
Computer
Organization and Structure

Bing-Yu Chen
National Taiwan University



Parallel Processors
from Client to Cloud

 The Difficulty of Creating Parallel 
Processing Programs

 Introduction to Graphics Processing 
Units

1



Goal of Computing

Faster, faster and faster

2



Why Parallel Computing?

 Moore's law is 
dead (for CPU 
frequency)

3



Top500 (Nov 2014)

1. Tianhe-2(NUDT)
 3,120,000 cores (Intel Xeon E5, Intel Xeon Phi)

2. Titan (Cray)
 560,640 cores (Opetron 6274, NVIDIA K20x)

3. Sequoia (IBM)
 1,572,864 cores (Power BQC)

4. K computer (Fujitsu)
 705,024 cores (Sparc64)

5. Mira (IBM)
 786,432 cores (Power BQC)

4



Introduction

 Goal: connecting multiple computers
to get higher performance
 Multiprocessors

 Scalability, availability, power efficiency

 Task-level (process-level) parallelism
 High throughput for independent jobs

 Parallel processing program
 Single program run on multiple processors

 Multicore microprocessors
 Chips with multiple processors (cores)

5



Hardware and Software

 Hardware
 Serial: e.g., Pentium 4

 Parallel: e.g., quad-core Xeon e5345

 Software
 Sequential: e.g., matrix multiplication

 Concurrent: e.g., operating system

 Sequential/concurrent software can 
run on serial/parallel hardware
 Challenge: making effective use of 

parallel hardware
6



Parallel Programming

 Parallel software is the problem

 Need to get significant performance 
improvement

 Otherwise, just use a faster uniprocessor, 
since it’s easier!

 Difficulties

 Partitioning

 Coordination

 Communications overhead

7



Amdahl’s Law

 Sequential part can limit speedup

 Example: 100 processors, 90×
speedup?
 Tnew = Tparallelizable/100 + Tsequential



 Solving: Fparallelizable = 0.999

 Need sequential part to be 0.1% of 
original time

90
/100F)F(1

1
Speedup

ableparallelizableparalleliz






8



Amdahl's law

9



Scaling Example

 Workload: sum of 10 scalars, and 10 × 10 
matrix sum
 Speed up from 10 to 100 processors

 Single processor: Time = (10 + 100) × tadd

 10 processors
 Time = 10 × tadd + 100/10 × tadd = 20 × tadd

 Speedup = 110/20 = 5.5 (55% of potential)

 100 processors
 Time = 10 × tadd + 100/100 × tadd = 11 × tadd

 Speedup = 110/11 = 10 (10% of potential)

 Assumes load can be balanced across 
processors

10



Scaling Example

 What if matrix size is 100 × 100?

 Single processor: Time = (10 + 10000) × tadd

 10 processors

 Time = 10 × tadd + 10000/10 × tadd = 1010 × tadd

 Speedup = 10010/1010 = 9.9 (99% of potential)

 100 processors

 Time = 10 × tadd + 10000/100 × tadd = 110 × tadd

 Speedup = 10010/110 = 91 (91% of potential)

 Assuming load balanced

11



Graphics Applications

 Movies

 Interactive entertainment

 Industrial design

 Architecture

 Culture heritage

20



History of Computer Graphics

 1960, Ivan Sutherland's Sketchpad

 The beginning of computer graphics

 1992, OpenGL 1.0

 1996, Voodoo I

 The first consumer 3D graphics card

 1996, DirectX 3.0

 The first version including Direct3D

21



History of Computer Graphics

 2000, DirectX 8.0
 The first version supporting HLSL

 2001, GeForce 3 (NV20)
 The first consumer GPU

 2004, OpenGL 2.0
 The first version supporting GLSL

 2006, GeForce 8 (G80)
 The first NVIDIA GPU supporting CUDA

 2008
 OpenCL (Apple, AMD, IBM, Qualcomm, 

Intel, …)

22



History of GPUs

 Early video cards

 Frame buffer memory with address generation 
for video output

 3D graphics processing

 Originally high-end computers (e.g., SGI)

 Moore’s Law  lower cost, higher density

 3D graphics cards for PCs and game consoles

 Graphics Processing Units

 Processors oriented to 3D graphics tasks

 Vertex/pixel processing, shading, texture 
mapping, rasterization

23



Synthetic Camera Model

camera

image plane/view plane

projector

p

projection of p

objects/modelsview frustrum/view volume

lighting

24



Ray Tracing and Geometric Optics

One way to form an image is 
to follow rays of light from a
point source determine 
which rays enter the lens of 
the camera. However, each 
ray of light may have 
multiple interactions with 
objects before being 
absorbed or going to infinity.

25



Why not ray tracing?

 Ray tracing seems more physically based 
so why don’t we use it to design a graphics 
system?

 Possible and is actually simple for simple 
objects such as polygons and quadrics with 
simple point sources

 In principle, can produce global lighting 
effects such as shadows and multiple 
reflections but is slow and not well-suited 
for interactive applications

26



The Rendering Pipeline
Scene graph

Object geometry

Lighting
Calculations

Clipping

Modeling
Transforms

Viewing
Transform

Projection
Transform

Rasterization
27



Computer Graphics Rendering

28



Graphics Pipeline

Input processor

Do geometry stuff

Do pixel stuff

Accumulate pixel result

Instructions
States
Data

Transforms
Lighting, etc.

Rasterize
Pixel shading

Z-buffer
Transparency

29



Make it faster

Input processor

Do geometry stuff

Do pixel stuff

Accumulate pixel result

Do geometry stuff
Do geometry stuff

Do pixel stuff
Do pixel stuff

30



Add Frame Buffer Support

Input processor

Do geometry stuff

Do pixel stuff

Accumulate pixel result

Do geometry stuff
Do geometry stuff

Do pixel stuff
Do pixel stuff

FB
(memory)

31



Get data
Process data
Output data

Add Programmability

Input processor

Do geometry stuff

Do pixel stuff

Accumulate pixel result

Do geometry stuff
Do geometry stuff

Do pixel stuff
Do pixel stuff

FB
(memory)

32



Uniform Shader

Front end

Do geometry stuff

Raster operations

FB
(memory)

Buffer

33



Scaling it up again

Front end

Do geometry stuff

Raster operations

FB
(memory)

Buffer

34



GPU Architectures

 Processing is highly data-parallel
 GPUs are highly multithreaded
 Use thread switching to hide memory latency

 Less reliance on multi-level caches

 Graphics memory is wide and high-bandwidth

 Trend toward general purpose GPUs
 Heterogeneous CPU/GPU systems
 CPU for sequential code, GPU for parallel code

 Programming languages/APIs
 DirectX, OpenGL
 C for Graphics (Cg), High Level Shader

Language (HLSL)
 Compute Unified Device Architecture (CUDA)

36


