
Animating Characters in Pictures

Shih-Chiang Dai
National Taiwan University
jeffrey@cmlab.csie.ntu.edu.tw

Chun-Tse Hsiao
National Taiwan University
hsiaochm@cmlab.csie.ntu.edu.tw

Bing-Yu Chen
National Taiwan University

robin@ntu.edu.tw

ABSTRACT
Animating pictures is an interesting and useful visual effect
in entertainment industry. In this paper, we present a sys-
tem that allow user to animate a character in pictures in 3D
space by applying 3D motion data. We use a 3D character
mesh with skeleton rigged as template model. The user need
to cut out silhouette of the character in pictures, and assign
correspondence points between 2D character image and 3D
template model. System then fits the template model to the
image. Finally, the user can apply any 3D motion data to
create animations in 3D space.

1. INTRODUCTION
To create a 2D character animation, traditionally, required
artist to draw each frame by hand.In 3D case, it also cost
hard labor modeling, skeleton rigging, applying motion data
or animating by hand, and so on. In recent years, many tech-
niques are developed to help artist reduce those work. By
triangulating characters into mesh or represent by grid, one
can easily reuse texture in image, and preserve the rigid-
ity of character while deformation. Thus creating charac-
ter motion becomes easy and fast. However, we don’t have
enough information to create a 3D animation, since what
we have is only a picture. Therefore we need to make some
assumptions: the object we want to animate is a human-like
character, and most texture information can be get from
the image. With these assumptions, the depth information
can be estimated by existing models, and the lost texture
information can be completed by some intuition.

Our system can use a 3D character mesh with skeleton rigged
by artist, or automatically generate by [2]. What users need
to do is just to cut out the silhouette of character, and to
assign some feature point correspondence, system will then
do model fitting for the rest. Occlusion problem can be
solved by this approach separately to each part. With an
easy-to-use UI, our method can help artist create animation
more easily, both in 2D and 3D case. Or for fun to anyone
interested in visual effects.

2. RELATED WORK
There has been many interesting idea proposed to animate a
still picture. [5] animating pictures using stochastic motion
textures. They animate passive elements, such as water and
trees, that are subject to natural forces like wind. [10] takes
an image and 3d motion data as input, similar to our work,
but this method does not work for motions where the char-
acter changes its moving direction. [3] generate 3D charac-
ter models from user-specified strokes, which allow them to
add illumination and perspective texturing effects to 2D cel
animation.

The most famous one is ARAP(as-rigid-as-possible shape
manipulation) algorithm [12], which lets a user move and
deform a two-dimensional shape without manually estab-
lishing a skeleton or freeform deformation (FFD) domain
beforehand. Performance of their work is excellent, and UI
is very user-friendly. Algorithm itself is also very simple to
integrate with others. Thus, many research based on it has
been developed. Most of them handle only planar motion
since we don’t have depth information in single image. This
is the main problem we want to solve in this paper. Our
goal is to achieve the same quality and performance as be-
low, reconstruct reasonable depth information in addition.
Of course, a user-friendly UI is needed.

3. OVERVIEW

Figure 1: System overview.

Figure 1 shows our system overview. Our method takes an
image as input. Users need to cut out the contour of the
character. If occlusion occurs between different parts, users
need to provided contours of each part separately. System
will sample points on the contour as vertex in 3D space.
They will be formed into a close loop we call ”contour loop”.

Several tools are provided for cutting out the contour [13, 4,
18], or users can modify manually to get better quality. Then
the cut out region is completed by inpainting algorithms [6,
17]. We implement a grabcut algorithm [16] to solve this
problem.

The next step is to modify the template model’s pose if
it differs too much from the character pose in the image.



System then roughly generates silhouette vertices [9], which
also form a close loop we call ”silhouette loop”. If the initial
result fails to form a close loop, or is not suitable(i.e. the
loop’s numbers of two types are not the same), users can
modify it manually.

Now users need to assign some feature vertices of a silhou-
ette loop corresponded to a contour loop. System then fit
the silhouette to contour point. Let the silhouette vertices
be handles, we then apply [12] to deform the whole tem-
plate model while preserving rigidity. The skeleton is fitted
then according to the barycentric coordinate we precom-
pute before the fitting step start.Then we can adjust the z
value according to average distance between silhouette ver-
tex and bone. The lost texture information is automatically
completed with some prior knowledge. Users can modify
texture for better appearance. Finally we can apply any
motion data to our mesh, or add any effect such as shadow,
light transport in 3D space, since we have a 3D mesh with
skeleton binding.

4. ALGORITHM
In this section, we describe each step of model fitting and
texture completion in detail.

4.1 Silhouette Fitting
Given a contour loop C extracted from input image and a
silhouette loop

S = {s1, s2, · · · , sn} with s1 = sn

which is the sequence of n silhouette loop vertices correspond
to template model, we have to match silhouette loop with
contour loop. The final match of silhouette loop will be
used as constrain vertices for Skin Fitting steps which will
be discussed later. In this step user should drag m vertices

S′ = {si(1), si(2), · · · , si(m)} with si(1) = si(m) = s1

in silhouette loop to their correspondent positions manually
(Note that S′ is subsequence of S). Our system will fit the
remaining silhouette vertices to C automatically satisfy the
constrain

length(sj , sj+1) =
length(si(p), si(p+1))

i(p + 1)− i(p)

where i(p) ≤ j ≤ i(p + 1), 1 ≤ p ≤ m− 1

length(a, b) denote contour length along a to b. That is,
we uniform distribute every vertices of silhouette loop to
coutour loop with equal length between every pair of vertices
in subinterval formed by S′. If there exists several S, we do
the same operation separately.

Figure 2 demonstrates the principle of silhouette matching
.Yellow line is the contour loop extracted from input image,
blue line is the silhouette loop with vertices as blue dots
and red points are user specified vertices with corresponding
positions on contour.

4.2 Skin Fitting

Figure 2: Silhouette fitting. Left: feature points
matched by user. Right:remain S automatically fit-
ted by system

After fitting silhouette loop with contour loop, we have to
deform the shape of template model T to match the shape
of main object in original image satisfing the constrain we
have done in silhouette fitting step. In the view space with
the same camera parameter in silhouette fitting, we can
keep z position fixed and consider the original 3D template
model as a 2D triangular mesh. For 2D triangle mesh de-
formation with constrained mesh vertices, the as-rigid-as-
possible(ASAP) shape manipulation technique [12] in a suit-
able choice.

The ARAP algorithm has following steps:

T ⇒ I ⇒ F ⇒ D

In T ⇒ I an intermediate shape I is determined for the
given vertex constrains(In our case, S′) by a Laplace-based
deformation. Then original template mesh faces are fitted
to faces in I rigidly with just translation and rotation, result
in disconnected mesh F . Finally, we can attain the result
transformed mesh D by averaging corresponding vertex po-
sitions in F . Note that the last two steps are for scaling
error minimization, but in our case we do not need to pre-
serve scaling after skin fitting step since we use ARAP to fit
different models, not to deform same models for animation.
Futhermore, for different target object in input image, the
area different between projected template mesh and target
object could be severe and we definitely do not prefer en-
forcing scale invariant. Based on the criteria we mentioned
before, we simply discard steps I ⇒ F ⇒ D but use T ⇒ I
only. By a sparse linear solver, we can fit the remain part
within a second.

Figure 3: Skin fitting. Left: S which have been fitted
to C. Right: skin fitted by ARAP algorithm

After fitting skin of template mesh as in Figure 3, we still



have to fit the original skeleton corresponding to fitted skin.

4.3 Skeleton Fitting
In this step, we have to fit the skeleton to the appropri-
ate position related to skin. Before fitting step starts, we
project the mesh and skeleton joints into xy plane, as before
and record each joint position by barycentric coordinate of
the triangle which contain the joint. If there exists several
triangles contain the same joint, we choose the one nearest
to the joint in original 3D space, and is belongs to that bone.

Let (v1, v2, v3) the vertices of representative triangle, joint
position with barycentric coordinate (a, b, c) before trans-
formation can be represented as v = av1 + bv2 + cv3. After
skin is fitted, new position of representative triangle become
(v′

1, v
′
2, v

′
3) then the join’s new position could be computed

as v′ = av′
1 + bv′

2 + cv′
3.

Figure 4 shows that the skeleton has been fitted to the right
position.

Figure 4: Skeleton fitting. Left:skeleton before ad-
justment. Right:skeleton after adjustment

4.4 Thickness Adjustment
After skin and skeleton fitting, we have transformed the orig-
inal template mesh by adjusting xy coordinate in 2D space.
However, the quantity of third coordinate(or thickness) must
also be revised to generate convincing 3D target mesh. As
our experiment, we observed that the distance between the
bone and the skin, is highly correlated to the average dis-
tance between silhouette vertices and the bone they belong
to as seen in Figure 5.

Figure 5: Left image represent thickness di between
skin Si and bone B. d′

i on the right is thickness af-
ter adjustment which correlated to distance between
silhouette vertices and bone.

So the same, we record the average distance D for each bone
before fitting step starts. If the vertex belong to several
bones, we compute the average with its bone weight.

D =

∑
ωi di

N
(1)

di = ‖si −B‖ , si ∈ S (2)

where N is the numbers of vertices in S, ωi is bone weight,
and B is the bone. We have D for each bone computed,
denoted by Di.

After skin is fitted, and new joint position is got in previ-
ous step, we can now compute the new average distance D’
similarly by (1). The new z value of vertices is scaled by the
ratio

R =
∑

ωi (D′
i/Di) (3)

the joint new z value is simply scale by the ratio D′
i/Di.

As shown in Figure 6, the head part and the leg part seems
more reasonable after adjustment.

Figure 6: Thickness adjustment. Left:original thick-
ness. Right: thickness adjusted by R

4.5 Lost Texture Completion
With a single image, the only way we can get the lost texture
information is by guessing. Applying some prior knowledge,
we assume the texture of back side usually mirrors front
side except its head part. So we directly complete the lost
texture information by mirroring. The backside of head part
is usually hair, so we complete it by extend the boundary of
the front side of head part. If there are still some artifacts,
system allow users to modify it manually.

5. RESULTS
Our method is implemented in c++, rendering by openGL.
We follow the standard linear blend skinning (LBS) to per-
form Character deformation. Animation can be displayed
real-time. Motion data we use can be downloaded at CMU
website : http://mocap.cs.cmu.edu/.

In Figure 7, a) is the original picture, b) is the fitted template
model, c) is rendering with texture mapping, d) is animation
applying motion data. In Figure 8, a) is the original char-
acter image, b) is the fitted template model, c) is rendering
with texture mapping and embedding into a picture, d) is
animation applying motion data. Computation time is all



a) b) c) d)

Figure 7: Results model fitting and animation.

interactive except inpainting and silhouette cut out. User
interaction time is about 10 min. for a trained user.

6. CONCLUSION
The main advantage of our method is following:

• modeling UI: our system UI’s complexity is consider
easier than stroke-based method such as [11, 14], since
users can take image as reference in stead of imaginary
ability. And a nice template model can help us pre-
serve feature, instead of smooth surface.

• rendering: The model we get after fitting step is with
texture information, so we can easily render it. And
since we have 3D information, we can easily apply 3D
feature such as shadow, light transport effect.

• animation: The result mesh is rigged with skeleton,
so we can easily deform it by applying motion data
with good quality and effectiveness.

There are two limitation of our method. Due to lack of depth
information, our animation looks weird from side view. Tex-
ture gets distortion critically around silhouette edge. It’s dif-
ficult to estimate the depth information with only a picture
and a template model. We may justify it by more informa-
tion, such as another picture from side view, or more models
for machine learning [1]. We currently let texture distortion
be refined by user. More texture synthesis algorithms can
be applied to refine it automatically [8, 7].

Our system can be an infrastructure for those who inter-
ested in animating characters in 3D space. High quality
rendering effect can be applied to the 3D model. With more
information user provided, even high quality modeling can
be achieved. On the other hand, one can apply some auto-
matic pose estimation algorithms,such as [15],to reduce the
complexity of UI if he cares about simpler work flow than
better results. Finally, the same framework can be extended
to more kinds of object, such as rigid body, animal. It could
be a useful and interesting method for many applications.

7. ACKNOWLEDGMENTS



a) b) c) d)

Figure 8: Results model fitting and animation.

This work was partially supported by the National Science
Council of Taiwan under NSC95-2221-E-002-273.

8. REFERENCES
[1] B. Allen, B. Curless, and Z. Popović. The space of

human body shapes: reconstruction and
parameterization from range scans. In SIGGRAPH
’03: ACM SIGGRAPH 2003 Papers, pages 587–594,
New York, NY, USA, 2003. ACM.

[2] I. Baran and J. Popović. Automatic rigging and
animation of 3d characters. ACM Trans. Graph.,
26(3):72, 2007.

[3] B.-Y. Chen, Y. Ono, and T. Nishita. Character
animation creation using hand-drawn sketches. The
Visual Computer, 21(8-10):551–558, 2005. Pacific
Graphics 2005 Conference Proceedings.

[4] Y.-Y. Chuang, B. Curless, D. H. Salesin, and
R. Szeliski. A bayesian approach to digital matting. In
Proceedings of IEEE CVPR 2001, volume 2, pages
264–271. IEEE Computer Society, December 2001.

[5] Y.-Y. Chuang, D. B. Goldman, K. C. Zheng,
B. Curless, D. H. Salesin, and R. Szeliski. Animating
pictures with stochastic motion textures. In
SIGGRAPH ’05: ACM SIGGRAPH 2005 Papers,
pages 853–860, New York, NY, USA, 2005. ACM.

[6] I. Drori, D. Cohen-Or, and H. Yeshurun.
Fragment-based image completion. In SIGGRAPH
’03: ACM SIGGRAPH 2003 Papers, pages 303–312,
New York, NY, USA, 2003. ACM.

[7] A. A. Efros and T. K. Leung. Texture synthesis by
non-parametric sampling. In ICCV ’99: Proceedings of
the International Conference on Computer
Vision-Volume 2, page 1033, Washington, DC, USA,
1999. IEEE Computer Society.

[8] H. Fang and J. C. Hart. Detail preserving shape
deformation in image editing. ACM Trans. Graph.,
26(3):12, 2007.

[9] A. Hertzmann. Introduction to 3d non-photorealistic
rendering: Silhouettes and outlines. In SIGGRAPH
99, chapter Course Notes. ACM Press, 1999.

[10] A. Hornung, E. Dekkers, and L. Kobbelt. Character
animation from 2d pictures and 3d motion data. ACM
Trans. Graph., 26(1):1, 2007.

[11] T. Igarashi, S. Matsuoka, and H. Tanaka. Teddy: a
sketching interface for 3d freeform design. In
SIGGRAPH ’99: Proceedings of the 26th annual

conference on Computer graphics and interactive
techniques, pages 409–416, New York, NY, USA, 1999.
ACM Press/Addison-Wesley Publishing Co.

[12] T. Igarashi, T. Moscovich, and J. F. Hughes.
As-rigid-as-possible shape manipulation. ACM Trans.
Graph., 24(3):1134–1141, 2005.

[13] Y. Li, J. Sun, C.-K. Tang, and H.-Y. Shum. Lazy
snapping. ACM Trans. Graph., 23(3):303–308, 2004.

[14] A. Nealen, T. Igarashi, O. Sorkine, and M. Alexa.
Fibermesh: designing freeform surfaces with 3d
curves. ACM Trans. Graph., 26(3):41, 2007.

[15] V. Parameswaran and R. Chellappa. View
independent human body pose estimation from a
single perspective image. cvpr, 02:16–22, 2004.

[16] C. Rother, V. Kolmogorov, and A. Blake. ”grabcut”:
interactive foreground extraction using iterated graph
cuts. ACM Trans. Graph., 23(3):309–314, 2004.

[17] J. Sun, L. Yuan, L. Yuan, J. Jia, and H.-Y. Shum.
Image completion with structure propagation. ACM
Trans. Graph., 24(3):861–868, 2005.

[18] J. Wang, M. Agrawala, and M. F. Cohen. Soft
scissors: an interactive tool for realtime high quality
matting. ACM Trans. Graph., 26(3):9, 2007.


