX WBID
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Load-Use Data Hazard

Time 2 4 6 8 10

IF MEMEXID WB

Program
execution

order

lw $s0, 20($t1)

sub $t2, $s0, $t3 IF MEMEX WBID
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Load-Use Data Hazard

Time 2 4 6 8 10

IF MEMEXID WB

Program
execution

order

IF MEMEX WBID

lw $s0, 20($t1)

sub $t2, $s0, $t3 bubble
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Load-Use Data Hazard

Time 2 4 6 8 10Program
execution

order

lw $s0, 20($t1)

sub $t2, $s0, $t3 MEMEXID

bubble bubble bubble

IF MEMEXID WB

IF IDbubble



Code Scheduling to Avoid Stalls

 Try and avoid stalls!  e.g., reorder these instructions:

lw $t0, 0($t1)

lw $t2, 4($t1)

sw $t2, 0($t1)

sw $t0, 4($t1)

 Add a “branch delay slot”
 the next instruction after a branch is always executed
 rely on compiler to “fill” the slot with something useful

 Superscalar:  start more than one instruction in the 
same cycle
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Code Scheduling to Avoid Stalls

# reg $t1 has the address of v[k]

lw $t0, 0($t1) # reg $t0 (temp) = v[k]

lw $t2, 4($t1) # reg $t2 = v[k+1]

sw $t2, 0($t1) # v[k] = reg $t2

sw $t0, 4($t1) # v[k+1] = reg $t0 (temp)

# reg $t1 has the address of v[k]

lw $t0, 0($t1) # reg $t0 (temp) = v[k]

lw $t2, 4($t1) # reg $t2 = v[k+1]

sw $t0, 4($t1) # v[k+1] = reg $t0 (temp)

sw $t2, 0($t1) # v[k] = reg $t2

reorder



Control Hazards

 Branch determines flow of control
 Fetching next instruction depends on 

branch outcome

 Pipeline cannot always fetch correct 
instruction
 Still working on ID stage of branch

 In MIPS pipeline
 Need to compare registers and compute 

target early in the pipeline

 Add hardware to do it in ID stage

116
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Solutions of Control Hazards

 stall

 certainly works, but is slow

 predict

 does not slow down the pipeline when 
you are correct, otherwise redo

 delayed decision = delayed branch



118

Stall on Branch

instruction
fetch

Reg ALU
Data

access
Reg

Program
execution

order

Time

add $4, $5, $6

beq $1, $2, 40

or $7, $8, $9

200 ps

400 ps

instruction
fetch

Reg ALU
Data

access
Reg

instruction
fetch

Reg ALU

bubble bubble bubble bubble



Branch Prediction

 Longer pipelines cannot readily 
determine branch outcome early

 Stall penalty becomes unacceptable

 Predict outcome of branch

 Only stall if prediction is wrong

 In MIPS pipeline

 Can predict branches not taken

 Fetch instruction after branch, with no delay
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Predict - branch will be untaken
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Reg ALU
Data
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Reg

Program
execution

order

Time
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Predict - failed

instruction
fetch
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Delayed Branch

instruction
fetch
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Time
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Reg ALU
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More-Realistic Branch Prediction

 Static branch prediction
 Based on typical branch behavior
 Example: loop and if-statement branches

 Predict backward branches taken
 Predict forward branches not taken

 Dynamic branch prediction
 Hardware measures actual branch behavior

 e.g., record recent history of each branch

 Assume future behavior will continue the 
trend
 When wrong, stall while re-fetching, and update 

history
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Recall:
Single Cycle Implementation
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Pipelined Datapath

add

4

instruction

instruction
memory

read
address

PC registers

read
register 1

read
register 2

write
register

write
data

read
data 1

read
data 2

ALU

zero

ALU
result

sign
extend

shift
left 2

M
U
X data

memory

read
data

address

write
data

M
U
X

add

M
U
X

IF: instruction fetch ID: instruction decode/
register file read

EX: execute/address
calculation

MEM: memory
access

WB:
write
back

What do we need to add to actually split the datapath into stages?
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Pipeline registers

add

4

instruction

instruction
memory

read
address

PC registers

read
register 1

read
register 2

write
register

write
data

read
data 1

read
data 2

ALU

zero

ALU
result

sign
extend

shift
left 2

M
U
X data

memory

read
data

address

write
data

M
U
X

add

M
U
X

IF/ID ID/EX EX/MEM MEM/WB

Can you find a problem even if there are no dependencies?  
What instructions can we execute to manifest the problem?



Pipeline Operation

 Cycle-by-cycle flow of instructions 
through the pipelined datapath

 “Single-clock-cycle” pipeline diagram

 Shows pipeline usage in a single cycle

 Highlight resources used

 c.f. “multi-clock-cycle” diagram

 Graph of operation over time

 We will look at “single-clock-cycle” 
diagrams for load & store
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Original Pipelined Datapath
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IF for Load, Store, …
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ID for Load, Store, …
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EX for Load
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MEM for Load
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WB for Load

Wrong
register
number
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Corrected Datapath for Load
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EX for Store
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MEM for Store
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WB for Store
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Corrected Datapath
- single-clock-cycle pipeline diagram
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Multi-Cycle Pipeline Diagram

 Can help with answering questions like:
 how many cycles does it take to execute this code?
 what is the ALU doing during cycle 4?
 use this representation to help understand datapaths

Program
execution

order

Time (in clock cycles)

lw $10, 20($1)

sub $11, $2, $3

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6

DMALUIM Reg Reg

DMALUIM Reg Reg



Single-Cycle Pipeline Diagram

 State of pipeline in a given cycle 140
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Pipelined Control
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Pipelined Control

 We have 5 stages.
What needs to be controlled in each stage?
 Instruction Fetch and PC Increment

 Instruction Decode / Register Fetch

 Execution

 Memory Stage

 Write Back

 How would control be handled in an 
automobile plant?
 a fancy control center telling everyone what to do?

 should we use a finite state machine?
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Pipelined Control

 Pass control signals along just like the data

Execution/Address
calculation

stage control lines

Memory access stage
control lines

stage control
lines

Reg
Dst

ALU
Op1

ALU
Op0

ALU
Src

Branch
Mem
Read

Mem
Write

Reg
Write

Memto
Reg

R-format 1 1 0 0 0 0 0 1 0

lw 0 0 0 1 0 1 0 1 1

sw X 0 0 1 0 0 1 0 X

beq X 0 1 0 1 0 0 0 X



Pipelined Control

 Control signals derived from instruction

 As in single-cycle implementation
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WBMcontrol
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Pipelined Control
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Example

 lw $10, 20($1)

 sub $11, $2, $3

 and $12, $4, $5

 or $13, $6, $7

 add $14, $8, $9
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Data Hazards
in ALU Instructions

 Problem with starting next instruction 
before first is finished
 dependencies that “go backward in time” are 

data hazards

 How about the following example?
sub $2, $1, $3
and $12, $2, $5
or $13, $6, $2
add $14, $2, $2
sw $15, 100($2)



157

Dependencies
Time (in clock cycles)

CC 1
10

CC 2
10

CC 3
10

CC 4
10

CC 5
10/-20

CC 6
-20

CC 7
-20

CC 8
-20

CC 9
-20$2

Program
execution

order

sub $2, $1, $3

and $12, $2, $5

or $13, $6, $2

add $14, $2, $2

sw $15, 100($2)

DMIM Reg Reg

DMIM RegReg

DMIM RegReg

DMIM RegReg

IM DMReg Reg
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Stalling

 Have compiler guarantee no hazards
 Where do we insert the “nops” ?

sub $2, $1, $3
nop
nop
and $12, $2, $5
or $13, $6, $2
add $14, $2, $2
sw $15, 100($2)

 Problem:  this really slows us down!
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Forwarding

 Use temporary results, don’t wait for 

them to be written

 register file forwarding to handle 
read/write to same register

 ALU forwarding
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Forwarding
Time (in clock cycles)

CC 1
10
X
X

CC 2
10
X
X

CC 3
10
X
X

CC 4
10
-20
X

CC 5
10/-20

X
-20

CC 6
-20
X
X

CC 7
-20
X
X

CC 8
-20
X
X

CC 9
-20
X
X

$2
EX/MEM

MEM/WB

Program
execution

order

sub $2, $1, $3

and $12, $2, $5

or $13, $6, $2

add $14, $2, $2

sw $15, 100($2)

DMIM Reg Reg

DMIM RegReg

DMIM RegReg

DMIM RegReg

IM DMReg Reg



Forwarding Unit – EX Hazard

 if (EX/MEM.RegWrite
and (EX/MEM.RegisterRd≠0)
and (EX/MEM.RegisterRd=ID/EX.RegisterRs)
then ForwardA=10

 if (EX/MEM.RegWrite
and (EX/MEM.RegisterRd≠0)
and (EX/MEM.RegisterRd=ID/EX.RegisterRt)
then ForwardB=10
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Forwarding Unit – MEM Hazard

 if (MEM/WB.RegWrite
and (MEM/WB.RegisterRd≠0)
and (EX/MEM.RegisterRd≠ID/EX.RegisterRs)
and (MEM/WB.RegisterRd=ID/EX.RegisterRs))
then ForwardA=01

 if (MEM/WB.RegWrite
and (MEM/WB.RegisterRd≠0)
and (EX/MEM.RegisterRd≠ID/EX.RegisterRt)
and (MEM/WB.RegisterRd=ID/EX.RegisterRt))
then ForwardB=01

162



163

Control Values

mux control source explanation

ForwardA=00 ID/EX 1st ALU operand comes from the register file

ForwardA=10 EX/MEM
1st ALU operand is forwarded from the prior 
ALU result

ForwardA=01 MEM/WB
1st ALU operand is forwarded from data 
memory or an earlier ALU result

ForwardB=00 ID/EX 2nd ALU operand comes from the register file

ForwardB=10 EX/MEM
2nd ALU operand is forwarded from the prior 
ALU result

ForwardB=01 MEM/WB
2nd ALU operand is forwarded from data 
memory or an earlier ALU result



Forwarding Paths
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Example

 sub $2, $1, $3

 and $4, $2, $5

 or $4, $4, $2

 add $9, $4, $2
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Can't always forward

 Load word can still cause a hazard:

 an instruction tries to read a register 
following a load instruction that writes to 
the same register.

 Thus, we need a hazard detection 
unit to “stall” the load instruction
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Load-Use Data Hazard
Time (in clock cycles)

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6 CC 7 CC 8 CC 9Program
execution

order

lw $2, 20($1)

and $4, $2, $5

or $8, $2, $6

add $9, $4, $2

slt $1, $6, $7

IM Reg Reg

DMIM Reg

DMIM RegReg

DMIM RegReg

IM

DM

DMReg Reg

Reg
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bubble

Stalling

we can stall the pipeline by keeping an instruction in the same stage

Time (in clock cycles)
CC 1 CC 2 CC 3 CC 4 CC 5 CC 6 CC 7 CC 8 CC 9Program

execution
order

lw $2, 20($1)

and $4, $2, $5

or $8, $2, $6

add $9, $4, $2

slt $1, $6, $7

IM Reg Reg

IM

DM

DMIM RegReg

DMIM RegReg

IM DMReg

DMReg Reg

IM

Reg



Load-Use Hazard Detection

 Stall by letting an instruction that won’t 
write anything go forward

 if (ID/EX.MemRead
and ((ID/EX.RegisterRt=IF/ID.RegisterRs)
or (ID/EX.RegisterRt=IF/ID.RegisterRt)))
then stall the pipeline
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How to Stall the Pipeline

 Force control values in ID/EX register
to 0

 EX, MEM and WB do nop (no-operation)

 Prevent update of PC and IF/ID register

 Using instruction is decoded again

 Following instruction is fetched again

 1-cycle stall allows MEM to read data for lw

 Can subsequently forward to EX stage
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Datapath with Hazard Detection
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Example

 lw $2, 20($1)

 and $4, $2, $5

 or $4, $4, $2

 add $9, $4, $2
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Example

 lw $2, 20($1)

stall

 and $4, $2, $5

 or $4, $4, $2

 add $9, $4, $2
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Stalls and Performance

 Stalls reduce performance

 But are required to get correct results

 Compiler can arrange code to avoid 
hazards and stalls

 Requires knowledge of the pipeline 
structure
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Branch Hazards

 When we decide to branch, other 
instructions are in the pipeline!

 We are predicting “branch not taken”

 need to add hardware for flushing 
instructions if we are wrong
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Example of Branch Hazards

36 sub $10, $4, $8

40 beq $1, $3, 7 # PC-relative

44 and $12, $2, $5 #  branch to

48 or $13, $2, $6 #  40+4+7*4

52 add $14, $4, $2

56 slt $15, $6, $7

…

72 lw $4, 50($7)
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Branch Hazards
Time (in clock cycles)

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6 CC 7 CC 8 CC 9Program
execution

order

40 beq $1, $3, 7

44 and $12, $2, $5

48 or $13, $6, $2

52 add $14, $2, $2

72 lw $4, 50($7)

IM Reg

DMIM

DMIM Reg

DMIM Reg

IM

DM

DMReg Reg

Reg

Reg

Reg

Reg

Reg



Reducing Branch Delay

 Move hardware to determine outcome to 
ID stage
 Target address adder
 Register comparator

 Example: branch taken
36:  sub  $10, $4, $8
40:  beq $1,  $3, 7
44:  and  $12, $2, $5
48:  or   $13, $2, $6
52:  add  $14, $4, $2
56:  slt $15, $6, $7

...
72:  lw $4, 50($7)
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Example: Branch Taken
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Example: Branch Taken
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Data Hazards for Branches

 If a comparison register is a 
destination of 2nd or 3rd preceding 
ALU instruction

 Can resolve using forwarding

…

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

add $4, $5, $6

add $1, $2, $3

beq $1, $4, target
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Data Hazards for Branches

 If a comparison register is a destination 
of preceding ALU instruction or 2nd 
preceding load instruction

 Need 1 stall cycle

beq stalled

IF ID EX MEM WB

IF ID EX MEM WB

IF ID

ID EX MEM WB

add $4, $5, $6

lw  $1, addr

beq $1, $4, target
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Data Hazards for Branches

 If a comparison register is a destination 
of immediately preceding load 
instruction

 Need 2 stall cycles

beq stalled

IF ID EX MEM WB

IF ID

ID

ID EX MEM WB

beq stalled

lw  $1, addr

beq $1, $0, target
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Dynamic Branch Prediction

 In deeper and superscalar pipelines, 
branch penalty is more significant

 Use dynamic prediction
 Branch prediction buffer (aka branch history 

table)
 Indexed by recent branch instruction 

addresses
 Stores outcome (taken/not taken)
 To execute a branch

 Check table, expect the same outcome
 Start fetching from fall-through or target
 If wrong, flush pipeline and flip prediction
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1-Bit Predictor: Shortcoming

 Inner loop branches mispredicted 
twice!

 Mispredict as taken on last iteration of 
inner loop

 Then mispredict as not taken on first 
iteration of inner loop next time around

outer: …
…

inner: …
…
beq …, …, inner
…
beq …, …, outer
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1-Bit Predictor: Shortcoming

Predict not taken

Predict taken

Taken

Taken

Not taken

Not taken
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Loops and Prediction

 Consider a loop branch that branches 
9 times in a row, then is not taken 
once. What is the prediction accuracy 
for this branch, assuming the 
prediction bit for this branch remains 
in the 1-bit prediction buffer?

 Answer: 80%, WHY?



2-Bit Predictor

 Only change prediction on two 
successive mispredictions

198

Predict not taken Predict not taken

Predict taken Predict taken

Taken

Taken

Taken

Taken

Not taken

Not taken

Not taken

Not taken



Calculating the Branch Target

 Even with predictor, still need to 
calculate the target address

 1-cycle penalty for a taken branch

 Branch target buffer

 Cache of target addresses

 Indexed by PC when instruction fetched

 If hit and instruction is branch predicted 
taken, can fetch target immediately
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Scheduling the Branch Delay Slot

add $s1, $s2, $s3
if $s2 = 0 then

if $s2 = 0 then

sub $t4, $t5, $t6
…

add $s1, $s2, $s3
if $s1 = 0 then

add $s1, $s2, $s3
if $s1 = 0 then

add $s1, $s2, $s3
if $s1 = 0 then

sub $t4, $t5, $t6

add $s1, $s2, $s3
if $s1 = 0 then

add $s1, $s2, $s3

sub $t4, $t5, $t6

sub $t4, $t5, $t6

Delay slot

Delay slot

Delay slot

from before from target from fall through
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Comparing Performance
of Several Control Schemes

 assume the operation times:

 memory units: 200ps

 ALU and adders: 100ps

 register file: 50ps

 clock cycle time of
single-cycle datapath

 200+50+100+200+50=600ps
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Comparing Performance
of Several Control Schemes

 the clock cycles of pipelined design:
 loads: 1 or 2

 1 for no load-use dependence
 2 for load-use dependence
 average = 1.5

 stores: 1
 ALU instructions: 1
 branches: 1 or 2

 1 for predicted correctly
 2 for not predicted correctly
 average = 1.25

 jumps: 2

 average CPI of pipelined design
 0.25x1.5+0.1x1+0.52x1+0.11x1.25+0.02x2=1.17

 assume the 
instruction mix:
 loads: 25%
 stores: 10%
 ALU: 52%
 branches: 11%
 jumps: 2%



Comparing Performance
of Several Control Schemes

 average instruction time of

 single-cycle datapath

 600ps

 pipelined design

 200x1.17=234ps
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Exceptions and Interrupts

 “Unexpected” events requiring change
in flow of control
 Different ISAs use the terms differently

 Exception
 Arises within the CPU

 e.g., undefined opcode, overflow, syscall, …

 Interrupt
 From an external I/O controller

 Dealing with them without sacrificing 
performance is hard

206



Handling Exceptions

 In MIPS, exceptions managed by a 
System Control Coprocessor (CP0)

 Save PC of offending (or interrupted) 
instruction
 In MIPS: Exception Program Counter (EPC)

 Save indication of the problem
 In MIPS: Cause register

 We’ll assume 1-bit
 0 for undefined opcode, 1 for overflow

 Jump to handler at 8000 00180
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An Alternate Mechanism

 Vectored Interrupts

 Handler address determined by the cause

 Example:

 Undefined opcode: C000 0000

 Overflow: C000 0020

 …: C000 0040

 Instructions either

 Deal with the interrupt, or

 Jump to real handler
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Handler Actions

 Read cause, and transfer to relevant 
handler

 Determine action required

 If restartable
 Take corrective action

 use EPC to return to program

 Otherwise
 Terminate program

 Report error using EPC, cause, …
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Exceptions in a Pipeline

 Another form of control hazard

 Consider overflow on add in EX stage
 add $1, $2, $1

 Prevent $1 from being clobbered

 Complete previous instructions

 Flush add and subsequent instructions

 Set Cause and EPC register values

 Transfer control to handler

 Similar to mispredicted branch
 Use much of the same hardware
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Pipeline with Exceptions
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Exception Properties

 Restartable exceptions

 Pipeline can flush the instruction

 Handler executes, then returns to the 
instruction

 Refetched and executed from scratch

 PC saved in EPC register

 Identifies causing instruction

 Actually PC + 4 is saved

 Handler must adjust
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Exception Example

 Exception on add in
40 sub  $11, $2, $4

44 and  $12, $2, $5

48 or   $13, $2, $6

4C add  $1,  $2, $1

50 slt $15, $6, $7

54 lw $16, 50($7)

…

 Handler
80000180 sw $25, 1000($0)

80000184 sw $26, 1004($0)

…
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Exception Example
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Exception Example
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Multiple Exceptions

 Pipelining overlaps multiple instructions
 Could have multiple exceptions at once

 Simple approach: deal with exception 
from earliest instruction
 Flush subsequent instructions

 “Precise” exceptions

 In complex pipelines
 Multiple instructions issued per cycle

 Out-of-order completion

 Maintaining precise exceptions is difficult!
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Imprecise Exceptions

 Just stop pipeline and save state
 Including exception cause(s)

 Let the handler work out
 Which instruction(s) had exceptions

 Which to complete or flush
 May require “manual” completion

 Simplifies hardware, but more complex 
handler software

 Not feasible for complex multiple-issue
out-of-order pipelines
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