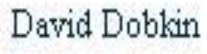
MAPS: Multiresolution Adaptive Parameterization of Surface

Aaron W. F. Lee Wim Sweldens Peter Schröder

Lawrence Cowsar [



Introduction

- Construct hierarchy of models of different fineness in O(Mog N) time and space complexity
- Construct smooth parameterization of the original mesh
- Allows for uniform or adaptive remeshing after simplification
- Respect either manual tagging of features or automatic feature detection

Outline

- Notation
- Constructing the Mesh Hierarchies
- Parameterization
- Preserving Image Features
- Remeshing
- Result

Notation (1/4)

- Triangular Mesh
 - represented as a pair (P, K)
 - *P* is the set of all *N* points pi = (xi, yi, zi)
 - K is the complex defining connectivity by 3 types of simplicies
 - {*i*}is the vertex *pi*
 - {*i*,*j*}is the edge from {*i*} to {*j*}
 - $\{i, j, k\}$ is the triangle with vertices $\{i\}, \{j\}, \{k\}$

Notation (2/4)

- {k} and {j} are <u>Neighbors</u> if there is an edge between them
- An <u>Independent Set</u> of vertices is a set where no vertices are neighbors
- A set is <u>Maximally Independent</u> if no superset of it is independent

Notation (3/4)

1-ring neighborhood

 $N(i) = \{ j \mid \{i, j\} \in K \}.$

- i.e. all vertices adjacent to {*i*}
- star(i)

 $\operatorname{star}(i) = \bigcup_{i \in s, s \in K} s.$

i.e. all vertices, edges, and faces that include {*i*}, including {*i*} itself

Notation (4/4)

- *k*(*i*), curvature estimate
 k(*i*) = *k*1 + *k*2
- Estimated by finding a tangent plane to {*i*} and then using a polynomial to approximate star(*i*)and then finding curvature of the polynomial
- Claims to be conservative curvature estimate

Constructing the Mesh Hierarchies(1/5)

- Notation: Meshes of level / denoted (P', K')
 - Original (finest) mesh: (*P*^L, *K*^L)
 - Coarsest mesh (base domain):? (P^0, K^0)
- Traditionally progressive meshing involved *edge collapse* MAPS uses *vertex removal* and then retriangulates the resulting hole
- Similar to hierarchy given by Dobkin & Kirkpatrick (DK) which ensures an O(logN) bound on the number of levels

Constructing the Mesh Hierarchies(2/5)

- MAPS Approach:
 - Make a priority queue with a weight w(I,i) for each vertex {i}
 - -a(i) is the area of the 1-ring neighborhood
 - k(i) is the curvature of the 1-ring neighborhood
 - They suggest I=0.5
 - Smallest weights get removed first

$$w(\lambda, i) = \lambda \frac{a(i)}{\max_{p_i \in P^l} a(i)} + (1 - \lambda) \frac{\kappa(i)}{\max_{p_i \in P^l} \kappa(i)}.$$

Constructing the Mesh Hierarchies(3/5)

- After weights are computed for all vertices, mark the one with smallest weight
- Continue looking at vertices in order of increasing weight and mark the ones that are independent of all other marked vertices
- Remove marked vertices and all adjacent edges

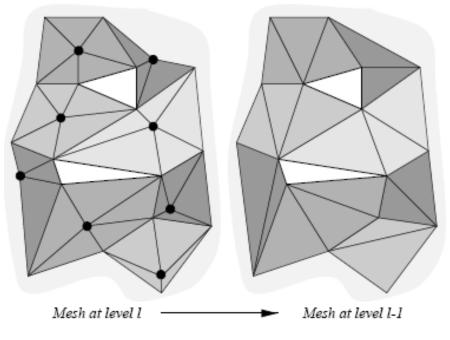
Constructing the Mesh Hierarchies(4/5)

• Use conformal map, *ui* Enumerate cyclically the *Ki* vertices in the 1-ring $N(i) = \{j_k \mid 1 \le k \le K_i\}$ $\mu_i(p_i) = 0$ and $\mu_i(p_{jk}) = r_k^a e^{i\theta ka}$ where $r_k = \|p_i - p_{ik}\|$, $a = 2\pi/\theta_{Ki}$,

$$\Theta_k = \sum_{l=1}^k \angle (p_{j_{l-1}}, p_i, p_{j_l}),$$

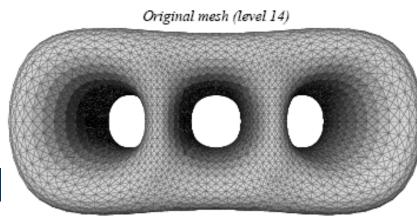
Constructing the Mesh Hierarchies(5/5)

- Now that the hole is flat, retriangulate it
- Use Constrained Delaunay Triangulation

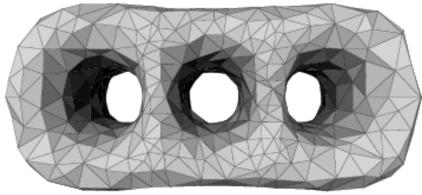


Hierarchy

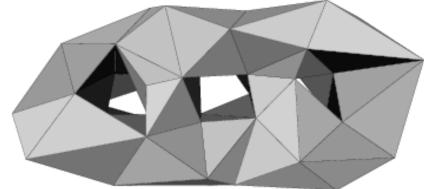
Coarsest mesh (level 0) Is base domain



Intermediate mesh (level 6)



Coarsest mesh (level 0)



Parameterization (1/3)

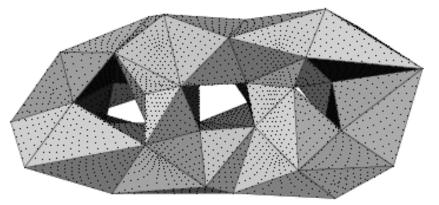
- Use barycentric coordinates
- Want to have a mapping P^I from the top level L to mesh level I which will allow us to map points between meshes at any level of the hierarchy

Parameterization (2/3)

- Constructing Π ^{*I*-1} for vertex {*i*}:
 - {*i*} was in previous level, nothing to do
 - $\Pi^{I-1}(p_i) = \Pi^{I}(p_i) = p_i$
 - {*i*} just got removed in the current level
 - $\prod {}^{l-1}(p_i) = \alpha p_j + \beta p_k + \gamma p_m$ where p_i is in $\{j, k, m\}$ in the new level,

Parameterization (3/3)

- {*i*} was removed before previous level
 - If the triangle that contained {*i*} at the previous level is still in the new level, do nothing.
 - Otherwise, assign barycentric coordinates based on the new triangle that {*i*} is in.



Preserving Image Features(1/2)

• User manually tags features

- Vertices
 - A certain vertex can be crucial to the character of an image
- Edge Paths
- Want to keep certain boundaries or contours present in the base domain
- Solution: Mark vertices as unremovable at all stages of mesh simplification

Preserving Image Features(2/2)

- Automatic detection of features
 - Vertices:
 - Set some curvature threshold.
 - If the curvature of the 1-ring of a vertex *exceeds* the threshold, mark it as unremovable.
 - Edge Paths:

Set a threshold for the dihedral angle of an edge. If the dihedral angle of an edge is *less than* the threshold, mark the edge.

Remeshing(1/5)

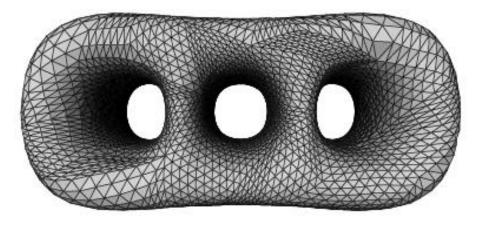
• Uniform

- Use Loop subdivision variant
- Subdivide an edge to get new vertex q
 But make the new point q close to the original mesh since we have that information
- Find {*i*, *j*, *k*} in the original mesh that contains *q* Then $q = \alpha \prod (p_i) + \beta \prod (p_j) + \gamma \prod (p_k)$ [in base domain] $\prod^{-1}(q) = \alpha p_j + \beta p_j + \gamma p_k$ [in top mesh]
- Use $\Pi^{-1}(q)$ as new vertex

Remeshing(2/5)

• Smooth

Parameterization not smooth across base domain triangles



Remeshing(3/5)

- Cases on the stencil needed to compute and smooth a new point:
 - All points in the stencil are within the same base domain triangle
 - Then use the normal Loop rule
 - The stencil is in two base domain triangles
 - Flatten the triangles at the edge
 - Compute the new point
 - Determine the top-level triangle which contains the new point and compute the barycentric coords of the new point
 - The stencil is on multiple base domain triangles
 - Use the conformal mapping to flatten and then subdivide

Remeshing(4/5)

Adaptive

- Define an error metric E(t): (for triangle t in the base domain): $E(t) = \max_{\substack{p_i \in P^L \text{ and } \Pi(p_i) \in \varphi(|t|)}} \operatorname{dist}(p_i, \varphi(|t|)).$

 In other words, the maximum distance between a base domain triangle and the finest triangle that gets mapped to it

Remeshing(5/5)

- Also need an error threshold ε
- Algorithm:
 - Compute *E*(*t*) for all triangles of current mesh level (starting with the base domain)
 - If $E(t)/B > \varepsilon$ where *B* is the longest bounding box side,
 - Then Loop subdivide the current triangle *t*
 - Take each vertex p (in P^L and t) and assign it to the closest child triangle of t
- Loop (iterate, not subdivide) until the ε threshold is met for all triangles in the remeshing

Result

Result

Dataset	Input size (triangles)	Hierarchy creation	Levels	P ⁰ size (triangles)	Remeshing tolerance	Remesh creation	Output size (triangles)
3-hole	11776	18 (s)	14	120	(NA)	8 (s)	30720
fandisk	12946	23 (s)	15	168	1%	10 (s)	3430
fandisk	12946	23 (s)	15	168	5%	5 (s)	1130
head	100000	160 (s)	22	180	0.5%	440 (s)	74698
horse	96966	163 (s)	21	254	1%	60 (s)	15684
horse	96966	163 (s)	21	254	0.5%	314 (s)	63060

Table 1: Selected statistics for the examples discussed in the text. All times are in seconds on a 200 MHz PentiumPro.