Inter-Surface Mapping

John Schreiner Arul Asirvatham Emil Praun

Hugues Hoppe Microsoft Research

University of Utah

National Taiwan University CMLAB , since 1991

Emil Praun

Arul Asirvatham

Hugues Hoppe

How Is Our Method Different?

- Directly create inter-surface map
 - Symmetric coarse-to-fine optimization
 - Symmetric stretch metric
 - → Automatic geometric feature alignment
- Robust
 - Very little user input
 - Arbitrary genus
 - Hard constraints

Algorithm Overview

- 1. Consistent mesh partitioning
- 2. Constrained Simplification

4.

- 3. Trivial map between base meshes
 - Copyright © CMLaboratory Since 1991, All rights reserved. | NTU | CSIE | CMLAB

Consistent Mesh Partitioning

Compute matching shortest paths
Add paths not violating legality conditions

Partition

- Assign feature points on both 2 meshes.
- Find the shortest path between each pair of feature vertices. (Dijkstra search)
 - The search is constrained to not intersect with paths already in the network.
 - Solution : perform Dijkstra on both the mesh vertices and the edge midpoints.
- Select the best pair of corresponding path and split the mesh.
 - Sort by the sum of path lengths on 2 meshes.

Legality Conditions

Paths don't intersect

- Consistent neighbor ordering
- Cycles don't enclose unconnected vertices

Automatic Insertion Of Feature Points

Add features if not enough to resolve genus

ATIONAL TAIWAN UNIVERS

- Interleaved refinement
- Vertex optimization

Vertex Optimization

 Consider v of M² and optimizes v of M¹

The optimization only modifies
 the map inside these
 corresponding neighborhoods
 – Regenerate barycentric coordinates

Stretch Metric Automatically encourages feature correspondence Conformal Stretch

-AIWA

Results: Inter-Surface Mapping

Results: Inter-Surface Mapping

Low distortion around hard constraints

Results: Inter-Surface Mapping

Arbitrary genus (genus 2; 8 user feature points

Robustness

Conclusion

- Directly create inter-surface map
 - Symmetric coarse-to-fine optimization
 - Symmetric stretch metric
- → Automatic geometric feature alignment
- Robust: guaranteed bijection
 - Arbitrary genus
 - Hard constraints

General tool with many applications

Future Work

- Faster technique
 - Currently: 64K faces, 2.4GHz → 2 hours
- More than 2 models
- Surfaces with different topologies

~ The End~

CMLAB NATIONAL TAIWAN UNIVERSITY

