
Computer
Organization and Structure

Bing-Yu Chen
National Taiwan University

1

The Processor

 Logic Design Conventions

 Building a Datapath

 A Simple Implementation Scheme

 An Overview of Pipelining

 Pipelined Datapath and Control

 Data Hazards: Forwarding vs. Stalls

 Control Hazards

 Exceptions

Instruction Execution

 PC  instruction memory, fetch instruction

 Register numbers  register file, read
registers

 Depending on instruction class

 Use ALU to calculate

 Arithmetic result

 Memory address for load/store

 Branch target address

 Access data memory for load/store

 PC  target address or PC + 4
3

Abstract / Simplified View

 Two types of functional units:
 elements that operate on data values (combinational)
 elements that contain state (sequential)

4

PC address instruction

instruction
memory

data
memory

address

data

registers

data

register #

register #

register #

ALU

Abstract / Simplified View

 Cannot just join wires together

 Use multiplexers

5

PC address instruction

instruction
memory

data
memory

address

data

registers

data

register #

register #

register #

ALU

Recall:
Logic Design Basics

 Information encoded in binary

 Low voltage = 0, High voltage = 1

 One wire per bit

 Multi-bit data encoded on multi-wire buses

 Combinational element

 Operate on data

 Output is a function of input

 State (sequential) elements

 Store information

6

Recall:
Combinational Elements

 AND-gate

 Y = A & B

 Multiplexer

 Y = S ? I1 : I0

 Adder

 Y = A + B

 ALU

 Y = F(A, B)

A

B
Y

I0

I1
Y

M
u
x

S

A

B

Y+

A

B

YALU

F
7

Sequential Elements

 Register: stores data in a circuit

 Uses a clock signal to determine when to
update the stored value

 Edge-triggered: update when Clk
changes from 0 to 1

D

Clk

Q

Clk

D

Q

8

Sequential Elements

 Register with write control

 Only updates on clock edge when write
control input is 1

 Used when stored value is required later

D

Clk

Q

Write

Write

D

Q

Clk

9

 Combinational logic transforms data
during clock cycles

 Between clock edges

 Input from state elements, output to
state element

 Longest delay determines clock period

Clocking Methodology

state
element

1

state
element

2

combinational
logic

clock cycle

combinational
logic

state
element

10

Register File

 built using D flip-flops

11

register file

read
data 1

read
data 2write

data

read register
number 1

read register
number 2

write
register

write

12

Register File

M
U
X

register n-1

register n-2

register 0

register 1

…

M
U
X

read register
number 1

read register
number 2

read data1

read data2

Register File

 Note: we still use the real clock to determine when to write

13

register 0
C

D

register 1

…

register n-2

register n-1

C

D

C

D

C

D

n-to-2n

decoder

0

1

n

n-1

write

register
number

register
data

Instruction Fetch

14

add

sumPCinstruction

instruction
memory

instruction
address

Instruction Fetch

15

add

sum

4

instruction

instruction
memory

instruction
address

PC

R-Format Instructions

16

registers

read
register 1

read
register 2

write
register

write
data

read
data 1

read
data 2

5

5

5

RegWrite

ALU

zero

ALU
result

4 ALU operation

R-Format Instructions

17

registers

read
register 1

read
register 2

write
register

write
data

read
data 1

read
data 2

RegWrite

ALU

zero

ALU
result

4 ALU operation

instruction

Load/Store Instructions

18

data
memory

read
data

address

write
data

MemRead

MemWrite

sign
extend

3216

Load/Store Instructions

19

registers

read
register 1

read
register 2

write
register

write
data

read
data 1

read
data 2

RegWrite

ALU

zero

ALU
result

4 ALU operation

instruction

data
memory

read
data

address

write
data

MemRead

MemWrite

sign
extend

3216

Branch Instructions

20

registers

read
register 1

read
register 2

write
register

write
data

read
data 1

read
data 2

RegWrite

ALU

zero

4 ALU operation

instruction

sign
extend

3216

add

sum

PC+4

shift
left 2

branch
control logic

branch
target

Composing the Elements

 First-cut data path does an
instruction in one clock cycle

 Each datapath element can only do one
function at a time

 Hence, we need separate instruction and
data memories

 Use multiplexers where alternate data
sources are used for different
instructions

21

22

Building the Datapath

registers

read
register 1

read
register 2

write
register

write
data

read
data 1

read
data 2

RegWrite

ALU

zero

ALU
result

ALU operation

instruction

23

Building the Datapath

registers

read
register 1

read
register 2

write
register

write
data

read
data 1

read
data 2

RegWrite

ALU

zero

ALU
result

ALU operation

sign
extend

M
U
X data

memory

read
data

address

write
data

MemRead

MemWrite

M
U
X

MemtoReg

ALUSrc

instruction

24

Building the Datapath

add

4

instruction

instruction
memory

read
address

PC

registers

read
register 1

read
register 2

write
register

write
data

read
data 1

read
data 2

RegWrite

ALU

zero

ALU
result

ALU operation

sign
extend

M
U
X data

memory

read
data

address

write
data

MemRead

MemWrite

M
U
X

MemtoReg

ALUSrc

25

Building the Datapath

add

4

instruction

instruction
memory

read
address

PC

registers

read
register 1

read
register 2

write
register

write
data

read
data 1

read
data 2

RegWrite

ALU

zero

ALU
result

ALU operation

sign
extend

shift
left 2

M
U
X data

memory

read
data

address

write
data

MemRead

MemWrite

M
U
X

add

M
U
X

MemtoReg

ALUSrc

PCSrc

26

Building the Datapath

add

4

instruction

instruction
memory

read
address

PC

registers

read
register 1

read
register 2

write
register

write
data

read
data 1

read
data 2

RegWrite

ALU

zero

ALU
result

ALU operation

sign
extend

shift
left 2

M
U
X data

memory

read
data

address

write
data

MemRead

MemWrite

M
U
X

add

M
U
X

MemtoReg

ALUSrc

PCSrc

Control

 Selecting the operations to perform (ALU, r/w)
 Controlling the flow of data (multiplexor inputs)
 Information comes from the 32 bits of instruction

add $8, $17, $18

 ALU's operation based on instruction type and
function code

27

000000 10001 10010 01000 00000 100000

op rs rt rd shamt funct

28

ALU Control

 what should the ALU do with this instruction

lw $1, 100($2)

 ALU control input
0000 AND

0001 OR

0010 add

0110 subtract

0111 set-on-less-than

1100 NOR

 why is the code for subtract 110 and not 011?

35 2 1 100

op rs rt 16 bit number

29

ALU Control

 must describe hardware to compute
4-bit ALU control input

 given instruction type
00 = lw, sw
01 = beq,
10 = arithmetic

 function code for arithmetic

 describe it using a truth table (can
turn into gates):

ALUOp
computed from
instruction type

30

ALU Control

instruction
opcode

ALUOp Funct
field

desired
ALU action

ALU control
input

LW 00 XXXXXX add 0010

SW 00 XXXXXX add 0010

Branch equal 01 XXXXXX subtract 0110

R-type 10 100000 add 0010

R-type 10 100010 subtract 0110

R-type 10 100100 and 0000

R-type 10 100101 or 0001

R-type 10 101010 set on less than 0111

31

ALU Control

ALUOp Funct field operation

ALUOp1 ALUOp2 F5 F4 F3 F2 F1 F0

0 0 X X X X X X 0010

X 1 X X X X X X 0110

1 X X X 0 0 0 0 0010

1 X X X 0 0 1 0 0110

1 X X X 0 1 0 0 0000

1 X X X 0 1 0 1 0001

1 X X X 1 0 1 0 0111

The Main Control Unit

 Control signals derived from instruction

0 rs rt rd shamt funct

31:26 5:025:21 20:16 15:11 10:6

35 or 43 rs rt address

31:26 25:21 20:16 15:0

4 rs rt address

31:26 25:21 20:16 15:0

R-type

Load/
Store

Branch

opcode always
read

read,
except
for load

write for
R-type

and load

sign-
extend
and add

32

Building the Control

33

registers

read
register 1

read
register 2

write
register

write
data

read
data 1

read
data 2

instruction

sign
extend

3216

M
U
X

ALU
control

[31-0]

[25-21]

[20-16]

[15-11]

[15-0]

[5-0]

Datapath With Control

34

R-Type Instruction

35

Load Instruction

36

Branch-on-Equal Instruction

37

Implementing Jumps

38

op addressJ

31-26 25-0

shift
left 2

26 28

instruction [25-0]

PC+4[31-28]

jump address[31-0]

Datapath With Jumps Added

39

40

Control

instruc-
tion

Reg
Dst

ALU
Src

Mem
to

Reg

Reg
Write

Mem
Read

Mem
Write

Branch ALU
Op1

ALU
Op2

R-format 1 0 0 1 0 0 0 1 0

lw 0 1 1 1 1 0 0 0 0

sw X 1 X 0 0 1 0 0 0

beq X 0 X 0 0 0 1 0 1

41

Control
signal R-format lw sw beq

inputs Op5 0 1 1 0

Op4 0 0 0 0

Op3 0 0 1 0

Op2 0 0 0 1

Op1 0 1 1 0

Op0 0 1 1 0

outputs RegDst 1 0 X X

ALUSrc 0 1 1 0

MemtoReg 0 1 X X

RegWrite 1 1 0 0

MemRead 0 1 0 0

MemWrite 0 0 1 0

Branch 0 0 0 1

ALUOp1 1 0 0 0

ALUOp0 0 0 0 1

 Simple combinational logic (truth tables)

Control

Operation 1

Operation 2

Operation 3

Operation

ALUOp1

F3

F2

F1

F0

F (5-0)

ALUOp0

ALUOp

ALU control block

R-format t Iw sw beq

Op0

Op1

Op2

Op3

Op4

Op5

Inputs

Outputs

RegDst

ALUSrc

MemtoReg

RegWrite

MemRead

MemWrite

Branch

ALUOp1

ALUOp2

42

Performance Issues

 Longest delay determines clock period

 Critical path: load instruction

 Instruction memory  register file  ALU 
data memory  register file

 Not feasible to vary period for different
instructions

 Violates design principle

 Making the common case fast

 We will improve performance by pipelining

90

Performance of
Single-Cycle Machines

Instruction
class

Instruction
fetch

Register
read

ALU
operation

Data
access

Register
write

Total
time

Load word
(lw)

200 ps 100 ps 200 ps 200 ps 100 ps 800 ps

Store Word
(sw)

200 ps 100 ps 200 ps 200 ps 700 ps

R-format
(add,sub,and,or,slt)

200 ps 100 ps 200 ps 100 ps 600 ps

Branch
(beq)

200 ps 100 ps 200 ps 500 ps

91

Pipelining Analogy

 Pipelined laundry: overlapping execution
 Parallelism improves performance

 Four loads:
 Speedup

= 8/3.5 = 2.3

 Non-stop:
 Speedup

= 2n/(0.5n+1.5) ≈ 4
= number of stages

92

MIPS Pipeline

 Five stages, one step per stage

1. IF: Instruction fetch from memory

2. ID: Instruction decode & register read

3. EX: Execute operation or calculate
address

4. MEM: Access memory operand

5. WB: Write result back to register

93

94

Recall:
Single Cycle Implementation

add

4

instruction

instruction
memory

read
address

PC

registers

read
register 1

read
register 2

write
register

write
data

read
data 1

read
data 2

ALU

zero

ALU
result

sign
extend

shift
left 2

M
U
X data

memory

read
data

address

write
data

M
U
X

add

M
U
X

95

Toward Pipeline Implementation

add

4

instruction

instruction
memory

read
address

PC

registers

read
register 1

read
register 2

write
register

write
data

read
data 1

read
data 2

ALU

zero

ALU
result

sign
extend

shift
left 2

M
U
X data

memory

read
data

address

write
data

M
U
X

add

M
U
X

A

B
ALU
Out

memory
data

register

instruction
register

96

Step 1:
Instruction Fetch

 use PC to get instruction and put it in the Instruction
Register.

 increment the PC by 4 and put the result back in the
PC.

 can be described succinctly using RTL "Register-
Transfer Language"

IR = Memory[PC];
PC = PC + 4;

Can we figure out the values of the control signals?
What is the advantage of updating the PC now?

97

Step 2:
Instruction Decode & Register Fetch

 read registers rs and rt in case we need them

 compute the branch address in case the instruction is
a branch

 RTL:

A = Reg[IR[25-21]];
B = Reg[IR[20-16]];
ALUOut = PC + (sign-extend(IR[15-0]) << 2);

 We aren't setting any control lines based on the
instruction type

 we are busy "decoding" it in our control logic

98

Step 3: Execution Step
(instruction dependent)

 ALU is performing one of three functions, based on
instruction type

 Memory Reference:
ALUOut = A + sign-extend(IR[15-0]);

 R-type:
ALUOut = A op B;

 Branch:
if (A==B) PC = ALUOut;

 Jump:
PC = PC[31-28] || (IR[25-0] << 2)

99

Step 4:
Memory-Access

 Loads and stores access memory

MDR = Memory[ALUOut];
or

Memory[ALUOut] = B;

100

Step 5: Write-back Step
(R-Type or Loads)

 Loads access memory

Reg[IR[20-16]]= MDR;

 R-type instructions finish

Reg[IR[15-11]] = ALUOut;

101

Summary

step R-type
memory

reference
branch jump

1
IR=Memory[PC]

PC=PC+4

2
A=Reg[IR[25-21]]
B=Reg[IR[20-16]]

ALUOut=PC+(sign-extend(IR[15-0])<<2)

3 ALUOut=A op B
ALUOut=A+sign-extend

(IR[15-0])
if (A==B)

PC=ALUOut
PC=PC[31-28]||
(IR[25-0]<<2)

4
lw:MDR=Memory[ALUOut]

or
sw:Memory[ALUOut]=B

5
Reg[IR[15-11]]=

ALUOut
lw:Reg[IR[20-16]]=MDR

Non-Pipelining

 Improve performance by increasing
instruction throughput

 Ideal speedup is number of stages in the
pipeline.

 Do we achieve this?

102

instruction
fetch

Reg ALU
Data

access
Reg

Program
execution

order

Time

lw $1, 100($0)

lw $2, 200($0)

lw $3, 300($0)

800 ps

800 ps

instruction
fetch

Reg ALU

103

Pipelining

instruction
fetch

Reg ALU
Data

access
Reg

Program
execution

order

Time

lw $1, 100($0)

lw $2, 200($0)

lw $3, 300($0)

200 ps

200 ps

instruction
fetch

Reg ALU
Data

access
Reg

instruction
fetch

Reg ALU
Data

access
Reg

200 ps 200 ps 200 ps 200 ps200 ps

Pipeline Speedup

 If all stages are balanced

 i.e., all take the same time

 Time between instructionspipelined

= Time between instructionsnonpipelined

Number of stages

 If not balanced, speedup is less

 Speedup due to increased throughput

 Latency (time for each instruction) does
not decrease

104

Hazards

 Situations that prevent starting the next
instruction in the next cycle

 Structure hazards
 A required resource is busy

 Data hazard
 Need to wait for previous instruction to

complete its data read/write

 Control hazard
 Deciding on control action depends on

previous instruction

105

Structure Hazards

 Conflict for use of a resource

 In MIPS pipeline with a single memory

 Load/store requires data access

 Instruction fetch would have to stall for that
cycle

 Would cause a pipeline “bubble”

 Hence, pipelined datapaths require
separate instruction/data memories

 Or separate instruction/data caches

106

107

Data Hazards

 An instruction depends on completion
of data access by a previous instruction

 add $s0, $t0, $t1

 sub $t2, $s0, $t3

 Solution

 Stalling

 Forwarding (a.k.a Bypassing)

108

Graphically Representing Pipelines

 shading on right half means “READ”

 shading on left half means “WRITE”

 white background means “NOT USED”

 dotted line means always “NO READ”
and “NO WRITE” on ID and WB

Time

add $s0, $t0, $t1
IF MEMEX

2 4 6 8 10

ID WB

109

Stalling

Time 2 4 6 8 10

IF MEMEXID WB

Program
execution

order

add $s0, $t0, $t1

sub $t2, $s0, $t3 IF EXID

bubble bubble bubblebubblebubble

bubble bubble bubblebubble

110

Forwarding

Time 2 4 6 8 10

IF MEMEXID WB

Program
execution

order

add $s0, $t0, $t1

sub $t2, $s0, $t3 IF MEMEX WBID

111

Load-Use Data Hazard

Time 2 4 6 8 10

IF MEMEXID WB

Program
execution

order

lw $s0, 20($t1)

sub $t2, $s0, $t3 IF MEMEX WBID

112

Load-Use Data Hazard

Time 2 4 6 8 10

IF MEMEXID WB

Program
execution

order

IF MEMEX WBID

lw $s0, 20($t1)

sub $t2, $s0, $t3 bubble

113

Load-Use Data Hazard

Time 2 4 6 8 10Program
execution

order

lw $s0, 20($t1)

sub $t2, $s0, $t3 MEMEXID

bubble bubble bubble

IF MEMEXID WB

IF IDbubble

Code Scheduling to Avoid Stalls

 Try and avoid stalls! e.g., reorder these instructions:

lw $t0, 0($t1)

lw $t2, 4($t1)

sw $t2, 0($t1)

sw $t0, 4($t1)

 Add a “branch delay slot”
 the next instruction after a branch is always executed
 rely on compiler to “fill” the slot with something useful

 Superscalar: start more than one instruction in the
same cycle

114

115

Code Scheduling to Avoid Stalls

reg $t1 has the address of v[k]

lw $t0, 0($t1) # reg $t0 (temp) = v[k]

lw $t2, 4($t1) # reg $t2 = v[k+1]

sw $t2, 0($t1) # v[k] = reg $t2

sw $t0, 4($t1) # v[k+1] = reg $t0 (temp)

reg $t1 has the address of v[k]

lw $t0, 0($t1) # reg $t0 (temp) = v[k]

lw $t2, 4($t1) # reg $t2 = v[k+1]

sw $t0, 4($t1) # v[k+1] = reg $t0 (temp)

sw $t2, 0($t1) # v[k] = reg $t2

reorder

Control Hazards

 Branch determines flow of control
 Fetching next instruction depends on

branch outcome

 Pipeline cannot always fetch correct
instruction
 Still working on ID stage of branch

 In MIPS pipeline
 Need to compare registers and compute

target early in the pipeline

 Add hardware to do it in ID stage

116

117

Solutions of Control Hazards

 stall

 certainly works, but is slow

 predict

 does not slow down the pipeline when
you are correct, otherwise redo

 delayed decision = delayed branch

118

Stall on Branch

instruction
fetch

Reg ALU
Data

access
Reg

Program
execution

order

Time

add $4, $5, $6

beq $1, $2, 40

or $7, $8, $9

200 ps

400 ps

instruction
fetch

Reg ALU
Data

access
Reg

instruction
fetch

Reg ALU

bubble bubble bubble bubble

Branch Prediction

 Longer pipelines cannot readily
determine branch outcome early

 Stall penalty becomes unacceptable

 Predict outcome of branch

 Only stall if prediction is wrong

 In MIPS pipeline

 Can predict branches not taken

 Fetch instruction after branch, with no delay

119

120

Predict - branch will be untaken

instruction
fetch

Reg ALU
Data

access
Reg

Program
execution

order

Time

add $4, $5, $6

beq $1, $2, 40

lw $3, 300($0)

200 ps

200 ps

instruction
fetch

Reg ALU
Data

access
Reg

instruction
fetch

Reg ALU
Data

access
Reg

121

Predict - failed

instruction
fetch

Reg ALU
Data

access
Reg

Program
execution

order

Time

add $4, $5, $6

beq $1, $2, 40
200 ps

400 ps

instruction
fetch

Reg ALU
Data

access
Reg

instruction
fetch

Reg ALU

bubble bubble bubble bubble

or $7, $8, $9

122

Delayed Branch

instruction
fetch

Reg ALU
Data

access
Reg

Program
execution

order

Time

beq $1, $2, 40

add $4, $5, $6

or $7, $8, $9

200 ps

200 ps

instruction
fetch

Reg ALU
Data

access
Reg

instruction
fetch

Reg ALU
Data

access
Reg

delayed branch slot

More-Realistic Branch Prediction

 Static branch prediction
 Based on typical branch behavior
 Example: loop and if-statement branches

 Predict backward branches taken
 Predict forward branches not taken

 Dynamic branch prediction
 Hardware measures actual branch behavior

 e.g., record recent history of each branch

 Assume future behavior will continue the
trend
 When wrong, stall while re-fetching, and update

history

123

124

Recall:
Single Cycle Implementation

add

4

instruction

instruction
memory

read
address

PC

registers

read
register 1

read
register 2

write
register

write
data

read
data 1

read
data 2

ALU

zero

ALU
result

sign
extend

shift
left 2

M
U
X data

memory

read
data

address

write
data

M
U
X

add

M
U
X

125

Pipelined Datapath

add

4

instruction

instruction
memory

read
address

PC registers

read
register 1

read
register 2

write
register

write
data

read
data 1

read
data 2

ALU

zero

ALU
result

sign
extend

shift
left 2

M
U
X data

memory

read
data

address

write
data

M
U
X

add

M
U
X

IF: instruction fetch ID: instruction decode/
register file read

EX: execute/address
calculation

MEM: memory
access

WB:
write
back

What do we need to add to actually split the datapath into stages?

126

Pipeline registers

add

4

instruction

instruction
memory

read
address

PC registers

read
register 1

read
register 2

write
register

write
data

read
data 1

read
data 2

ALU

zero

ALU
result

sign
extend

shift
left 2

M
U
X data

memory

read
data

address

write
data

M
U
X

add

M
U
X

IF/ID ID/EX EX/MEM MEM/WB

Can you find a problem even if there are no dependencies?
What instructions can we execute to manifest the problem?

Pipeline Operation

 Cycle-by-cycle flow of instructions
through the pipelined datapath

 “Single-clock-cycle” pipeline diagram

 Shows pipeline usage in a single cycle

 Highlight resources used

 c.f. “multi-clock-cycle” diagram

 Graph of operation over time

 We will look at “single-clock-cycle”
diagrams for load & store

127

Original Pipelined Datapath

128

IF for Load, Store, …

129

ID for Load, Store, …

130

EX for Load

131

MEM for Load

132

WB for Load

Wrong
register
number

133

Corrected Datapath for Load

134

EX for Store

135

MEM for Store

136

WB for Store

137

138

Corrected Datapath
- single-clock-cycle pipeline diagram

add

4

instruction

instruction
memory

read
address

PC registers

read
register 1

read
register 2

write
register

write
data

read
data 1

read
data 2

ALU

zero

ALU
result

sign
extend

shift
left 2

M
U
X data

memory

read
data

address

write
data

M
U
X

add

M
U
X

IF/ID ID/EX EX/MEM MEM/WB

139

Multi-Cycle Pipeline Diagram

 Can help with answering questions like:
 how many cycles does it take to execute this code?
 what is the ALU doing during cycle 4?
 use this representation to help understand datapaths

Program
execution

order

Time (in clock cycles)

lw $10, 20($1)

sub $11, $2, $3

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6

DMALUIM Reg Reg

DMALUIM Reg Reg

Single-Cycle Pipeline Diagram

 State of pipeline in a given cycle 140

141

Pipelined Control

add

4

instruction

instruction
memory

read
address

PC registers

read
register 1

read
register 2

write
register

write
data

read
data 1

read
data 2

ALU

zero

ALU
result

sign
extend

shift
left 2

M
U
X data

memory

read
data

address

write
data

M
U
X

add

M
U
X

IF/ID ID/EX EX/MEM MEM/WB

RegWrite

ALUSrc

PCSrc

MemWrite

MemRead

MemtoReg

Branch

ALU
Control

ALUOp

M
U
X

RegDst

142

Pipelined Control

 We have 5 stages.
What needs to be controlled in each stage?
 Instruction Fetch and PC Increment

 Instruction Decode / Register Fetch

 Execution

 Memory Stage

 Write Back

 How would control be handled in an
automobile plant?
 a fancy control center telling everyone what to do?

 should we use a finite state machine?

143

Pipelined Control

 Pass control signals along just like the data

Execution/Address
calculation

stage control lines

Memory access stage
control lines

stage control
lines

Reg
Dst

ALU
Op1

ALU
Op0

ALU
Src

Branch
Mem
Read

Mem
Write

Reg
Write

Memto
Reg

R-format 1 1 0 0 0 0 0 1 0

lw 0 0 0 1 0 1 0 1 1

sw X 0 0 1 0 0 1 0 X

beq X 0 1 0 1 0 0 0 X

Pipelined Control

 Control signals derived from instruction

 As in single-cycle implementation

144

IF/ID ID/EX EX/MEM MEM/WB

EX WB

WB

M

WBMcontrol
instruction

Pipelined Control

145

146

Example

 lw $10, 20($1)

 sub $11, $2, $3

 and $12, $4, $5

 or $13, $6, $7

 add $14, $8, $9

147

148

149

150

151

152

153

154

155

156

Data Hazards
in ALU Instructions

 Problem with starting next instruction
before first is finished
 dependencies that “go backward in time” are

data hazards

 How about the following example?
sub $2, $1, $3
and $12, $2, $5
or $13, $6, $2
add $14, $2, $2
sw $15, 100($2)

157

Dependencies
Time (in clock cycles)

CC 1
10

CC 2
10

CC 3
10

CC 4
10

CC 5
10/-20

CC 6
-20

CC 7
-20

CC 8
-20

CC 9
-20$2

Program
execution

order

sub $2, $1, $3

and $12, $2, $5

or $13, $6, $2

add $14, $2, $2

sw $15, 100($2)

DMIM Reg Reg

DMIM RegReg

DMIM RegReg

DMIM RegReg

IM DMReg Reg

158

Stalling

 Have compiler guarantee no hazards
 Where do we insert the “nops” ?

sub $2, $1, $3
nop
nop
and $12, $2, $5
or $13, $6, $2
add $14, $2, $2
sw $15, 100($2)

 Problem: this really slows us down!

159

Forwarding

 Use temporary results, don’t wait for

them to be written

 register file forwarding to handle
read/write to same register

 ALU forwarding

160

Forwarding
Time (in clock cycles)

CC 1
10
X
X

CC 2
10
X
X

CC 3
10
X
X

CC 4
10
-20
X

CC 5
10/-20

X
-20

CC 6
-20
X
X

CC 7
-20
X
X

CC 8
-20
X
X

CC 9
-20
X
X

$2
EX/MEM

MEM/WB

Program
execution

order

sub $2, $1, $3

and $12, $2, $5

or $13, $6, $2

add $14, $2, $2

sw $15, 100($2)

DMIM Reg Reg

DMIM RegReg

DMIM RegReg

DMIM RegReg

IM DMReg Reg

Forwarding Unit – EX Hazard

 if (EX/MEM.RegWrite
and (EX/MEM.RegisterRd≠0)
and (EX/MEM.RegisterRd=ID/EX.RegisterRs)
then ForwardA=10

 if (EX/MEM.RegWrite
and (EX/MEM.RegisterRd≠0)
and (EX/MEM.RegisterRd=ID/EX.RegisterRt)
then ForwardB=10

161

Forwarding Unit – MEM Hazard

 if (MEM/WB.RegWrite
and (MEM/WB.RegisterRd≠0)
and (EX/MEM.RegisterRd≠ID/EX.RegisterRs)
and (MEM/WB.RegisterRd=ID/EX.RegisterRs))
then ForwardA=01

 if (MEM/WB.RegWrite
and (MEM/WB.RegisterRd≠0)
and (EX/MEM.RegisterRd≠ID/EX.RegisterRt)
and (MEM/WB.RegisterRd=ID/EX.RegisterRt))
then ForwardB=01

162

163

Control Values

mux control source explanation

ForwardA=00 ID/EX 1st ALU operand comes from the register file

ForwardA=10 EX/MEM
1st ALU operand is forwarded from the prior
ALU result

ForwardA=01 MEM/WB
1st ALU operand is forwarded from data
memory or an earlier ALU result

ForwardB=00 ID/EX 2nd ALU operand comes from the register file

ForwardB=10 EX/MEM
2nd ALU operand is forwarded from the prior
ALU result

ForwardB=01 MEM/WB
2nd ALU operand is forwarded from data
memory or an earlier ALU result

Forwarding Paths

164

165

Example

 sub $2, $1, $3

 and $4, $2, $5

 or $4, $4, $2

 add $9, $4, $2

166

167

168

169

170

Can't always forward

 Load word can still cause a hazard:

 an instruction tries to read a register
following a load instruction that writes to
the same register.

 Thus, we need a hazard detection
unit to “stall” the load instruction

171

Load-Use Data Hazard
Time (in clock cycles)

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6 CC 7 CC 8 CC 9Program
execution

order

lw $2, 20($1)

and $4, $2, $5

or $8, $2, $6

add $9, $4, $2

slt $1, $6, $7

IM Reg Reg

DMIM Reg

DMIM RegReg

DMIM RegReg

IM

DM

DMReg Reg

Reg

172

bubble

Stalling

we can stall the pipeline by keeping an instruction in the same stage

Time (in clock cycles)
CC 1 CC 2 CC 3 CC 4 CC 5 CC 6 CC 7 CC 8 CC 9Program

execution
order

lw $2, 20($1)

and $4, $2, $5

or $8, $2, $6

add $9, $4, $2

slt $1, $6, $7

IM Reg Reg

IM

DM

DMIM RegReg

DMIM RegReg

IM DMReg

DMReg Reg

IM

Reg

Load-Use Hazard Detection

 Stall by letting an instruction that won’t
write anything go forward

 if (ID/EX.MemRead
and ((ID/EX.RegisterRt=IF/ID.RegisterRs)
or (ID/EX.RegisterRt=IF/ID.RegisterRt)))
then stall the pipeline

173

How to Stall the Pipeline

 Force control values in ID/EX register
to 0

 EX, MEM and WB do nop (no-operation)

 Prevent update of PC and IF/ID register

 Using instruction is decoded again

 Following instruction is fetched again

 1-cycle stall allows MEM to read data for lw

 Can subsequently forward to EX stage

174

Datapath with Hazard Detection

175

176

Example

 lw $2, 20($1)

 and $4, $2, $5

 or $4, $4, $2

 add $9, $4, $2

177

Example

 lw $2, 20($1)

stall

 and $4, $2, $5

 or $4, $4, $2

 add $9, $4, $2

178

179

180

181

182

183

Stalls and Performance

 Stalls reduce performance

 But are required to get correct results

 Compiler can arrange code to avoid
hazards and stalls

 Requires knowledge of the pipeline
structure

184

185

Branch Hazards

 When we decide to branch, other
instructions are in the pipeline!

 We are predicting “branch not taken”

 need to add hardware for flushing
instructions if we are wrong

186

Example of Branch Hazards

36 sub $10, $4, $8

40 beq $1, $3, 7 # PC-relative

44 and $12, $2, $5 # branch to

48 or $13, $2, $6 # 40+4+7*4

52 add $14, $4, $2

56 slt $15, $6, $7

…

72 lw $4, 50($7)

187

Branch Hazards
Time (in clock cycles)

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6 CC 7 CC 8 CC 9Program
execution

order

40 beq $1, $3, 7

44 and $12, $2, $5

48 or $13, $6, $2

52 add $14, $2, $2

72 lw $4, 50($7)

IM Reg

DMIM

DMIM Reg

DMIM Reg

IM

DM

DMReg Reg

Reg

Reg

Reg

Reg

Reg

Reducing Branch Delay

 Move hardware to determine outcome to
ID stage
 Target address adder
 Register comparator

 Example: branch taken
36: sub $10, $4, $8
40: beq $1, $3, 7
44: and $12, $2, $5
48: or $13, $2, $6
52: add $14, $4, $2
56: slt $15, $6, $7

...
72: lw $4, 50($7)

188

Example: Branch Taken

189

Example: Branch Taken

190

Data Hazards for Branches

 If a comparison register is a
destination of 2nd or 3rd preceding
ALU instruction

 Can resolve using forwarding

…

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

add $4, $5, $6

add $1, $2, $3

beq $1, $4, target

191

Data Hazards for Branches

 If a comparison register is a destination
of preceding ALU instruction or 2nd
preceding load instruction

 Need 1 stall cycle

beq stalled

IF ID EX MEM WB

IF ID EX MEM WB

IF ID

ID EX MEM WB

add $4, $5, $6

lw $1, addr

beq $1, $4, target

192

Data Hazards for Branches

 If a comparison register is a destination
of immediately preceding load
instruction

 Need 2 stall cycles

beq stalled

IF ID EX MEM WB

IF ID

ID

ID EX MEM WB

beq stalled

lw $1, addr

beq $1, $0, target

193

Dynamic Branch Prediction

 In deeper and superscalar pipelines,
branch penalty is more significant

 Use dynamic prediction
 Branch prediction buffer (aka branch history

table)
 Indexed by recent branch instruction

addresses
 Stores outcome (taken/not taken)
 To execute a branch

 Check table, expect the same outcome
 Start fetching from fall-through or target
 If wrong, flush pipeline and flip prediction

194

1-Bit Predictor: Shortcoming

 Inner loop branches mispredicted
twice!

 Mispredict as taken on last iteration of
inner loop

 Then mispredict as not taken on first
iteration of inner loop next time around

outer: …
…

inner: …
…
beq …, …, inner
…
beq …, …, outer

195

196

1-Bit Predictor: Shortcoming

Predict not taken

Predict taken

Taken

Taken

Not taken

Not taken

197

Loops and Prediction

 Consider a loop branch that branches
9 times in a row, then is not taken
once. What is the prediction accuracy
for this branch, assuming the
prediction bit for this branch remains
in the 1-bit prediction buffer?

 Answer: 80%, WHY?

2-Bit Predictor

 Only change prediction on two
successive mispredictions

198

Predict not taken Predict not taken

Predict taken Predict taken

Taken

Taken

Taken

Taken

Not taken

Not taken

Not taken

Not taken

Calculating the Branch Target

 Even with predictor, still need to
calculate the target address

 1-cycle penalty for a taken branch

 Branch target buffer

 Cache of target addresses

 Indexed by PC when instruction fetched

 If hit and instruction is branch predicted
taken, can fetch target immediately

199

200

Scheduling the Branch Delay Slot

add $s1, $s2, $s3
if $s2 = 0 then

if $s2 = 0 then

sub $t4, $t5, $t6
…

add $s1, $s2, $s3
if $s1 = 0 then

add $s1, $s2, $s3
if $s1 = 0 then

add $s1, $s2, $s3
if $s1 = 0 then

sub $t4, $t5, $t6

add $s1, $s2, $s3
if $s1 = 0 then

add $s1, $s2, $s3

sub $t4, $t5, $t6

sub $t4, $t5, $t6

Delay slot

Delay slot

Delay slot

from before from target from fall through

201

Comparing Performance
of Several Control Schemes

 assume the operation times:

 memory units: 200ps

 ALU and adders: 100ps

 register file: 50ps

 clock cycle time of
single-cycle datapath

 200+50+100+200+50=600ps

203

Comparing Performance
of Several Control Schemes

 the clock cycles of pipelined design:
 loads: 1 or 2

 1 for no load-use dependence
 2 for load-use dependence
 average = 1.5

 stores: 1
 ALU instructions: 1
 branches: 1 or 2

 1 for predicted correctly
 2 for not predicted correctly
 average = 1.25

 jumps: 2

 average CPI of pipelined design
 0.25x1.5+0.1x1+0.52x1+0.11x1.25+0.02x2=1.17

 assume the
instruction mix:
 loads: 25%
 stores: 10%
 ALU: 52%
 branches: 11%
 jumps: 2%

Comparing Performance
of Several Control Schemes

 average instruction time of

 single-cycle datapath

 600ps

 pipelined design

 200x1.17=234ps

205

Exceptions and Interrupts

 “Unexpected” events requiring change
in flow of control
 Different ISAs use the terms differently

 Exception
 Arises within the CPU

 e.g., undefined opcode, overflow, syscall, …

 Interrupt
 From an external I/O controller

 Dealing with them without sacrificing
performance is hard

206

Handling Exceptions

 In MIPS, exceptions managed by a
System Control Coprocessor (CP0)

 Save PC of offending (or interrupted)
instruction
 In MIPS: Exception Program Counter (EPC)

 Save indication of the problem
 In MIPS: Cause register

 We’ll assume 1-bit
 0 for undefined opcode, 1 for overflow

 Jump to handler at 8000 00180

207

An Alternate Mechanism

 Vectored Interrupts

 Handler address determined by the cause

 Example:

 Undefined opcode: C000 0000

 Overflow: C000 0020

 …: C000 0040

 Instructions either

 Deal with the interrupt, or

 Jump to real handler

208

Handler Actions

 Read cause, and transfer to relevant
handler

 Determine action required

 If restartable
 Take corrective action

 use EPC to return to program

 Otherwise
 Terminate program

 Report error using EPC, cause, …

209

Exceptions in a Pipeline

 Another form of control hazard

 Consider overflow on add in EX stage
 add $1, $2, $1

 Prevent $1 from being clobbered

 Complete previous instructions

 Flush add and subsequent instructions

 Set Cause and EPC register values

 Transfer control to handler

 Similar to mispredicted branch
 Use much of the same hardware

210

Pipeline with Exceptions

211

Exception Properties

 Restartable exceptions

 Pipeline can flush the instruction

 Handler executes, then returns to the
instruction

 Refetched and executed from scratch

 PC saved in EPC register

 Identifies causing instruction

 Actually PC + 4 is saved

 Handler must adjust

212

Exception Example

 Exception on add in
40 sub $11, $2, $4

44 and $12, $2, $5

48 or $13, $2, $6

4C add $1, $2, $1

50 slt $15, $6, $7

54 lw $16, 50($7)

…

 Handler
80000180 sw $25, 1000($0)

80000184 sw $26, 1004($0)

…

213

Exception Example

214

Exception Example

215

Multiple Exceptions

 Pipelining overlaps multiple instructions
 Could have multiple exceptions at once

 Simple approach: deal with exception
from earliest instruction
 Flush subsequent instructions

 “Precise” exceptions

 In complex pipelines
 Multiple instructions issued per cycle

 Out-of-order completion

 Maintaining precise exceptions is difficult!

216

Imprecise Exceptions

 Just stop pipeline and save state
 Including exception cause(s)

 Let the handler work out
 Which instruction(s) had exceptions

 Which to complete or flush
 May require “manual” completion

 Simplifies hardware, but more complex
handler software

 Not feasible for complex multiple-issue
out-of-order pipelines

217

