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Introduction

• This paper present a general framework for 

performing constrained mesh deformation 

tasks with gradient domain techniques.



Introduction

• The constraints introduce include the 

nonlinear volume constraint for volume 

preservation, the nonlinear skeleton 

constraint for maintaining the rigidity of limb 

segments of articulated figures, and the 

projection constraint for easy manipulation of 

the mesh without having to frequently switch 

between multiple viewpoints.



Introduction

• To handle nonlinear constraints, we cast mesh 

deformation as a nonlinear energy 

minimization problem and solve problem 

using an iterative algorithm.

• The main challenges in solving this nonlinear 

problem are the slow convergence and 

numerical instability of the iterative solver.



Introduction

• To address these issues,we develop a subspace 

technique that builds a coarse control mesh around 

the original mesh and projects the deformation 

energy and constraints onto the control mesh 

vertices using the mean value interpolation. 

• The energy minimization is then carried out in the 

subspace formed by the control mesh vertices. 

Running in this subspace, our energy minimization 

solver is both fast and stable and it provides 

interactive responses. 



Introduction

• An additional advantage of our subspace 

technique is that it can easily handle real-

world mesh output by commercial modelers,

including meshes having non-manifold 

features and disconnected components. Such 

meshes are usually troublesome for existing 

gradient-domain techniques as they require a 

“clean” manifold mesh.



Methodology_Overview

• Deformation with Nonlinear Constraints

• we can formulate mesh deformation as solving the following 

unconstrained energy minimization problem

• where f1(X) = LX−ˆδ(X)

• For convenience we regard LX = ˆδ(X) as a constraint 

as well and call it the Laplacian constraint.
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• Set constraints into two classes, soft and hard constraints. 

• Soft constraint is included as a term in the deformation 
energy, hard constraint is handled using Lagrange 
multipliers [Madsen et al. 2004]. 

• With the hard constraints our energy minimization 
becomes a constrained nonlinear least squares problem, 

• In order to ensure that this nonlinear problem can be 
efficiently and robustly solved, we need to carefully 
select soft constraints and reduce the number of hard 
constraints.



Methodology_Overview

• Allow a nonlinear constraint to be a soft constraint only if it is 
quasi-linear.

• It can be written as AX = b(X), where A is a constant matrix 
and b(X) is a vector function whose Jacobian is “very small”

• The Laplacian and skeleton constraints are examples of quasi-
linear constraints. Since all nonlinear constraints in the energy 
function are quasi-linear, energy minimization problem can be 
written as

• where L is a constant matrix and g(X) = 0 represents all hard 
constraints.
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• Subspace Deformation

• Solving Equation with iterative methods we run into serious 
problems with slow convergence and numerical instability. 

• The subspace method first builds a coarse control mesh
around the original mesh .

• The deformation energy and the hard constraints are then 
projected onto the control mesh vertices using mean value 
interpolation .

• Let the control mesh vertices P be related to original mesh 
vertices X through X = WP. After projection we perform 
energy minimization in the control mesh subspace as follows:



Methodology_Detail

• Skeleton Constraint

• The user simply specifies a virtual skeleton segment ab
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• We represent each sample point (including a and b) as 

a linear combination of the mesh vertices:

• We get
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• The coefficients kij are computed as the mean value 

coordinates[Ju et al. 2005] with respect to the constrained part 

of the mesh.

• Since [Ju et al. 2005] requires a closed mesh, we close the two 

open ends of the constrained segment by adding as two virtual 

vertices (c1 and c2 in Figure 4) the centroids of the boundary 

curves of the open ends.
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• Skeleton Specification

• user simply draws a stroke over the target region 

(dark-green) and our algorithm will automatically 

construct the skeleton segment and the associated 

constrained region(gray)
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• Volume Constraint

• The total signed volume of a mesh can be computed using 

their vertex positions:

• where each Tijk ∈ K is a triangle formed by vertices i, j, and 

k. Judging by this, our volume constraint can be easily 

represented by
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• Projection Constraint

• The projection constraint is similar to the position constraint 
for the purpose of user manipulation

• Let p = QpX ,written as a linear combination of mesh vertex 
positions X via a constant matrix Qp

• LetM be themodel viewmatrix whichmaps a point from the 
object space into the eye space,
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• =

• ->

• ->

• where Ω is a constant 2 × 3n matrix and ˆ 

w is a constant column vector.
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• where              indicates the position constraint
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• Subspace Deformation Solver

• The Gauss-Newton Formulation

• Numerical Considerations

• Convergence and Stability

• Subspace Deformation
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• show an example comparing the stabilities of a direct solver 
and our subspace solver. As we can see, the subspace solver 
converges much faster than the direct solver.
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• demonstrates a complex example for preserving both volume 

and surface details; note that our subspace technique generates 

superior deformation results than naive interpolation.
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• using a control mesh in the subspace solver is that it 

allows us to easily handle non-manifold surfaces or 

objects with multiple disjoint components.



Results

• Video…


