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Spherical parameterization (SM)

Previous work:
 Kent et al.[1992] : simulate a balloon inflation process

 Alexa[2002] uses spring-like relaxation process

 Grimm[2002] : surfaces->6 charts->cube->sphere

 Haker et al.[2000] find conformal approximation of meshes 
over sphere

 Sheffer et al.[2003] find the angles of a spherical 
embedding as a constrained nonlinear system

 Gostman et al.[2003] embed simple meshes on the sphere 
by solving a quadratic system

 Quicken et al.[2000] parameterize the surface of a voxel 
volume onto a sphere.

These prior schemes cannot parameterize a complex mesh 

robustly and with low scale-distortion necessary for good 

remeshing.
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Planar-domain Stretch Metric:

Represent the largest and smallest local stretch.
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L2-stretch norm :

L2 stretch efficiency:

From 0 to 1

Spherical parameterization (SM)



Spherical-domain stretch metric:

Mmesh  of  trianglea:
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To prevent an over-sampling problem                 

from stretch-metric, add a penalty for 

inverse-stretch



6,0001.0  p work well for all of tested models.

without with
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Spherical triangle map:

For performance, they have chosen to use the 
gnomonic map for the coarse-to-fine optimization of 
S->M

Spherical parameterization (SM)



Algorithm:
1. Coarse-to-fine strategy:

simplify mesh M to a tetrahedron-base domain with 

progressive mesh (PM), 

map the base domain to the sphere, 

traverse the PM sequence backward and insert 

vertices on the surface

Spherical parameterization (SM)



Coarse-to-Fine Strategy

Convert to progressive mesh

Parameterize coarse-to-fine

Maintain embedding & minimize stretch



Algorithm:
2. Vertex insertion:

new vertex has the 1-ring neighbors form a spherical 

polygon

the kernel of this spherical polygon is defined as the 

intersection of hemispheres, each of which defined by 

each of the polygon edges

new vertex can only be placed in this kernel

Spherical parameterization (SM)



Algorithm:
3. Vertex optimization:

After insert a new vertex, optimize all vertices in their 

neighborhood one at a time

Each optimization using the stretch metric summed 

from adjacent triangles, perturbing the vertex only in 

the kernel of its 1-ring

All vertices traversed by a priority queue ordered by 

the amount of change in their neighborhood, and stop 

when the largest change is below a threshold

Spherical parameterization (SM)



Before Vsplit:

 No degenerate/flipped 

 1-ring kernel 

Apply Vsplit:

No flips if V inside kernel

V

Vertex Insertion



Before Vsplit:

 No degenerate/flipped 

 1-ring kernel 

Apply Vsplit:

No flips if V inside kernel

Optimize stretch:

No degenerate 

(they have  stretch)

V

Vertex Optimization



Traditional Conformal Metric

Preserve angles but “area compression”

Bad for sampling using regular grids



Stretch Metric
[Sander et al. 2001]

[Sander et al. 2002]

Penalizes undersampling

Better samples the surface



Use stretch-optimized spherical triangle 

map on the n-tessellated domain D

Compare for other maps:

Domain Spherical parameterization 

(DS)



Domains And Their Sphere Maps

tetrahedron

octahedron

cube



Tetrahedron:

• Non-isometric

• Rectangular image 

• Linear interpolation

Domain unfolding (ID)



Octahedron:

• Non-isometric

• Square image 

• Linear interpolation

Domain unfolding (ID)



Cube:

• Isometric 

• Bi-linear interpolation

Domain unfolding (ID)



Boundary Constraints

Domain Unfolding (ID)



Boundary extension rules
Domain Unfolding (ID)



Domain Unfolding (ID)
Boundary extension rules



Boundary extension rules



Results
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interpret
domain

render
tessellation

Applications
Rendering



n=1 n=2 n=4 n=8 n=16 n=32 n=64

Applications
Level-of-Detail



Morphing

Interpolating 2 geometry images

Applications



12 KB 3 KB 1.5 KB

Applications
Geometry Compression



33x33 geometry image C1 surface

GPU

3.17 ms

[Losasso et al. 2003]

ordinary uniform bicubic B-spline

Applications
Smooth Subdivision



Summary

original spherical

parametrization

geometry

image

remesh



Conclusions

Spherical parametrization
 Guaranteed one-to-one

New construction for geometry images
 Specialized to genus-0

 No a priori cuts  better performance

 New boundary extension rules
Effective compression, DSP, GPU splines, …



Future Work

Explore DSP on unfolded octahedron
 4 singular points at image edge midpoints

Fine-to-coarse integrated metric tensors
 Faster parametrization; signal-specialized map

Direct DSM optimization

Consistent inter-model parametrization


