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ABSTRACT
因前方車輛所造成的視線遮擋問題是威脅行車安全的重要因
素之一，解決這個問題的其中一個可能方式，是將前方車輛
以第一人稱視角所看到的景象分享給後方車輛，使其視野中
被前方車輛遮擋住的區域能夠經由適當的修補而還原出，去
除障礙物後的景象。然而，不同車輛間的攝影機鏡頭在幾何
空間上的不一致，使得車對車的視覺分享與生成變得非常具
有挑戰性。在本篇論文中，我們提出了一個能夠產生第一人
稱視角的影像生成演算法來解決這類的問題。首先，我們先
標記出後車視野中未被遮擋的部分作為我們的參考區域，接
著迭帶地從前車影像中，估計出區域單應性轉換及進行視角
適應性變形，我們即可對前車影像做區域性的形變，使其視
角及輪廓邊緣能夠與後車被遮擋的部份對應，並能無縫地接
合在一起，讓使用者看起來似乎是前方車輛變得半透明了。
我們的系統改善了駕駛者的可見度，也因此降低了駕駛過程
中的負擔，進而提昇駕駛舒適度。我們以幾組在實際駕駛情
境中所拍攝的具挑戰性之測試資料來展示本系統的實用性及
穩定性。

Categories and Subject Descriptors
I.3.3 [Computer Graphics]: Picture/Image Generation;; I.4.9 [Image
Processing and Computer Vision]: Applications;

General Terms
Algorithms

1. INTRODUCTION
Motivated by advent of cost effective and widely available cam-
corders, nowadays it is common to see a car driver using a dashcam
(dashboard camera), a portable camera that is attached to the interior
of the windshield, to record videos capturing objects in front of
the car when in motion. In the unfortunate event that the car is
involved in an accident, the recorded videos can serve as evidence
for insurance and legal purposes. Since the dashcam can be treated
as a type of first-person-view of the car, instead of using it only as a
passive record, in this paper we develop a solution to utilize other

Figure 1: Previously proposed See-Through System (STS)
presents to the driver a view with images taken from the pre-
ceding vehicle directly super-imposing over the image area oc-
cupied by the preceding vehicle [2]. However, the drivers need
to pay extra attention since the perceived contextual informa-
tion from different views are highly inconsistent.

vehicles’ views (i.e., taken from their dashcams) to improve driver
perception and increase the level of driving safety.

Considering a vision-obstructing large vehicle in front of ours while
driving, critical decisions such as lane changing or overtaking can-
not be easily made because drivers cannot be fully aware of the
potential dangers behind the visual obstruction. Although it has
been shown that the overtaking vehicle can utilize direct vehicle-to-
vehicle (V2V) communications to access the video data recorded by
the front vehicle without significant delay [2], rendering the video
streaming in the perspective of preceding vehicle requires the over-
taking drivers to continuously pay attention to two disjointed views
in different perspectives. Such fragmented views and inconsistent
perspectives cause degradation in spatial cognition and place extra
burden on the overtaking driver. For example, in Figure 1, the visual
discontinuities around the boundaries of the darkened rear wind-
screen are not only distracting but could also have a negative impact
on driving safety.

Given two synchronized video sequences Ir and It, which are cap-
tured by a leading vehicle (r) and the subject vehicle (t), respectively.
The field-of-view in It are partially obstructed by the leading ve-
hicle. Our goal is thus to generate an image sequence Ît, where
the occluded regions in each frame of It are replaced by the visible
visual elements appearing in the corresponding frame of Ir with the
perspective of the subject vehicle. To produce Ît, a straightforward
solution is to perform a pairwise image matching and stitching be-
tween two corresponding frames, as suggested by [1]. However, the
performance of such process is affected by the following difficulties.
Firstly, if the subject vehicle followed the leading vehicle with a
short distance, the occluded areas severely downgrade the matching
quality. Secondly, the inconsistent parallax from scene depth and



different camera locations violate the assumptions made in typical
stitching approaches [1, 6]. Finally but not lastly, applying the meth-
ods designed for images to process videos may lead to temporal
artefacts, e.g., the ghost effects of different misaligned objects in
the video.

To address the above limitations and challenges, we propose a view-
sharing system to integrate spatial information across two temporally
aligned sequences. The proposed system performs both shape ad-
justment and color blending to generate the composited video such
that the viewing perspectives and color appearances among different
views are seamlessly fused and the temporal coherence can be also
achieved. To this end, we propose a video-based perspective adap-
tation technique consisting of two main steps: local homography
estimation and perspective-aware warping. With our approach, the
unobstructed view and perspective of the leading vehicle can be
gradually transferred and adapted to the matched occlusion region
in the subject video. Specifically, our approach makes use the coher-
ence of scene dynamics to guide the local warping across long video
sequences. We also allow local homographies to be accumulated
to accelerate incremental homography propagation. In addition,
the parallax problem is also handled properly by restricting image
stitching within a local region.

In summary, the contributions of this work are stated as follows.
Firstly, we propose a view-sharing system that integrates spatial
information across two temporally synchronized dashcams. The
generated video sequence enables the subject driver to monitor sur-
roundings ahead of the obstructed vehicle in accordance with current
visual perception, thus providing complete situation awareness that
facilitates decision making and responses to driving events. Sec-
ondly, we exploit scene dynamics in a video and propose a spatially
varying warping technique for locally adapting the visibility as well
as the perspective of the lead vehicle to the occluded region in the
target location. It allows the subject driver to exceed the limited
spatial visibility in a perspective-consistent way. Finally, we show
that our system is of high practical value by evaluating it in dif-
ferent scenarios, including straight-lane region on highways and
curved-lane region in urban areas.

2. OVERVIEW
Figure 2 depicts the overall algorithmic flow of our video perspec-
tive warping technique. The input to our system consists of a target
and reference sequence, which are assumed to be temporally syn-
chronized. The system first estimates the vision-obstruction regions
(Figure 2(a)) in the target sequence (Section 3.1). To generate the
corresponding contour of the visible visual region captured by the
reference image, we track the robust features trajectories through
the spatio-temporal volume in the reference sequence, as described
in Section 3.2. The area inside the contour (Figure 2(b)) is then
transferred across multiple frames by the proposed perspective adap-
tation algorithm (Figure 2(c)) and stitched to the matched occlusion
region in the target frame (Figure 2(d)). To avoid perceptional dis-
crepancy and mismatched boundaries between the transferred region
and target image, our perspective adaptation algorithm (Section 3.3)
adjusts the shape of the transferred region so that the viewpoints are
continuous across the boundaries of the transferred region and the
target image. Specifically, spatially-varying warping and local stitch-
ing process are performed in the area inside the contour through the
video volume until the transferred region adapts to the viewpoint
of the target image. Fig.2(e) shows the final synthesized image
which is seamlessly composited from the reference and target im-
ages and achieves consistent visual appearance along the boundaries

and perspective projection.

2.1 Problem Formulation
Considering two moving vehicles, namely the subject vehicle and
the lead vehicle. Denote the target and reference sequences cap-
tured by the subject vehicle and lead vehicle as It(x) and Ir(x̂),
respectively. For each frame in It(x), the captured scene is partially
occluded by the lead vehicle. Let x = [x, y,m] and x̂ = [x̂, ŷ, n]
denote the spatial-temporal coordinates of It, Ir withm = 1, ...,M
and n = 1, .., N indicating their frame indices, respectively. For
simplicity, we will refer to the m-th target and n-th reference frame
as Itm and Irn in the following discussions. Furthermore, we assume
that the temporal mapping is expressed through a discrete-time sig-
nal mapping function T : N → R, such that (m,T (m)) is an
assignment of an target frame to a reference frame. For each input
frame Itm, the temporal mapping (m,T (m)) is assumed to be deter-
minable in real-time via wireless vehicular communication system.
For each frame Itm in the target sequence, our goal is to replace the
vision-obstruction region with the visual elements in the temporally
corresponding frame IrT (m) according to the perspective projection
of Itm.Specifically, it will create an impression as if the lead vehicle
becomes transparent, as shown in Fig. ??.

3. METHOD
3.1 Occlusion detection
In the target sequence, the occluded areas correspondence to the
lead vehicle’s positions. To contour such region Ωt

m in each frame
Itm, the robust object tracking method proposed by Zoung et al. [10]
is adopted to obtain an accurate vehicle position. The tracker is
initialized by an vehicle object detector, then the states of the target
position is estimated and updated using a collaborative model. The
method outperforms many other object tracking methods [7] when
the scale variation is large, i.e., the lead vehicle moves suddenly or
the relative speed between two vehicles changes irregularly, which
are of common situations when cars are in motion.

3.2 Contour generation
After the occluded position Ωt

m (Figure 3(a)) in the target image
Itm is estimated, the goal of this stage is to generate the correspond-
ing contour Ωr

T (m) in the reference image IrT (m) that provides the
visual elements that are invisible in the target image. We develop
a forward tracking scheme in the reference video volume to find
the position of such region. For each target frame Itm, GPS infor-
mation is firstly utilized to find the spatially corresponding frame
IrT (m)−k (Figure 3(b)) in reference sequence, where k is an inte-
ger index offset. GPS alignment guarantees that the corresponding
inter-sequence frame pair (Itm, I

r
T (m)−k) is taken approximately at

the same geographical locations within the range about ±2.5 ∼ 5
meters. Next, we perform image matching technique between the
image pair (Itm, I

r
T (m)−k) to estimate a global transformation that

related two images. Since they are captured from a similar view-
point, a global transformation model is sufficient to roughly model
their transformation. Then, we use the global transformation to
locate Ωt

m in the corresponding location M in the frame IrT (m)−k.
To find the estimated contour Ωt

T (m) in IrT (m), starting from frame
IrT (m)−k, we detect features within M and retrieves their trajecto-
ries by making a forward sweep through the reference video volume.
(Figure 3(c)) shows the result of the estimated contour Ωr . The vi-
sual elements in the estimated region Ωr

T (m) is gradually transferred
and aligned with the input image by the technique introduced in
Section 3.3.



reference sequence 

𝐼𝑟( x)
target sequence

𝐼𝑡(x)

(a) Vehicle detection

time

(d) Final stitching

(e) Final result𝐼𝑚
𝑡 𝐼′

𝐼𝑇(𝑚)
𝑟

(b) Contour estimation

(c) Perspective adaptation

Ω𝑟

Ω𝑡

Figure 2: An overview of the proposed method. Given the target and reference sequences, the occlusion region (a) in the target image
is estimated and our system automatically finds the corresponding contour (b) in the reference image. To transfer the area inside
the contour in the reference image to match the occluded region in the target image, the perspective of the transferred region are
adapted to fit those of the location on the target image by performing (c) perspective adaptation through reference video volume and
(d) a stitching process between two image frames. In the stage of perspective adaptation, a novel view Ĩ is synthesized by performing
local homography estimation and perspective-aware warping. Finally, we stitch the synthesized view and target image where the
warped region is seamlessly blended onto the target image to make an impression that the vehicle is transparent (e).

(a) (b) (c)

Figure 3: (a) Target image Itm and the occluded region Ωt
m. (b)

The spatially corresponding frame IrT (m)−k of Itm obtained by
GPS information.(c) The generated contour Ωr

T (m) in IrT (m) by
our method.

3.3 Perspective adaptation
Given the target image Itm with the occlusion region Ωt

m and the
reference image IrT (m) with the contour mask Ωr

T (m) specifying the
transferred region in the reference image to the matched occluded
region in the reference image, the goal of perspective adaptation is a
novel synthesized view adapting to both the shape and the perspec-
tive of the target image while closely approximating the original
local appearance of the transferred region.

The perspective of adjacent pixels along the boundary of the trans-
ferred region in the synthesized image may be discontinuous if
composited directly or incorporated using a simple global adjust-
ment. Thus, for seamless transferring, a video-based perspective
adaptation approach is used to adjust the viewpoint within the trans-
ferred region and remove the perspective discontinuities along the
boundary while maintaining the local shape of the original trans-
ferred region.

An important characteristic of perspective projection is foreshort-
ening: objects becomes smaller as their distance from the observer
increase, as mentioned in [4]. That is, the projected size of an
object depends on its depth, where the depth in a scene gradually

changes when the camera is in motion. In other word, the ap-
pearance change between consecutive frames also reveal how their
perspective changes. Thereby, when there is a significant discrep-
ancy between the perspectives of the target and the reference image,
the 2D shape of the transferred region must be adjusted according
to the adapted motion to match such changes or discrepancies, we
propose perspective-adaptation technique to accomplish this task.

3.3.1 Perspective-aware warping and stitching
Rendering a consistent perspective view can be achieved by esti-
mating the transformation function between the reference and target
image. Specifically, given the estimated homography H ∈ R3×3,
a pixel at position x̂ = [x̂, ŷ]T in the reference image IrT (m) is
warped to the position x = [x, y]T in the target image Itm by

x′ = Hx̂′, (1)

where x′ is x in homogeneous coordinates. In inhomogeneous
coordinates,

x =
hT
1 [x̂ ŷ 1]T

hT
3 [x̂ ŷ 1]T

and y =
hT
2 [x̂ ŷ 1]T

hT
3 [x̂ ŷ 1]T

, (2)

where hT
j is the j-th row of H. Eq. 2 can be rewritten as:

03×1 =

 01×3 −x̂′T yx̂′T

x̂′T 01×3 −xx̂′T
−yx̂′T xx̂′T 01×3

h, h =

h1h2
h3

 . (3)

Let ai ∈ R2×9 be the first two rows of Eq. 3 computed for the i-th
correspondence pair {xi, x̂i}. Direct Linear Transformation (DLT)
is one of the techniques to estimate the nine elements of H from a
set of correspondences {xi, x̂i}Ni=1 by

h = arg min
h

N∑
i=1

‖aih‖2 = arg min
h
‖Ah‖2, (4)



where A ∈ R2N×9 is obtained by stacking vertically ai for all i.
The solution is the least significant right singular vector of A.

Although a single 2D global transformation performs well for planar
scenes or rotational camera motions, but for complex scenes, i.e.,
highly non-planar scene that is captured by different cameras in
vehicle path, as in our situation, the assumptions on motion prop-
erties and selection of dominant motions often lead to inaccurate
results (Figure 4(c)). Moreover, due to the presence of occlusion,
accurately aligning the input image and the reference image is much
more challenging.

To tackle this obstacle, we propose a two-stage perspective-aware
warping technique that utilizes the coherence of video dynamics
to guide the perspective adaptation. In the first stage, we estimate
the spatially varying warping functions between the consecutive
frames in the reference sequence that describe how the transferred
region (the area inside the contour Ωr

T (m)) should be deformed so
that its size and shape matches the perspective of the target image. A
novel view I ′T (m)−k that integrates the visual element of transferred
region while approximates the viewpoint of target image is synthe-
sized by proceeding the process consecutively until the transferred
region is gradually warped to IrT (m)−k, which represents the spa-
tially closet frame of the target frame Itm in the reference sequence.
In the second stage, we align the synthesized image I ′T (m)−k and
the target image Itm together, then the final composited image is
recovered by blending the elements in the aligned image and the
target image in the occluded region.

Feature tracking. The transformation models that relate two im-
ages are typically estimated from noisy correspondences of local
invariant features. Since consecutive video frames are usually very
similar, we adopt the sparse optical flow method [5] to match corre-
sponding feature points between two neighboring frames. Sparse
optical flow method estimates the motion for a selected number of
pixels, thus it provides more robustness against noise than optical
flow algorithms while avoids high computational cost of frame-to-
frame matching by using robust feature descriptors, i.e. SIFT [3].
Specifically, we compute interest points (Shi-Tomasi features) in the
video frame and generate matched points for these interest points
by tracking them across multiple frames. The tracking process pro-
duces fairly accurate matching results.

Spatial varying warping function. Let {xi, x̃i}Ni=1 be the col-
lected correspondence set across consecutive frames Irt and Irt−1

in the reference sequence, where x = [x, y], x̃ = [x̃, ỹ] and N is
the number of correspondence pairs. To align two frames, a pixel
at position x∗ in the frame Irt is warped to the position x̃∗ in the
frame Irt−1 by a location dependent homography model [8]:

x̃∗ = H∗x∗, (5)

where H∗ is estimated from a weighted minimization problem:

h∗ = arg min
h
‖

N∑
i=1

ωi
∗aih‖2. (6)

subject to ‖h‖ = 1 and the weights {ωi
∗}Ni=1 are calculated from a

Gaussian-like distribution:

ωi
∗ = exp(−‖x∗ − xi‖2

σ2
), (7)

where σ2 is the variance. Eq. 7 gives higher weight to data points

(a) reference image (b) target image

(c) Global homography (d) MDLT [8]

Figure 4: Aligned images. (a) reference image captured by the
leading vehicle. (b) target image captured by the subject ve-
hicle. (a) and (b) are input pairs. (c) the synthesized result
stitched with global homography after final stitching. (d) the
synthesized result stitched with MDLT method after final stitch-
ing.

closer to x∗. Since the problem can be written in the matrix form

h∗ = arg min
h
‖W∗Ah‖2, (8)

where the W∗ ∈ R2N×2N can be further described as:

W∗ = diag([ω1
∗ ω

1
∗ ... ω

N
∗ ω

N
∗ ]). (9)

diag() constructs a diagonal matrix with a given vector. Eq. 8
corresponds to a weighted Singular Value Decomposition(WSVD)
problem, and the solution is the least significant right singular vector
of W∗A.

Avoiding parallax using local stitch. As mentioned in [9], the
images with significant parallax often cannot be aligned well over
the whole overlapping region without suffering artifects like folding-
over. To handle parallax, we also perform local stitch between Irt
and Irt−1. Specifically, after the local homographies between frame
Irt and Irt−1 are estimated, only the area inside the transferred con-
tour Ωr

t is warped to Irt−1, then a novel view I ′t−1 is composited,
which correspondences to the perspective observed in Irt−1. By
iteratively applying local homography estimation and perspective-
aware warping between I ′t and Irt−1, the content and the perspective
inside the contour Ωr

T (m) is gradually adjusted. Finally, a novel
frame I ′T (m)−k is synthesized.

3.3.2 Final stitching
Owing to the first warping stage discussed in Section 3.3.1, the per-
spective of I ′T (m)−k is adapted to IrT (m)−k, which is the spatially
closest frame of the subject frame Itm in reference video sequence.
We assume that the perspectives of two frames should be similar if
the distance between their spatial coordinates is small enough. Fi-
nally, we stitch Itm and I ′T (m)−k together to get the final panoramic
image Î . In order to make the leading vehicle transparent, we only
cut the part that corresponds to the occlusion mask Ωt from the
stitched view and blend it with Itm to get the final result Î .

4. EXPERIMENTAL RESULTS
We evaluate the performance of our system using video clips col-
lected in real driving scenarios. The videos were designed to be
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Figure 5: (a) is the frame IrT (m)−k in the reference sequence.
(In this case, we set k = 30). (b) is a synthesized frame by the
proposed perspective adaptation method. One can see that the
perspectives of the two different frames are very visually simi-
lar inside the mask.

captured in three different road conditions and traffic flows: (i) on
the highway, (ii) on the city road and (iii) on the mountain road.
The dashcams on the vehicle were set up in the middle of the wind-
shields with timestamps information. For capturing these videos, the
driver on the subject vehicle followed in the path of the bus ahead,
which corresponded to the lead vehicle through our discussion. In
addition, the geographical information provided by GPS receivers
on the vehicles was used to spatially align two videos. Beside, we
also recorded an additional video with only one dashcam. In the
following sections, we first demo the effectiveness of the proposed
perspective adaptation approach in 4.1. Then, we compare our
method with two approaches: (i) global alignment using RANSAC
and (ii) local alignment with Moving Direct Linear Transformation
and demonstrate several result using the proposed method in Section
4.2.

4.1 Verification of perspective adaptation
In this experiment, we aim to use a single video sequence to validate
the effectiveness of the proposed perspective adaptation approach.
By gradually warping the area specified the contour captured at time
T (m), it perspective is matched to that of time T (m) − k. The
result is shown in Figure 5(b). Figure 5(a) represented the ground
truth perspective (the frame captured at time T (m)− k). It can be
seen that we alter the shape of transferred region according to scene
depth change to model the perspective effect.

4.2 Qualitative comparisons
We compare our method against the baseline warping method (global
homography via DLT in inliers) and the local homography method
(Moving-DLT) [8] with three alignment instances. Figure 6(a) and
(b) show three pairs of input images with a significant amount
of parallax and occlusion, where the input are the reference and
target images captured by the dashcams on the lead vehicle and the
subject vehicle, respectively. In each case, large viewpoint change,
different lighting conditions and the presence of occlusion make the
alignment task very challenging. Figure6(c)∼(e) show the results
generated by each method.

For the baseline method, we detect and match SIFT keypoints in
the input pair, then run RANSAC to remove outliers. We estimate
a global homography via Direct Linear Transformation (DLT) on
inliers to align two images. The result of baseline method caused
unavoidable misalignment and ghost effect, which can been seen
in Figure6(c). It suggests that using a single homography alone
is not sufficient to model the transformations between two images
because a scene is usually composed by more than two projection
planes. Besides, given input images with considerably different
perspectives, it’s very difficult to establish enough correct matches

thus leading to incorrect homography estimation. While Moving-
DLT with spatially varying homographies is able to produce good
results, it tries to align two images over the whole overlapping
region. Thereby, the estimated transformations are easily dominated
by the noisy matches. As a consequence, the distortion is very
large and ghosting still occurs in the region Figure6(d) (the stairs
next to wall). In contrast, by using the coherence property in the
video sequence, features are easily to be matched, it facilitate the a
good in first warping stage. In the stage of second warping stage,
the perspective-adapting frame which possesses similar viewpoint
of the subject vehicle is transformed. Thereby, it’s easier to find
matches between close perspective compared with direct warping
methods. Therefore, our method can estimate local homography
more precisely, thus achieves more plausible results as shown in
Figure6(e).

5. CONCLUSION
In this paper, we address the problem of aligning two videos that
are captured simultaneously by independently moving cameras fol-
lowing similar trajectories. Aligning two temporal synchronized
video sequences encounters great challenges due to large viewpoint
changes and heavy occlusion. Therefore, in this paper we propose
a two-stage warping technique that gradually adapts the perspec-
tive from one video to the other, rather than directly aligning two
videos with large difference in viewpoint. It not only reduces the
difficulties of perspective transferring between multiple views, but
also increases the visibility of the driver and enhances safety and
comfort in driving scenarios.
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