Spherical Parameterization and Remeshing

Emil Praun University of Utah

Hugues Hoppe

Microsoft Research

Introduction

octahedral parametrization

geometry image (lit)

Outline

Spherical parameterization
 S→M

Spherical remeshing
 D→S
 I→D

3. Results & applications

Previous work:

- Kent et al.[1992] : simulate a balloon inflation process
- Alexa[2002] uses spring-like relaxation process
- Grimm[2002] : surfaces->6 charts->cube->sphere
- Haker et al.[2000] find conformal approximation of meshes over sphere
- Sheffer et al.[2003] find the angles of a spherical embedding as a constrained nonlinear system
- Gostman et al.[2003] embed simple meshes on the sphere by solving a quadratic system
- Quicken et al.[2000] parameterize the surface of a voxel volume onto a sphere.

These prior schemes cannot parameterize a complex mesh robustly and with low scale-distortion necessary for good remeshing.

Planar-domain Stretch Metric:

 $\phi: D \to M$ $\Gamma, \gamma:$ singular v alue of Jacobian matrix J_{ϕ} Represent the largest and smallest local stretch.

rms:

L2-stretch norm :

L2 stretch efficiency:

$$L^{2}(s,t) = \sqrt{\frac{1}{2}(\Gamma^{2} + \gamma^{2})} \text{ and } L^{\infty}(s,t) = \Gamma$$
$$L^{2}(M) = \sqrt{\frac{1}{A_{M}} \iint_{(s,t)\in D} (L^{2}(s,t))^{2} dA_{M}(s,t)}$$
$$dA_{M}(s,t) = \gamma \Gamma ds dt \text{ is the differential surface area.}$$

$$\frac{\left(A_{M} \mid A_{D}\right) \left(1 \mid L^{2}(M)^{2}\right)}{\text{From 0 to 1}}$$

• Spherical-domain stretch metric: $\phi: S \to M$ $\Gamma, \gamma:$ singular value of Jacobian matrix $J_{\phi^{-1}}$ T: a triangle of mesh M

$$L^{2}(T) = \sqrt{\frac{1}{A_{M_{T}}} \iint_{(s,t)\in T} \left(\frac{1}{\gamma^{2}} + \frac{1}{\Gamma^{2}}\right) dA_{M_{T}}(s,t)} ,$$

 $dA_{M_T}(s,t) = ds dt$ is the differential mesh triangle area.

• To prevent an over-sampling problem $\Gamma \rangle \gamma$ from stretch-metric, add a penalty for $\Gamma \rangle \gamma$ inverse-stretch

 $\epsilon(A_M/4\pi)^{p/2+1}(\Gamma)^p$,

 $\varepsilon = 0.0001$, p = 6 work well for all of tested models.

with

without

Spherical triangle map:

For performance, they have chosen to use the gnomonic map for the coarse-to-fine optimization of S->M

Gnomonic: It is simply spherical projection about the sphere center *O*. That is, $P = (\alpha A + \beta B + \gamma C) / ||\alpha A + \beta B + \gamma C||$. The inverse is easily computable as spherical projection back onto the triangle.

Figure 3: Comparison of spherical triangle maps for a large spherical triangle, and computed stretch efficiencies in both map directions. (The black curves show a uniform tessellation of the planar triangle in domain *D* mapped onto the sphere *S*.)

Algorithm:

- **1.** Coarse-to-fine strategy:
- simplify mesh M to a tetrahedron-base domain with progressive mesh (PM),
- map the base domain to the sphere,
- traverse the PM sequence backward and insert vertices on the surface

Coarse-to-Fine Strategy

Convert to progressive mesh

Parameterize coarse-to-fine Maintain embedding & minimize stretch

Algorithm:

- **2.** Vertex insertion:
- new vertex has the 1-ring neighbors form a spherical polygon
- the kernel of this spherical polygon is defined as the intersection of hemispheres, each of which defined by each of the polygon edges
- new vertex can only be placed in this kernel

Algorithm:

- **3.** Vertex optimization:
- After insert a new vertex, optimize all vertices in their neighborhood one at a time
- Each optimization using the stretch metric summed from adjacent triangles, perturbing the vertex only in the kernel of its 1-ring
- All vertices traversed by a priority queue ordered by the amount of change in their neighborhood, and stop when the largest change is below a threshold

Vertex Insertion

 \bigvee

 Before Vsplit:
 No degenerate/flipped ∆
 ⇒ 1-ring kernel ≠Ø
 Apply Vsplit: No flips if V inside kernel

Vertex Optimization

Before Vsplit: No degenerate/flipped Δ \Rightarrow 1-ring kernel $\neq \emptyset$ Apply Vsplit: No flips if V inside kernel Optimize stretch: No degenerate Δ (they have ∞ stretch)

Traditional Conformal Metric

Preserve angles but "area compression" Bad for sampling using regular grids

Stretch Metric

[Sander et al. 2001] [Sander et al. 2002]

Penalizes undersampling Better samples the surface

Domain Spherical parameterization $(D \rightarrow S)$

 Use stretch-optimized spherical triangle map on the n-tessellated domain D
 Compare for other maps:

	Stretch-	Procedural Maps					
	optimiz.	Gno- monic	2-slerp	Arvo∘ Turk ⁻¹	Buss- Fillmore	Area	Subdiv.
tetra	0.910	0.628	0.871	0.846	0.889	0.849	0.645
octa	0.969	0.893	0.954	0.943	0.958	0.958	0.902
cube2		0.859	0.945	0.967	0.953	0.932	0.924
cube4	0.983	0.956	0.965	0.966	0.966	0.978	0.959
cube8		0.961	0.966	0.966	0.966	0.965	0.964
flat-octa	0.896	-	-	-	-	-	-
Table 2: L^2 stretch efficiencies for $D \rightarrow S$ using optimization and procedural maps. (Cube faces are split into 2, 4, or 8 triangles.)							

Domains And Their Sphere Maps

tetrahedron

octahedron

Domain unfolding $(I \rightarrow D)$

Tetrahedron:
 Non-isometric
 Rectangular image
 Linear interpolation

(2n)(n+1) samples

Domain unfolding $(I \rightarrow D)$

Octahedron:
Non-isometric
Square image
Linear interpolation

Domain unfolding $(I \rightarrow D)$

• Cube:

- Isometric
- **Bi-linear interpolation**

 $6n^2+2$ samples

Domain Unfolding $(I \rightarrow D)$

Boundary Constraints

Domain Unfolding (I→D) Boundary extension rules

Domain Unfolding (I→D) Boundary extension rules

Boundary extension rules

Results

Results

Results

Applications

Rendering

Applications Level-of-Detail Image: Applications

Applications

Morphing Interpolating 2 geometry images

Applications Geometry Compression

Applications Smooth Subdivision

[Losasso et al. 2003]

33x33 geometry image

 C^1 surface

ordinary uniform bicubic B-spline

Summary

original

spherical parametrization

geometry image remesh

Conclusions

Spherical parametrization

 Guaranteed one-to-one

 New construction for geometry images

 Specialized to genus-0
 No *a priori* cuts ⇒ better performance
 New boundary extension rules

 Effective compression, DSP, GPU splines, …

Future Work

Explore DSP on unfolded octahedron

 4 singular points at image edge midpoints

 Fine-to-coarse integrated metric tensors

 Faster parametrization; signal-specialized map

 Direct D↔S↔M optimization
 Consistent inter-model parametrization