
View Dependent Mesh Streaming
based on Geometry Image and JPEG 2000 Standard

Nein-Hsiung Lin* Ting-Hao Huang* Bing-Yu Chen† Yung-Yu Chuang‡ Ming Ouhyoung‡

National Taiwan University

*{ppbb,richardg}@cmlab.csie.ntu.edu.tw †robin@ntu.edu.tw ‡{cyy,ming}@csie.ntu.edu.tw

 ABSTRACT
For PC and even mobile devices, video and image streaming
technologies, such as H.264 and JPEG/JPEG 2000, are already
mature. However, the 3D model streaming technology is still far
from practical use. Therefore, we wonder if 3D model streaming
can directly benefit from current image and video streaming tech-
nologies. Hence, in this paper, we propose a mesh streaming
method based on geometry image [3] to represent a 3D model or a
3D scene and integrate it into an existed client-server multimedia
streaming server. In this method, the mesh data of a 3D model is
first converted into a JPEG 2000 (J2K) [7] image. Based on the
JPEG 2000 streaming technique, the mesh data can then be
transmitted over the Internet as a mesh streaming. Furthermore,
the view-dependent issue is also taken into account. Moreover,
since this method is based on JPEG 2000 standard, our system is
much suitable to be integrated into any existed image and video
streaming system.

Categories and Subject Descriptors
I.3.2 [Computer Graphics]: Graphics Systems – distrib-
uted/network graphic; I.3.5 [Computer Graphics]: Computa-
tional Geometry and Object Modeling – curve, surface, solid, and
object representations.

General Terms
Standardization.

Keywords
Geometry Image, Mesh Streaming, JPEG 2000, View-Dependent
Progressive Meshes.

1. INTRODUCTION
Recently, 3D graphics over the Internet or so-called Web 3D or
Web Graphics has attracted a lot of attention, such as web-based
virtual shopping malls and on-line 3D games. For supporting this,
the demand of transmitting 3D models (meshes) increased signifi-
cantly. Being able to view a 3D model or a 3D scene composed of
many sophisticated 3D models over the Internet is one of the
goals of VRML (Virtual Reality Modeling Language) [8] and
X3D (eXtensible 3D) [10]. However, due to the increase of model
complexity and file size, even with the increase of network band-
width, to download the 3D models would still take a lot of time.
To reduce the waiting time for downloading the 3D models, mesh
streaming mechanism must be available in VRML/X3D browsers
as what has been done in the video and image streaming.

Therefore, in this paper, we propose a new mesh streaming
method by utilizing the benefits of JPEG 2000. This method takes
the advantage of the fact that a 3D model or a 3D scene can be
represented by a geometry image [3]. This could reduce the prob-
lem of 3D mesh streaming and transfer it to 2D image streaming.
There are also many 2D image compression methods that can be
used to further downsize the file of the geometry image. This
paper made use of the JPEG 2000 [7] compression due to some of
its good characteristics, such as ROI (Region Of Interest), pro-
gressive compression, multiple components, etc. Moreover, since
this method is based on JPEG 2000, which is a famous standard,
our system is much suitable to be integrated into any existed im-
age and video streaming system.
Based on our mesh streaming method, during the downloading
process, the user can first obtain an approximate shape and then
the 3D model will become clearer when more data is received.
Besides the progressive transmission, the view-dependent issue is
also taken into account. Hence, the most significant part of the 3D
model or the part faced to the user will be refined earlier.

2. Related Work

2.1 Mesh Streaming and Compression
3D model has become more and more sophisticated, as well as its
file size. Hence, many previous works are focus on shortening the
latency caused by the model transmission over the Internet and
several mesh streaming methods have been proposed for solving
this problem.
The mesh streaming methods can be divided into three categories.
Progressive meshes [4] is a typical example of the first category
of mesh streaming methods. In this method, the 3D model M is
first reduced to a base mesh 0M by using iterative edge collapse
operations. Then, the 3D model can be represented as 0M , 1M ,

2M , ..., n =M M , where 1M , 2M , ..., and nM are the refined
multi-resolution meshes by splitting one vertex in the previous
meshes 0M , 1M , ..., 1n−M . Using this mechanism, the user can
get a rough 3D model at the first glance, and the appearance of
the model will become better after successive transmission.
The second category is to reorganize the triangle mesh [5], so that
highly spatial related triangles are packed with each other in the
file. While rendering a triangle, other triangles closed to it will be
found locally in the file, thus this method can avoid most file seek
system calls and thus is suitable for memory out-of-core program.
The third category is to compress the 3D model [6]. Originally
this technique is designed for the limited bandwidth between CPU
and GPU, but it can also be used for network transmission. There

are two categories of 3D mesh compression: geometry compres-
sion and connectivity compression, where the geometry compres-
sion dominates the final file size. To compress a 3D model, the
vertex data is first quantized, and then we make some predictions
based on observations. These predictions give us clues for en-
tropy/arithmetic coding.

2.2 Parameterization and Geometry Image
Surface parameterization is to find a mapping function F which
maps 3D coordinates (x, y, z) to 2D coordinates (u, v), and ge-
ometry image [3] is also a surface parameterization method.
Given a 3D model, we can find a 2D image to represent it, where
the R, G, B values of each pixel stand for the 3D coordinates,
normal maps, or texture coordinates of a vertex. An image with
resolution 257x257 will be sufficient for representing a mesh with
256x256x2 triangles, so we use the geometry image as the start
point of our mesh streaming method.

3. JPEG 2000-based Mesh Streaming

3.1 Geometry Image
Our mesh streaming method first produces the geometry image of
a 3D model. As described earlier, a geometry image is an exten-
sion of surface parameterization; more specifically, it uses an
image’s R, G, B values to represent the model’s attributes, such as
vertex coordinates, normal maps, texture coordinates, etc. Surface
parameterization, on the other hand, is to find an one-to-one map-
ping function 3 2F : ↔R R , such that

F()i ip q= , where
(, ,)
(,)

i i i i

i i i

p x y z
q u v

=⎧
⎨ =⎩

.

Thus, while processing a model, we first use the cut method in
geometry image [3] to find the proper boundary of the model.
Then, we use Floater’s surface parameterization method [2] to
flatten the model which has been cut to be a surface of 2-manifold
with boundary. Hence, the model is flattened to a 2D surface and
the boundary of the model is mapped to a square. We then resam-
ple the grid points in the image and use interpolation to calculate
the attributes, such as vertex coordinates, normal maps, and tex-
ture coordinates. Finally, we normalize the attributes to get the
corresponding R, G, B values by following equations:

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

×
−

=

×
−

=

×
−

=

255

255

255

minmax

minmax

minmax

zz
zB

yy
yG

xx
xR

i
i

i
i

i
i

3.2 Compression
The geometry image produced from the previous section is not
the actual image that we transmit over the Internet, due to its file
size and the fact that we have to transmit a number of images to
recover all of the attributes. JPEG 2000 compression method was
employed to address this problem, which is chosen for the reasons
below:

 JPEG image is the most used image compression format on
the Internet, and so is JPEG 2000.

 JPEG 2000 has a lossless compression mode.
 JPEG 2000 has greater compression rate compared to the

older methods.
 JPEG2000 supports multiple layer compression, thus we can

compress the data for all attributes into one image.
 JPEG 2000 supports progressive compression / decompres-

sion, which allowed us to achieve progressing transmission
over the Internet.

 Arbitrary image block can be retrieved from a JPEG2000
image, which is very suitable for view dependent transmis-
sion.

3.3 The Client-Server Architecture

Figure 1. The concept of the client-server transmission.

Figure 1 shows the concept of the transmission under our client-
server architecture. The further explanations are as the following:

1. When the client requests the server for getting a certain
3D model, together with the request, the initial viewing in-
formation is also sent to the server. The viewing informa-
tion is a 4x4 transform matrix. From this matrix, we can
calculate the vertex that is closest to the current viewpoint
as the following equation:

[] [] []2 6 10i i i iz x y z′ = × + × + ×rotation rotation rotation .

2. When the server receives the transmission request and the
viewing information, the server first divides the geometry
image of the 3D model into blocks. The block size we
chose is 8x8 according to the block size used in DCT
(Discrete Cosine Transform) of JPEG, thus for the image
with resolution of 32x32, it is divided into 4x4 blocks.
(The sizes of the geometry images used in this paper are
32x32, 64x64, 128x128, and 192x192.)

3. With the number of blocks and the viewing information,
the server can calculate which block has the vertex that is
closest to the user’s view and then decide the first block to
be sent by the following equations:

_ . (int) _ / _
_ . (int) _ % _
_ _ . _ _ .

block index x z index row number
block index y z index row number
block index block index y row number block index x

=
=

= × +

.

Client Side Server Side

t

1. Send a request to the server
for getting a 3D model (image).

2. Divide the geometry image of
the model into blocks.

3. Calculate the blocks’ transfer
sequence, and start to transmit
them to the client accordingly.

4. When the received data
amount reaches the threshold
(8KB), start to decode the data
and convert it to Vertex List,
then render it.

5. When received a message that
indicates the viewing angle
change, go back to Step 3.

4. After deciding the first block to be sent, we have to decide
what are succeeding blocks. To transmit the blocks as near
as possible to the first block, we send the blocks in a swirl
fashion as shown in Figure 2. The first one being the eye
of the swirl, the next block in line would be the one at its
immediate top, then the one next to the second in a
counter-clockwise fashion.

Figure 2. The swirl fashion.

After obtaining the sequence, we can place the blocks into
the sending buffer according to this sequence. In the proc-
ess of transmission, the server will keep track of the block
indices, so that when the viewpoint changes, there is no
need to resend the blocks that has been sent already.

5. After the client receives the block, it can start decoding
and placing the information into an array prepared before-
hand according to the block index. Squares with incom-
plete vertices will be set aside first. With this, we can de-
code while transmission and achieve the optimal effect of
mesh streaming.

When the viewpoint changes, the client will resend the viewing
information to the server as described in Step 1. When the server
receives the message, it will stop to transmission of the current
blocks it is transmitting, then proceed to Step 3 to re-compute the
new transmission sequence and start to transmit again.

3.4 Multi-resolution Transmission

Figure 3 shows the concept of the multi-resolution transmission
under our client-server architecture. The further explanations are
as the following:

0. When compressing the geometry image, we have to set the
number of quality layers (we use 12 layers). With this, low
quality image data will be placed at the front of the code
stream and the finer data at the rear. Aside from the qual-
ity layers, we can also set the ROI of the image to the de-
fault viewpoint of the model. Data falling in the ROI will
be placed at the front of the code stream.

1. The client sends the request to the server for getting a cer-
tain 3D model.

2. The server starts to transmit the geometry image of the
model.

3. At the client, when the amount of data received from the
server reaches the pre-defined threshold (we set the
threshold to 8KB), we will start to decode the geometry
image even the image is incomplete, and then convert the
image to vertex list before rendering. For example, if we
have an image that is being divided into 10 quality layers,
when the client received 8KB amount of data (which
amounts to 3 quality layers), we can render the model with
30% quality (while the model’s best quality as the 100%).
With more succeeding data received we can refine the
rendering and reconstruct the complete model at its best
quality when the transmission is completed.

Figure 3. The concept of multi-resolution transmission.

3.5 View-Dependent and Multi-resolution
With view dependency, we can render the portion of the model
that the user wants to see first (closest to the user’s viewpoint).
Multi-resolution, on the other hand, allows us to progressively see
the model to be refined as the transmission proceeds. Since both
of them are important, we make our system to have the two fea-
tures.
Figure 4 shows the flowchart of the view-dependent and multi-
resolution transmission under our client-server architecture. The
further explanations are as the following:

0. Determine the number of quality layers for the geometry
image of a 3D model.

1. The client sends the request to the server for getting a cer-
tain 3D model and sends the viewing information at the
same time to support the server to compute the block send-
ing sequence.

2. The server sends the first layer of the geometry image to
the client.

3. The client receives the first layer and starts to construct
the model and then render it to show a rough model.

4. The server sends the succeeding blocks according to the
computed block sending sequence. The details of the
computation of the block sending sequence are described

Client Side Server Side

t

1. Send a request to the server
for getting a 3D model (image).

2. Send the geometry image of
the model progressively.

3. Receive the incomplete ge-
ometry image, decompress it,
reconstruct the model and then
render it.

0. Compress the geometry image
and set the number of quality
layers.

1 1

2

1

2 3

4

2

1

3

6

8

9

7

4

5

in Section 3.3.
5. The client receives the blocks sequentially, decodes each

block and uses the data in the block to refine the con-
structed model and render it. If the viewpoint is changed,
the client will resend the viewing information to the server.

6. When the viewpoint changes, the server will follow the
steps described in Section 3.3 to re-compute the block
sending sequence again.

Figure 4. The flowchart of view-dependent and multi-
resolution transmission.

Figure 5 illustrates the concept of our view-dependent and multi-
resolution strategy. A JPEG 2000 image (geometry image) is
composed of image cubes which correspond to different image
blocks and quality layers. During the transmission, the image
cubes are selected to transmit depending on user’s requests. After
all image cubes are transmitted, the user can get the detailed
model with highest quality.

3.6 X3D Extension
Our mesh streaming method can be integrated in X3D and serves
as a replacement to the node IndexedFaceSet. The prototype is
shown in Figure 6.

3.7 The Details of Using JPEG 2000
As previously mentioned, the reason why we chose JPEG 2000 is
because geometry images are transmitted over the Internet and
need to be compressed. Other reasons are because it provides high
flexibilities and has a lossless compression mode. Moreover, it
has some other properties that have the advantages for us:

 JPEG 2000 supports multiple layer compression, which
allows more information to be compressed together in a sin-
gle image.

 JPEG 2000 can be compressed progressively, which allows
progressive transmission and decompression.

 Arbitrary image block can be retrieved from a JPEG 2000
image, which allows us to achieve view-dependency.

x

y

q

(a) (b)

(c) (d)

Figure 5. The concept of our view-dependent and multi-
resolution strategy. (q axis corresponds to quality layer)

GeometryImage:X3DComposedGeometryNode {
 SFString [in,out] url [][url or urn]
 MFInt32 [in] PosMin [0 0 0] (-∞,∞)
 MFInt32 [in] PosMax [0 0 0] (-∞,∞)
 MFInt32 [in] NormalMin [0 0 0] (-∞,∞)
 MFInt32 [in] NormalMax [0 0 0] (-∞,∞)
 SFInt32 [in] BlockSize [0] [0,∞)
}

Figure 6. The X3D extension.

From the above advantages, the following discussion shows how
the above mentioned points are used in our system:

 In our current implementation, each of the x, y, z coordi-
nates and nx, ny, nz normal vectors are represented by one
image layer, respectively. In other words, totally we need
six image layers. However, traditional JPEG only supports
three image layers (i.e., RGB), which forces us to use two
JPEG file to represent one 3D model (geometry image). On
the other hand, JPEG 2000 supports multi-layer compres-
sion, which allows us to easily compress both sets of infor-
mation into only one image, that means from one JPEG
2000 image (such as shown in Figure 7) we can obtain both
of the x, y, z (vertex positions) and nx, ny, nz (normal vec-
tors) information.

 Because JPEG 2000 uses wavelet transform to compress the
image into multiple quality layers (set to 12). Thus, in the
process of transmission, we can decide which layer to be
transmitted which allows us to achieve the effect of progres-
sive transferring.

Client Side Server Side

t

1. Send a request and the viewing
information to the server for
getting a 3D model (image).

2. Send the first layer of the
geometry image of the model.

4. Send the blocks to the client
according to the viewing infor-
mation.

3. Receive the first layer, start to
construct the model and then
render it.

5. When the viewpoint changes,
resend the viewing information
to the server.

1. Compress the geometry image
and set the number of quality
layers.

Figure 7. A JPEG 2000 geometry image (Beethoven) includes
the x, y, z coordinates which are encoded as R, G, B informa-
tion of the image and the normal vectors which is encoded as
other images that hided as layers of a JPEG 2000 image

 For achieving the view dependent issue, we adopt the con-
cept of ROI, i.e., we divide the geometry image into several
blocks (with size of 8x8), and then the blocks which are
close to the user’s viewpoint are selected first. Moreover,
when viewpoint changes, we can easily recalculate the new
priority block to be transmitted by computing the block in-
dices as the following:

/(/)
/(/)

i i i i

j j j j

Newblockindex verticeindex imagesize blocksize
Newblockindex verticeindex imagesize blocksize

=
= .

When the blocks in the transmission queue are all transmit-
ted, the server will recalculate for the next blocks to be sent.

Figure 8. View-dependent result.

4. Result
To show the result, we use a Beethoven model. The information
of the model is listed in Table 1. Figure 8 shows the view-
dependent result. When the viewing direction changed, the cur-
rent transmission is stopped and the new viewing part is transmit-
ted. Figure 9 shows the multi-resolution result. With the multi-
layer JPEG 2000 image, we can see the model being rendered in
greater details as more data received by the client as time goes.

Table 1. Information of the Beethoven model.
Model Beethoven
Original File Size (.obj) 322,169 bytes (314 KB)

Image (J2K) File Size 106,982 bytes (105 KB)

Image Resolution 256x256

Block Size 8x8

Figure 9. Multi-resolution result.

Figure 10 shows the result of considering both of the view-
dependent and multi-resolution which allows the user to see the
model with its quality varies from rough to fine as the server
transmits the blocks in sequence. In this figure, we can see the
head of the Beethoven at the left was first rendered in greater
detail, and the one at the right shows the model is rotated, note
that the shoulder has been refined.
Figure 11 shows the final result after receiving whole data set
from the server. In this figure, the final result looks as good as the
original model.

X(R) Y(G) Z(B) Nx

…

Figure 10. View-dependent and multi-resolution result.

Figure 11. The result of receiving whole data.

Figure 12. X3D result.

After incorporating our mesh streaming method into X3D, we can
see more extensions and variations. Figure 12 shows the result of
combining our mesh streaming method and a X3D library. In this
figure, the image at the left has additional material information,
and the one at the right has texture information. An example of
the original X3D source code is shown in Figure 13.

5. Conclusion and Future Work
In this paper, we propose a brand new mesh streaming method
which used geometry image to store all information of a 3D
model or a 3D scene. Since the geometry image is encoded as a

JPEG 2000 image, we can compress the geometry image without
data loss (lossless mode) or compress it in high compression rate
with a little bit data loss (lossy mode). With JPEG 2000’s support
for progressive compression/decompression, we can progressively
transmit and render a 3D model to reduce the user waiting time.

<Shape>
 <Appearance>
 <Material diffuseColor=".7 0.9 0.7"
 emissiveColor="0.1 0.1 0.1"
 specularColor=".9 .9 0.9"
 shininess="1.0"/>
 <ImageTexture url="tex03.jpg"/>
 </Appearance>
 <GeometryImage url=" Beethoven_256.j2c"
 PosMin="-46.485500 -57.875301 -24.550200"
 PosMax="46.485500 57.875301 24.550200"
 NormalMin="-0.997356 -0.998247 -0.849186"
 NormalMax="0.997365 0.983279 0.997054"
 BlockSize="8"/>
</Shape>

Figure 13. The X3D source code of the model shown in Figure
12 (right).

However, even the lossless mode of JPEG 2000 can compress the
data without loosing quality; there are still some inherent prob-
lems. To convert the 3D model to a geometry image, we have to
first cut the model to find the boundary and this actually may
cause data loss. Moreover, when using Floater’s method for sur-
face parameterization, there is a tendency to loss the information
at sharp regions of a model. Hence, the surface parameterization
method should be enhanced to lessen the data loss.
JPEG 2000 is a currently developing image format. The next step
that needs to be accomplished is to allow any client-server system
that already supports JPEG 2000 to transmit 3D model with
minimum modification. Furthermore, we will also try to integrate
our mesh streaming method with some new extensions of JPEG
2000 in the future, such as JPIP (JPEG 2000 Interactive Protocol)
[8], which is a new protocol implemented on top of HTTP. An-
other future work is to further extend this method to a 3D scene.
A 3D scene contains more than one 3D model. How to convert
these modes into geometry images and still provide view depend-
ency is still a noteworthy problem.

6. ACKNOWLEDGMENTS
This work is partially supported by the National Science Council
of Taiwan under the numbers: NSC92-2218-E-002-056, NSC93-
2622-E-002-033, and NSC94-2622-E-002-024.

7. REFERENCES
[1] Chen, B.-Y., and Nishita T. Multiresolution streaming mesh

with shape preserving and QoS-like controlling. In ACM
Web3D 2002 Conference Proceedings, 2002, 35-42.

[2] Floater, M. Parametrization and smooth approximation of
surface triangulations. Computer-Aided Geometric Design,
14, 3 (1997), 231–250.

[3] Gu, X., Gortler, S. J., and Hoppe, H. Geometry images. ACM
Transactions on Graphics (SIGGRAPH 2002 Conference
Proceedings), 21, 3 (2002), 355-361.

[4] Hoppe, H. Progressive meshes. In ACM SIGGRAPH 1996
Conference Proceedings, 1996, 99-108.

[5] Isenburg, M., and Lindstrom, P. Streaming meshes, In IEEE
Visualization 2005 Conference Proceedings, 2005, 231-238.

[6] Yang, S., Kim, C.-S., and Kuo, C.-C. J. A progressive view-
dependent technique for interactive 3-D mesh transmission.
IEEE Transactions on Circuit and System for Video Tech-
nology, 14, 11 (2004), 1249-1264.

[7] JPEG 2000 Part 1 Final Committee Draft Version 1.0,
ISO/IEC FCD15444-1:2000, 2000.

[8] JPEG 2000 Part 9 Second Final Committee Draft Version
1.0, 2003.

[9] Virtual Reality Modeling Language (VRML97), ISO/IEC
14772-1:1997, The VRML Consortium, Inc., 1997.

[10] Information technology — Computer graphics and image
processing — eXtensible 3D (X3D), ISO/IEC 19775:2004,
Web3D Consortium, Inc., 2005.

Figure 14. The result using our view-dependent algorithm. Note that, as the model rotates, the portion closest to the user’s eye will
transmit first.

Figure 15. The result using our multi-resolution algorithm. The mesh is refined as more data has received.

Figure 16. The result of combing both view-dependent and multi-resolution algorithms. Note the refinements in the yellow circles.

