
即時生成360度虛擬實境全景影片之中央窩影像串接法

李維哲∗ 陳心怡∗ 陳明軒∗ 陳炳宇†

國立臺灣大學
∗{wlee, fensi, intere2960}@cmlab.csie.ntu.edu.tw †robin@ntu.edu.tw

ABSTRACT
近年來，虛擬實境(VR)成為時下最迷人的技術,尤其是沈浸式
虛擬實境更是成為眾所矚目的焦點。而要生成這樣的沈浸式
虛擬實境的內容，通常必須在現實的場景中利用360度全景拍
攝的方式來產生。儘管現在已經有許多拍攝裝置可以使用，

但若是在高畫質的狀態下，由於運算量非常龐大，要即時地
拍攝360度全景影像並以高畫質顯示仍是非常有挑戰性的。在
此我們提出了名為中央窩影像串接法的框架，定義了如何決
定影像中的各個部份需要以多高的畫質去處理的方法。在這
框架中主要可以分為兩個部份，其一是以人眼視覺的理論基
礎去定義的敏銳程度映射函數，其二是基於影像內容對人類
視覺的顯著程度來定義的顯著程度映射函數。我們的方法可
以以多臺相機拍攝的內容作為輸入，即時地串接成高畫質的
全景影片並串流到客戶端的裝置上。速度方面，我們使用了
圖形處理器來平行化演算法已達到即時運算的層級。畫質方
面，我們做了使用者經驗調查來證明我們產生出的全景影像
的畫質並不因為加速而有顯著的下降。我們最終實做了我們
的系統於Google Cardboard上，並在速度上相較於原方法有六
倍以上的提昇。

CCS Concepts
•Computing methodologies→ Image manipulation; Computa-
tional photography;

Keywords
即時、環景、360、虛擬實境、VR

1. INTRODUCTION
Due to maturity of virtual reality (VR) in the recent years, various

devices and applications are released. Meanwhile, contents creation
for VR becomes more and more important.

For example, with virtual reality technology, more fans can have
that front row experience. The specialized 360-degree technology
offers a view that being in the audience could never buy – placing
cameras in locations beyond a front row experience (i.e. under the
basketball hoop, VIP area in a live concert, etc.) – and gives the user
the feeling of being in a special place. Among those applications,

CGW ’16, Taipei, Taiwan

ACM ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

the panoramic images are required to be captured in a real scene
and delivered in real-time, aiming to provide the ultimate level of
immersion and create a sense of physical presence for the users.
For this reason, fast and high resolution stitching and rendering are
vital for providing a more realistic, engaging and satisfying VR
experience.

To create high resolution 360◦video content, users can bring a
single piece of camera (e.g. RICOH Theta S), which has two lenses
and two sensors pointing in opposite directions, to capture the full
360 degrees. However, most of those cameras cannot provide ultra
high resolution, which is extremely important for providing immer-
sive virtual reality experience. Alternatively, one can use several
cameras (e.g. GoPro) and a professional rig (e.g. Freedom360)
to capture a full panoramic video. But, stitching, combined with
display technology, is still time-consuming and not fast enough to
provide live video stream under ultra high resolution.

In this work, our goal is to deliver high resolution live 360◦panoramic
videos for real-time VR. Inspired by the falloff of acuity in visual pe-
riphery in human eyes and the visual attention cognitive process, we
design a perceptual modulated gaze-contingent framework: foveated
stitching, to optimize content delivery. Current VR practice ignores
user gaze, thus stitches and renders high-resolution images over the
whole display. By estimating region of focus and adapting image
resolution and geometric level of detail (LOD), our method can omit
unperceived detail, thus stitch and render far fewer pixels. Exploit-
ing foveation in graphics to reduce the processing time is not a new
idea. But unlike the previous work [2] that assumed a controllable
latency environment, latency in current VR is stll the most critical
factors in providing a high quality experience. In addition, video
stitching induces extra computational cost. Our work deals with the
more critical system latency and computational intensive challenges
to successfully realize the performance benefit. Specifically, we
set the proper foveal rendering diameters for the estimated system
latency [4]. For the non-foveated region, we construct video saliency
map by a fast feature extraction and tracking method. Apart from
this, we utilize GPU to greatly speed up the stitching process.

This paper makes several contributions. First, we propose a gaze-
contingent video stitching approach to generate high-resolution
360◦video panorama. The performance benefits can be accrued
through the use of LOD in the time-critical domain of VR. We ex-
ploit foveation by stitching and rendering the salienct region and
the region centered around the current predicted gaze point and for
the first time demonstrate a significant performance advantage. Sec-
ondly, we carefully analyze asynchronous communication between
our system components (VR headset, server and network) to deter-
mine overall system latency. Latency critically affects how foveated
rendering is perceived and how much it can save. Third, we experi-
mentally verify our method through user studies that suggests our



Figure 1: In this paper, we present a novel high-resolution video stitching technique for real-time VR. We adapt image resolution
(yellow circle = high resolution, red circle = low resolution) and level of detail (LOD) by estimating foveal region. The proposed
foveated stitching technique greatly reduces the number of pixels to be processed and overall graphics computation.

perceptual modulated stitching avoids objectionable artifacts and
achieves quality comparable to non-foveated stitching. We demon-
strate panoramic video results captured with 6 cameras, allowing
the generation of panoramic video in high resolution (4K) .

2. OUR APPROACH
Figure 3 is an overview of our real-time high-resolution video

foveated stitching algorithm. The input videos are captured from
6 high resolution cameras (GoPro Hero4) at the frame rate of 30
fps. They are assumed to be synchronized and have fixed relative
positions. Our video-stitching and live-streaming system is designed
under a client-server architecture. In the prepossessing stage, the
system first estimates the pair-wise relationship between each cam-
era and calculates the corresponding projection and the blending
map at the server side (Section 3.1). The projection map allows
to project video frame onto a common projection surface, corre-
sponding to the desired projection model for the panorama. And the
blending map is used to enhance final video composite quality as
described in Section 3.2. At the client side, a user wears a Google
cardboard smart-phone virtual reality headset. The sensor data from
cardboard device are collected and transmitted to the server via
internet connection and user’s eye gaze is predicted by his head ori-
entation. To reduce the sampling density in the peripheral layers and
deliver 4K live 360◦video streaming, the system generated different
levels of detail by estimating the foveal region and the focusing
visual attention (Section 4). Finally, the output panorama video are
streamed to the client side using Internet. Users can see the final
panorama via their google cardboard.

2.1 Preprocessing
First, we get N input high resolution videos (each with T frames),

Ii,t, i = 1, · · · , N, t = 1, · · · , T , and we assume the videos are
synchronized and the configuration of cameras to be static over the
input sequences. In this stage, the goal is to find a warping map and
a blending map for each video so that all the video frames could be
aligned to a common reference canvas without noticeable artifacts.

Generation of Reference Projection..
A common first step for combining views from multiple cameras

is to estimate their mutual poses. We take one camera as reference,
for all other cameras we estimate their relative rotations and trans-
lations to the reference. This process can be done by running a
feature-based method or manual alignment. With the camera poses
information, we estimate the projection matrix that map each video

frame to the user-defined projection surface (spherical and equirect-
angular projection). Specifically, for every pixel position (x, y) in
the projection surface, we get its corresponding pixel in Ii(x′, y′)
by:

Mi(x, y) = (x′, y′), where i ∈ N, (x′, y′) ∈ Ii, (1)

Where Mi is the reference projection mapping function obtained by
the calibration process. Note that the size of Mi is the same size
as our output panorama video. We set it as 4320 × 2160 in our
experiments. This initial global alignment defines the common ref-
erence frame for the remaining video frames. The target panoramic
stitching result could be generated by blending all the corresponding
pixels for each pixel in Mi.

Generation of Blending Map..
For smoothing the output and handling the exposure difference

between cameras, we estimate the blending function for each camera.
To further speed-up the blending process, we first construct a fixed
blending matrix for each video to reduce the per-frame effort while
stitching. We adopt feathering blending technique that a weighting
map calculated for each video where the weight for each pixel is
calculated according to its L1 distance to the center. Finally, we
merge all weighting maps and normalize it to generate the final
blending matrix Bi for each video.

2.2 Panoramas Projective Geometry
With the reference projection map Mi and blending map Bi,

our goal is to stitch Ii,t together to generate a output panorama
video Ft. For each pixel (x, y) in output frame Ft at time t, we
look-up the mapping matrix Mi to get its corresponding pixel in
video Ii. Next, we apply the blending function Bi to each pixel
(x,y). In addition, we also handle exposure compensation to get a
smooth panoramic video. We analyze the input videos and computes
exposure adjustments by the method proposed by Brown et. al [1].
The compensation matrix is denoted by Ei where Ei,t represents
the intensity compensation for i-th video at time t. We summarize
our projective geometry in matrix form as followed:

Ft(x, y) =
∑
i∈N

Mi(x, y) ∗ Ei,t(x, y) ∗Bi(x, y), (2)

where Mi(x, y) = Ii(x
′, y′) represents the projected video frame

of pixel (x, y) according to the reference projection. i is the video
index and N is the total number of videos. As shown in the above
equation, the stitching process is a per-pixel operation, which grows



Figure 2: The workflow of our Virtual Reality and 360◦Streaming system. Given source videos captured from multiple cameras, on
the server side, we generate the reference projection of each camera by common calibration process. The corresponding projection
and blending maps are constructed for offline preprocessing in this stage. On the client side, the user’s head orientation is collected
and sent to estimate the acuity map. The saliency map is constructed by extracting and tracking salient features in the video. The
estimated acuity map and saliency map are served as input for our foveated stitching algorithm. With our foveated stitching, we
can generate the final warped projections of each views in different levels of details. Exposure compensation is also applied for each
frame in this step. In this way, we can remove extraneous detail from an environment which the user cannot perceive, and thus
modulate the graphical complexity of a video stitching process with little or no perceptual artifacts. Finally, the output panorama
video is encoded and streamed to the client via internet.

linearly with output size. We illustrate our acceleration technique in
section 4.

2.3 Transmitting and Rendering
After we construct a single panoramic video by stitching N input

videos, the output is a panoramic video which covers 360◦field of
view. Next, we encode video file to H.264 video codec, and then
stream it to the client side. We use Internet video data transmission.
On the client side, the received data stream is decoded and then dis-
play the output in VR. Specifically, we create a sphere geometry in
the VR world and put our virtual camera into the center of the sphere.
After that, we display our panorama as the texture of the sphere.
The movement of user’s head will be synchronized with movement
of virtual camera in order to give user immersion experience in VR.

3. PERCEPTUAL MODULATED STITCHING
In this section, we develop our technique to accelerate the stitch-

ing process by constructing foveal region and saliency map for the
input videos. While the foveal region is applicable to accelerate
many graphics computation, latency critically affects how foveated
stitching is perceived and how much it save. We start by analyze
the system latency in Section 4.1. Then, we introduce our acuity
map and saliency map construction in Section 4.2 and 4.3. Finally,
blending are used to generate final result as described in Section 4.4.

3.1 System Latency
Ideally, by tracking user’s gaze point, we can render image layers

around it at progressively high angular size but lower sampling rate
to reduce the full cost of rendering [2]. However, its usage depends
critically on having extremely low response times of the virtual
environment (including panorama computation and rendering) to
user interaction (head movement). The problem, while described
as the lag between user’s head position or orientation changing and

Figure 3: Average System latency. The network latency to send
sensor data from client to server is 2.5ms. With sensor data,
the average processing time for stitching and blending is about
13ms. This part does not includes saliency map estimation as
it does not depend on the input sensor data. Once the out-
put panorama is generated, it takes 27ms to transmit from the
server to the client via Internet. At client side, it takes 11ms to
finish the rendering process. Since the screen update frequency
of our test device is 60Hz, the average latency is half of the cy-
cle, that is 8.3 ms. The total latency of our system is 61.8ms in
average.



the updating of the displayed panoramic image, is most difficult to
handle in the visual domain. The main reason is because of the sheer
quantity of data to transmit and processing required to update the
view delivered to the user is beyond the capabilities of current VR
system. In addition, for VR framework that use wireless headset (e.g.
Google Cardboard), it usually transmits data through Internet, which
could not perform as well as Ethernet that is able to transmit in faster
speed with lower latency. Furthermore, the stitching process itself
introduces extra latency which may raise the risk of processing and
displaying an area that user is no longer looking at and rendering
the actual area that user focus on in low resolution. This will result
noticeable downgrade in viewing quality.

We measure the average latency of each components and analyze
asynchronous device interaction to find the overall latency. Five
main sources contribute: network delay (client to server), panorama
stitching, network delay (server to client), scene render time, and
monitor scan out delay. We anlyze individual latency, the result is
shown in Figure 3. It only takes 2.5 ms to transmit sensor data from
the client to the sever since data is small. The panorama computation
takes 13 ms. To transmit a 4K output video via Internet, it takes
27ms. Scene rendering latency is 11 ms. And the cardboard display
latency is 8.3ms. The overall latency is 61.8ms in average. To
make real-time performance possible, work is required into the
development of algorithmic solutions to combat the high latency.

3.2 Foveated Stitching
Real-time stitching and rendering still operates on the assumption

that a single render will be fully performed at any single point in
time. Yet, with the necessary jump to 4K displays and their applica-
tion in VR, delivering a high resolution (4K) 360 video in real-time
via standard stitching algorithms remains difficult due to the com-
putational cost required by the pixel-wise operation in stitching
process and the delay caused by asynchronous communication of
system components. Our goal is to build a fast panorama stitcher
that is able to offer 4K live 360 videos generated from multiple
cameras. We propose a perceptual modulated framework based on
the standard stitching pipeline but with reduced sampling density to
fit the real-time requirement.

Our method is motivated by perceptually lossless rendering tech-
nique adopted in [2]. It is well established that peripheral vision
is significantly worse than foveal vision in many ways, we employ
foveation, in which the region corresponding to the central field of
view is rendered with higher fidelity than the region corresponding
to the periphery. Since user’s head movements are usually consistent
with their gaze directions, we use the sensor orientation (yaw, pitch
and raw) on the VR device to predict eye gaze direction.

Successfully realizing the performance benefit requires managing
the system latency. To deal with the high latency, an intuitive solu-
tion is to enlarge the size of the foveal region. However, increasing
the foveated size would also increase the computational resources.
Thus, to compensate the delay, the foveal region diameter can be
increased such that the true foveal field of view is always contained
within the rendered foveal region, for some estimated overall system
latency. We calculated the adjusted foveal diameter as followed [4]:

Fφ = 2ρpixeldutan(LtotSmax +
α

2
) + 2bw + c, (3)

where ρpixel is the pixel density of the screen, du is the distance
between user and the screen, α is the angle subtended by the fovea
which is around 5◦. Ltot is the total latency of the system, Smax is
the estimated maximum saccadic speed (we set it as 0.2 degree/ms),
bw is the width of blending border and c is an error constant. Here
we assume the user remains at a constant distance from the screen
between each tracking frame.

Nevertheless, our internal experimentation confirms that the vari-
ance of system latency in the environment could be very large due
to unstable network condition. In the worst case, the foveal diameter
derived from the above equation would still be too large, and such a
large size will significantly reduce the system efficiency and hamper
the effectiveness of foveated stitching. In the following section,
we propose saliency-aware level of detail approach to handle the
situation that user’s focus is outside the estimated foveal region.
Here, instead of using a worst case of system latency, we choose to
use an average system latency.

3.3 Saliency-aware Level of Detail
Based on the observation that most users direct their gaze to

relevant locations rather than looking arbitrarily when watching
videos on their VR display, and these locations are usually known
to be relevant to the deployment of visual attention. We would
like to model the perceptual phenomena with visual saliency to
automatically compute the sampling rate.

Visual saliency is a subjective and perceptual quality which makes
certain areas of an image stand out during visual observation. The
saliency map can help us attribute a value to each object in the scene
according to how salient and how noticeable it is. Such objects gain-
ing a low saliency value will be rendered with a low level of detail.
A majority of the previous saliency models use centersurround filters
or image statistics to identify salient patches that are complex (local
complexity/contrast) or rare in their appearance (rarity). To generate
a continuous saliency map in videos, we track salient features on a
down-sampled panorama by KLT tracking technique [5]. To further
reduce the efforts to maintain the saliency map S, we divide the
panorama into uniform grids with a fixed size λ as shown in Figure 4.
We set λ = 8 in our experiment. After that, we examine the number
of features located in each grid and assign a binary number to this
grid if the number of features is beyond the threshold. The function
THRESH(., εf ) assigns 1 to a pixel if the feature density of a grid g
is greater than a predefined threshold εf . For each grid g, it saliency
is determined as:

St(g) =

{
1, if THRESH(ft(g)/Sg, εf )

0, otherwise
(4)

where ft(g) represents number of features in the grid g at time t.
We use Sg to denote the grid size. To blend the high resolution
regions and low resolution regions together, we apply a Gaussian
filter to make the border of the boolean map looks more smooth. In
addition, Gaussian filter is applied in temporal domain to encourage
the temporal coherence of the predicted saliency map. The final
panoramic image is rendered in full resolution where saliency is high
and continuously decrease resolution outward from that. Figure 4
illustrates our approach.

4. EXPERIMENTS
In this section, we have conduct several experiments to show the

effectiveness of our stitching framework. We also discuss a number
of results created with our method. Panoramic video results are
providing in the accompanying video and supplemental material.

Data Setups and Implementation Details. The video data were
captured using 6 GoPro Hero4 cameras, each operating at 2704×
1520 resolution. We collected 2 sequences at a baseball court. After
capturing, the videos are streamed to the media server through
internet. On server side, we down-sample each video to 480× 240
to compute the saliency map. We set λ = 8 and εf = 0.04 for the
experiment. On the client side, we use Google Cardboard with Sony
XPeria Z as VR platform so that users can view a 360 degree video



Figure 4: The pipeline of our video saliency estimation. We first generate a low-resolution panorama as the input of our saliency
detection algorithm. Next, we divide the panoramic image into uniform grids and track salient features of it using KLT tracker. We
generate a boolean mask by thresholding the input image according to the feature density inside each grid. We also apply Gaussian
filter on the mask to make it smooth. The mask is considered as our saliency map, then combined with the acuity map derived from
the foveal region as the final mask. According to the mask, we can generate the final panorama by rendering in high-resolution for
the bright area and low-resolution for the dark area.

Case Rendering type Output size Seq. Avg. score
1 Full resolution 1920× 960 1 6.68
2 Full resolution 960× 480 1 2.68
3 Ours (εf = 0.03) 1920× 960 1 5.95
4 Ours (εf = 0.04) 1920× 960 1 6.26
5 Ours (εf = 0.06) 1920× 960 1 5.05
6 Full resolution 1920× 960 2 6.11
7 Full resolution 960× 480 2 3.05
8 Ours (εf = 0.03) 1920× 960 2 5.90
9 Ours (εf = 0.04) 1920× 960 2 5.95
10 Ours (εf = 0.06) 1920× 960 2 5.58

Table 1: The result of our user study.

Rendering type 1 Rendering type 2 p-value Sig. Diff.

Full (1920)
Ours (εf = 0.03) 0.05 x
Ours (εf = 0.04) 0.11 x
Ours (εf = 0.06) 8× 10−4 o

Full (960)
Ours (εf = 0.03) 2× 10−12 o
Ours (εf = 0.04) 3× 10−13 o
Ours (εf = 0.06) 4× 10−10 o

Table 2: A statistical result in user study. The p-values suggest
that the participants confused the result obtained by full reso-
lution rendering and ours.

through a head-mounted display. All our experiments are running
on a consumer desktop computer with quad-core Intel i7-3770 CPU
@3.40GHz, 24GB RAM and a GTX 980 GPU. Since there is no
android phone with 4k resolution that can be popped into Google
cardboard, the video we used in the user study are displayed in
1920 × 960. Please note that we still use 4k resolution as target
resolution in other experiments for performance evaluation.

User Study. In this user study, we aim to validate that our saliency
map can avoids objectionable artifacts and achieves quality com-
parable to when users look at non-foveated region. The user study
consists of 10 cases. Cases 1 ∼ 5 are panoramic videos generated
from sequence 1, while cases 6 ∼ 10 are generated by sequence
2. They are processed to achieved target output resolutions. Please
note that we do not assume there is a foveal region in this study. The
full resolution rendering and our approach (with different εf ) are
performed to compare their performance. We recruited 21 users (13
males, 8 females) in this study. The 10 cases were shown in random
order, and the participants were asked to score quality from 1 to
10 for each panoramic video. A score of 10 indicates participant
thinks the video provides high quality viewing experience, while a
score of 1 indicates a poor quality. Simultaneously, we collect user’s
head movement data from the sensors on Android phone inside the
google cardboard.

The result of our user study is shown in Table1. In this table, the
average score of low resolution (960p in case 2) is 2.68, while its
high resolution version (1920p in case 1) has a score of 6.68. By
applying multi-resolution gaze-contingent stitching (case 3, 4, 5),
our method can achieve comparable quality (6.26) with less compu-
tational resources. We observe the similar performance in the case
6 ∼ 10. Thus our finding suggests that users cannot distinguish the
quality between the full resolution one and ours.

At 5% significant level, the p-value by performing t-test for the
user study result is shown in Table 2. The p-value suggests that
the participants confused the results generated by full resolution
rendering with the results generated by foveated stitching (ours).
Note that using multi-resolution technique does not necessarily
suggests that the output quality of panorama is worse than the full



Figure 5: In this figure, we show the difference between blend-
ing and non-blending results. The upper image is generated
without performing blending between low resolution and high
resolution boundaries. We can see the noticeable structural dis-
continuity. In contrast, the lower image demonstrates a more
smooth result.

resolution one. Since in the optimal situation, the system has low
delay such that foveal regions can be estimated correctly using the
sensor data. Users will still see the same high quality result as ones
by full-resolution manner.

We also investigate in which configuration produces most accept-
able quality equivalent to standard stitching approach as shown in
Figure 6. εf = 0.46 gives the best results for both sequences.

Case Rendering type Output size Seq. Avg. fps
1 Full resolution 4320× 2160 1 3.05
2 Full resolution 2160× 1080 1 9.44
3 Ours (εf = 0.03) 4320× 2160 1 3.08
4 Ours (εf = 0.04) 4320× 2160 1 3.47
5 Ours (εf = 0.06) 4320× 2160 1 4.20
6 Full resolution 4320× 2160 2 3.05
7 Full resolution 2160× 1080 2 9.35
8 Ours (εf = 0.03) 4320× 2160 2 3.12
9 Ours (εf = 0.04) 4320× 2160 2 3.48
10 Ours (εf = 0.06) 4320× 2160 2 4.20

Table 3: Measured performance at selected setting in CPU.

System Performance. Measured performance in average fps for
each case is shown in Table 3. In our method, the foveal region is
estimated according to the collected sensor data in the user study.
For the case 1, the fps rendered by full resolution is 3.05. In contrast,
our method achieved 3.47 fps in the same quality. Please note
that the results here are reported under CPU implementation. The
other test cases also validate that our performance is better than the
full-resolution method. In addition, our test sequences are quite

F-1920p F-960p O (0.03) O (0.04) O (0.06)

3

4

5

6

7

Method type

A
vg

Sc
or

e

Figure 6: Performance comparison between each setting. Blue
bars indicate the scores of each case from seq. 1, while red bars
denote those from seq. 2. ’F’ denotes full resolution rendering
while ’O’ denotes our foveated stitching approach.

challenging since there are lot of subjects, e.g. the audiences in the
baseball stadium, resulting in more salient regions to render. For the
other scene with less foreground objects, our performance might be
better.

GPU Acceleration. We also implement our solution on GPU.
The result is shown in Table 4. As the table shown, we obtain a
significant performance increase by using GPU optimization and
make the stitching process in real-time under ultra high resolution.

Seq. Output size Architecture Average fps
1 2160× 1080 CPU 7.30
1 4320× 2160 CPU 3.47
1 2160× 1080 GPU 23.76
1 4320× 2160 GPU 20.25
2 2160× 1080 CPU 7.42
2 4320× 2160 CPU 3.48
2 2160× 1080 GPU 23.87
2 4320× 2160 GPU 20.32

Table 4: Running time comparison between using CPU and
GPU. It shows that we achieve real-time performance to deliver
a 4K resolution panorama video.

5. DISCUSSION AND LIMITATION
In our implementation, the reference projection is fixed over time

and estimated based on ideal configuration of the camera positions.
However, in the real case, panorama stitching is still impeded by par-
allax between input views. To better improve the alignment quality,
we would like to extend the basic concept of local warping [3,6] for
parallax removal. Furthermore, stitching multiple moving cameras
would require a dynamic definition of the reference frame. Besides,
we would like to implement our solution on high-performance VR
devices such as HTC Vive. By splitting the tasks from the server
side to the client side, we could reduce the latency of our system
and get a better user experience in VR. Several changes to hardware
and software elements of our system would make foveation more
effective. Two of these are tracking users’ eye gazes using more
sophisticated methods and adding more additional sensor on VR
headset to increase the tracking accuracy.



Figure 7: In this figure, we illustrate how the threshold εf influ-
ences the detected salient region. From top to bottom, results
are shown by setting εf = (0.03, 0.04, 0.06) respectively. The
parameter λ is set as 8 under 4320× 2160 resolution.

6. CONCLUSION
In this work, we proposed a foveated stitching and saliency-aware

level of details approach to accelerate the panoramic video stitching
in virtual reality system. An perceptual modulated stitching algo-
rithm, powered by an efficient GPU implementation of rendering
process, allows users to obtain real-time response from their VR de-
vices without sacrificing the quality. Such techniques could be used
in several VR applications such as live game streaming and view
sharing, which could bring more realistic immersion VR experience
to users.

7. 致謝

本論文感謝科技部經費補助，計畫編號：MOST103-2218-
E-002-024-MY3與MOST105-2633-E-002-001。

8. REFERENCES
[1] M. Brown and D. G. Lowe. Automatic panoramic image

stitching using invariant features. International Journal on
Computer Vision, 74(1):59–73, 2007.

[2] B. Guenter, M. Finch, S. Drucker, D. Tan, and J. Snyder.
Foveated 3d graphics. ACM Transactions on Graphics,
31(6):164:1 – 164:10, 2012.

[3] K. Lin, S. Liu, L.-F. Cheong, and B. Zeng. Seamless Video
Stitching from Hand-held Camera Inputs. Computer Graphics
Forum, 35, 2016.

[4] N. T. Swafford, D. Cosker, and K. Mitchell. Latency aware
foveated rendering in unreal engine 4. In Proceedings of the
12th European Conference on Visual Media Production, pages
17:1–17:1, 2015.

[5] C. Tomasi and T. Kanade. Detection and tracking of point
features. Technical report, International Journal of Computer
Vision, 1991.

[6] J. Zaragoza, T.-J. Chin, M. S. Brown, and D. Suter.
As-projective-as-possible image stitching with moving dlt. In
CVPR, pages 2339–2346. IEEE Computer Society, 2013.


