
利利利用用用對對對抗抗抗式式式目目目標標標與與與資資資料料料擴擴擴增增增於於於深深深度度度強強強化化化學學學習習習間間間的的的遷遷遷移移移

許書軒 沈奕超 陳炳宇

國立臺灣大學

Abstract

在最近幾年內，深度強化學習已經被充分證明可以用來解決
高維度的複雜問題，深度強化學習的下一個重點將會是該如
何讓神經網路學會不同環境間的核心概念、或是藉由已經學
過的知識來加速學習新環境的速度。現今的強化學習訓練出
來的模型大部分都有無法很好的處理新環境的缺陷，即便這
個新環境與曾經學過的環境十分相近依舊無法有好的成績。
我們提出的方法可以讓強化學習的模型從單一環境中學習
到較為核心的特徵，並且可以透過半監督式學習來加速模型
於新環境中的學習速度。最後我們在一個非常受歡迎的強化
學習環境 —— Arcade Learning Environment (ALE) [Bellemare
et al. 2013]檢驗我們提出的方法，並且可以發現我們的方法可
以打敗常見的標準方法像是使用預訓練模型以及微調網路權
重等。

Keywords: Machine Learning, Reinforcement Learning and Do-
main Adaption

1 Introduction

Deep Reinforcement Learning (DRL), the combination of rein-
forcement learning methods and deep neural network function ap-
proximators, has recently shown considerable success in high di-
mensional challenging tasks, such as arcade games [Mnih et al.
2015] and robotic manipulation [Levine et al. 2016]. These meth-
ods can learn features that often better than hand-craft features
that require more domain knowledge. For example, the Deep Q-
Network (DQN) [Mnih et al. 2015], one of the most famous DRL
method, has achieved super human performance on the Arcade
Learning Environment (ALE) [Bellemare et al. 2013], a benchmark
of Atari 2600 arcade games.

Although the DRL algorithms can usually learn how to take the best
action based on the state of the environment, but it can only learn
a single environment at a time, despite the existence of similarities
between those environments. For example, the tennis-like game of
pong and the squash-like game of breakout are both similar in that
each game consists of trying to hit a moving ball with a rectangular
paddle, but an agent that is good at pong can not handle breakout
well. Another issue of DRL is that training DRL agents can be very
time-consuming, many researcher studies on the methods that can
speed up training time [Mnih et al. 2016; van Hasselt et al. 2015].

Some research speed up learning on new tasks by perform cross
environment transfer [Rusu et al. 2016; Parisotto et al. 2015], but
they all need to pre-train an agent on multiple source environments
to generalize the knowledge, which is very time consuming. In this
work, we trying to leverage the prior knowledge that learn by a
single source environment agent to speed up agent to handle new
environment, using only one source environment prior knowledge
can minimize the time to train on new environment, and can also
solve some issues of reinforcement learning, including unable to
handle similar tasks and long training time problems.

We proposed a semi-supervised domain adaption that use the con-
cept of Generative Adversarial Network [Goodfellow et al. 2014].
More specifically, we learn a mapping from target observations to
source feature space by fooling a domain discriminator that tries to
distinguish the encoded target observation from source examples.

We also found it is helpful for transfer knowledge by doing some
augmentation when training on source task. While our approach
can integrate into any DRL algorithm, we show results of our ap-
proach by combining it with DQN [Mnih et al. 2015] algorithm and
showing results on Atari 2600 domain.

Our contributions are two-fold. First, we proposed a method that
can leverage knowledge from a single source task agent to help
speed up training on new target environment. Second, we found
that perform augmentation on environment to train a source agent
and use it as target task initialization often can help better result.
With these proposed method, the overall learning on target task is
accelerated compared with baselines that we have considered.

The rest of this paper organized as follows. In Section 2, we sur-
veyed several previous method for reinforcement learning, domain
adaption and multi-task agent. Section 3 we detailed the knowledge
of Deep Q Network, as it is the most popular reinforcement learn-
ing algorithm and is used in our method. Section 4 we describe the
two main method used in our approach, including Adversarial ob-
jective and Augmentation. Section 5 we do a series of experiments
to evaluate our method, and further discuss in detailed. Finally, in
Section 6 concludes the paper.

2 Related Work

Reinforcement Learning Reinforcement learning is a method
that can learn how to map situations to actions, try to maximize the
reward. Unlike other machine learning will usually provide correct
action (label) used for direct feedback, the reinforcement learner is
not told which action is best, but instead need to discover which
actions yield the most reward by trying them. Actions taken by
agent may affect not only the immediate reward but also the next
situation and, through that, all subsequent rewards. Trial-and-error
search and delayed reward are the two most important distinguish-
ing features of reinforcement learning.

In recent years, thanks to the significant progress in deep learn-
ing, numerous researchers have attempted to use deep learning to
solve the reinforcement learning tasks [Mnih et al. 2015; Mnih et al.
2016; van Hasselt et al. 2015; Mnih et al. 2013]. Mnih et al. [2015]
first presented Deep Q-Network (DQN) that uses a deep network
to approximate the state-action value function, solving the stor-
ing space issue in traditional state-action tabular representation
(Q-table) [Watkins and Dayan 1992]. Van Hasselt et al. [2015]
futher extend the DQN by solved an overestimate action values
issue suffered for DQN algorithm and leads to much better per-
formance. Mnih et al. [2016] introduced an deep reinforcement
learning framework that uses asynchronous gradient descent for op-
timization of deep neural network controllers, that achieve state-of-
the-art performance in training time. Fortunato et al. [2017] intro-
duce a method called NosiyNet to replacing the conventional explo-
ration heuristics for A3C, DQN, and yield higher scores for a wide
range of Atari games.

Domain Adaptation Deep neural networks are able to learn pow-
erful representations from large quantities of labeled input data,
however they usually fail to handle when the input distribution have
some changes.



Numerous studies on domain adaption methods have been proposed
over the recent years [Tzeng et al. 2017; Sun and Saenko 2016;
Ganin and Lempitsky 2015; Sun et al. 2015; Xiao et al. 2016]. In-
stead of collecting labelled data and training a new classifier for ev-
ery possible scenario, unsupervised domain adaptation methods are
try to compensate for the degradation in performance by transfer-
ring knowledge from labelled source domains to unlabelled target
domains. Sun et al. [2015] proposed CORAL method that can align
the second-order statistics of the source and target distributions with
a linear transformation. Sun and Saenko [2016] extends CORAL to
incorporated it into deep networks by define a differentable loss
function that can minimize the CORAL loss, it works well for un-
supervised domain adaptation and can easily integrate with other
deep nural networks. Ganin and Lempitsky [2015] use a domain
classifier with a gradient reversal layer that multiplies the gradient
by a negative constant, which can ensures that the feature distribu-
tions over the two domains are made similar, thus resulting in the
domain-invariant features. Tzeng et al. [2017] present a method
that use the concept of Generative Adversarial Network [Goodfel-
low et al. 2014], first pre-train a source encoder CNN with labeled
data, then perform adversarial adaptation by learning a target en-
coder CNN such that a discriminator that sees encoded source and
target examples cannot reliably predict their domain label, result-
ing a target encoder CNN that can produce features that similar to
source features.

Multi-task Agent Although DRL can suppress human-expert
level across many Atari games, but each agent can only play a single
game. To solve this issue, some researchers attempt to train a sin-
gle agent to handle multiple tasks by integrate model compression
technique to deep reinforcement learning, Parisotto et al. [2015]
first present ”Actor-Mimic”, exploits the use of deep reinforcement
learning and model compression techniques to train a single pol-
icy network that learns how to act in a set of distinct tasks by us-
ing the guidance of several expert teachers. Yin and Pan [2017]
propose a new multi-task policy distillation architecture, concate-
nates a set of task-specific convolutional layers and shared multi-
task fully connected layers, the shared multi-task fully connected
layers enable the agent to learn a generalized reasoning about when
to issue what action under different circumstances. Sharma and
Ravindran [2017] propose a simple yet efficient multi-task learning
framework which solves multiple goal-directed tasks in an online or
active learning setup without the need for expert supervision, solv-
ing the needs of training large task-specific teacher (expert) net-
works.

3 Background: Deep Q Networks

Estimates for the optimal action values can be learned using Q-
learning [Watkins and Dayan 1992], but instead of learning all ac-
tion values in all states, which may be too large to learn in com-
plex environments, we can learn a parameterized value function
Q(s, a; θ), where θ are the parameters of the network. For updat-
ing the network parameters after taking action At in state St and
observing the reward Rt+1 and next state St+1 is:

θt+1 = θt + α(Yt −Q(St, At; θt))∇θtQ(St, At; θt) (1)

and Yt is defined as:

Yt = Rt+1 + γmax
a

Q(St+1, a; θt) (2)

where α is learning rate and γ ∈ [0, 1] is a discount factor that
trades off the importance of immediate and later rewards.

A most famous deep reinforcement learning algorithm is deep Q
network (DQN) that introduced by Mnih et al. [Mnih et al. 2015].
DQN is a multi-layered neural network that for a given state outputs
a vector of action values. For an n-dimensional state space and an
action space containing m actions, the neural network is a function
from Rn to Rm.

There have two important components that used in DQN, a tar-
get network and replaying memory. The target network is same
as online network, and the parameters of target network θ

′
will

copy from the online network every t steps, and kept fixed on all
other steps. The target network is used to predict the true Q value
when learning (Yt). For the replaying memory, observed transitions
are stored for some time and sampled uniformly from this memory
buffer to update the network. Both the target network and the re-
playing memory improve the training stability and overall perfor-
mance of the algorithm [Mnih et al. 2015]. And to explore envi-
ronment more stable and faster, DQN also using ε-greedy[Sutton
and Barto ] agent’s policy, that agent will select random action with
certain possibilities.

Figure 1: Agent is divided into two components, a feature encoder
and a Q value predictor, agent is able to select action based on the
output Q values.

In this work, we split the agent into two network as shown in Fig-
ure 1, a feature encoder F and a Q value predictor V . Feature
encoder extract features based on the input observations, and the
Q value predictor use these encoded features to predict the corre-
sponding action Q values.

4 Approach

In this section, we present a transfer learning architecture that can
speed up learning progress when facing new target environment.
Furthermore, we found a novel data augmentation method that can
help single task agent to avoid over-fitting and thus learn more core
features.

4.1 Transfer with Adversarial Objective

We present a framework for unsupervised adaption between deep
reinforcement learning tasks. Assume a source environment Envs
and a target environment Envt, there have some domain shift be-
tweenEnvs andEnvt. We have access to the reward and next state
after performed an action on Envs.

The overview is shown in Figure 2, we first pre-trained the source
task agent on EnvS , training a feature encoder FS and Q value
predictor VS that can return a vector of Q values for all possible
actions by given features of observation, thus can select best action
a. And our goal is to learn a target feature encoder FT and Q value
predictor VT that can handle EnvT as fast as possible.

We integrate generative adversarial network [Goodfellow et al.
2014] concept into transfer progress, as shown in Figure 2 (b), the
target feature encoder FT plays the role of generator, and a domain



Figure 2: An overview of our transfer process. (a) We first well-trained an agent on source task environments, then (b) we train a domain
classifier and target feature encoder that have adversarial objective to learn a map that maps target feature encoder to source feature encoder.
(c) At testing time we can use source task Q value predictor directly because the target feature encoder’s output feature are similar to source
feature encoder. Dashed line means fixed parameters.

classifier D that can predict the domain label (source or target do-
main) by seeing the encoded features output by FS and FT . We
then perform adversarial adaption by train the FT to fool the do-
main classifier, let it cannot easily predict their domain label by
sees the encoded source and target features. The target feature en-
coder (Generator) and domain classifier (Discriminator) are playing
counterparts, and at the end of training, the target feature encoder
FT will learn a domain map to the source domain.

In the adversarial objective approach, the main goal is to regularize
the learning of the source and target mappings, we can minimize
the distance between FS(Ss) and FT (St) distributions, where Ss
and St is the states ofEnvS andEnvT . If the distribution between
FS(Ss) and FT (St) are similar, then we can directly apply source
task Q value predictor Vs to the Ft, skipping the need to learn a Vt
and instead setting Vs = Vt.

We first describe the domain classifier, D, which classifies whether
encoded features are drawn from the source or the target domain.
Thus D is optimized according to a standard cross entropy loss,
LD(Ss, St, Fs, Ft) where the labels indicate the origin domain, de-
fined below:

LD(Ss, St, Fs, Ft) = − log(D(Fs(Ss)))− log(1−D(Ft(St)))
(3)

And for generator, we train with the standard loss function with in-
verted labels [Goodfellow et al. 2014], then the loss can be describe
as:

LG(Ss, St, D) = − log(D(Ft(St))) (4)

Then, the source and target mappings are optimized according to an
adversarial objective, they are optimized to confuse D to unable to
predict reliable domain label.

4.2 Augmentation

Most deep reinforcement learning algorithm can achieve great per-
formance in single environment, but agent often can not handle a
new environment even with the new environment just slightly dif-
ferent. Some examples are shown at Figure 3, a DQN agent that
pretrained on Pong would get very worse performance when add
some Gaussian noise or invert the color on Pong.

Figure 3: The agent are trained on Pong for 10 million frames,
and test the agent on both Pong (left), Pong with Gaussian noise
(middle) and invert color Pong (right). We use ε = 0.05 for ε-
greedy policy and σ = 15 for noise, the mean scores are average
of 10 episodes game play.

Rusu et al. [2016] have analyze the Pong to Pong with noise case
and found that the high level filter on the clean task is not suf-
ficiently tolerant to the added noise. We believe that this cause
by over-fitting when training on source task, the agent sees too
many local features that has little contribution for getting good
performance on the source environment, and these local feature
are so sensitive that will harm performance when input distribu-
tion slightly changed. We found that add some augmentation when
training on source would help to avoid over-fitting and thus learn
more key features of the tasks. we add a data augmentation layer
before feed the input data into replay memory, the data augmenta-
tion layer will randomly transform the input. For example, Eq. (5)
demonstrates a data augmentation layer that will invert the color of
environment state (screen) with the probability of 30%, and remain
unchanged otherwise.

S =

{
1− S prop 0.3

S otherwise
(5)

While this method did increase the difficulty of training the agent,
but with proper augmentation setting, like Figure 5(a) shows, the
difficulty of training with augmentation are almost same as without
it.

Figure 5(b) shows three standard DQN agent training progress on
”Pong with Gaussian noise”, with different weight initialize, Pong



Figure 4: Transfer progress of Pong variants. Pong variants include noisy, inverted color and scaled transforms. The results are averaged
over 3 runs and the shadow represent standard deviation.

Figure 5: (a) The training progress of Pong and Pong with aug-
mentation using Eq.(5) (b) Training progress on a new environment
using different pre-trained model as initial. The environment in (b)
is Pong with Gaussian noise and σ = 50. We use constant ε = 0.1
for ε-greedy policy.

with data aug. is using the pretrained model of Pong with aug-
mentation defined as Eq.(5), Baseline 1 use random initial and
Baseline 2 use pretrained model of Pong. it shows that using pre-
trained model of Pong with augmentation outperform other baseline
on training time, indicate that the knowledge with augmentation is
more helpful when facing new similar environment.

5 Experiments

In the following experiments, we evaluate our method by demon-
strating its effectiveness at transfer learning in the Arcade Learn-
ing Environment (ALE). We first consider synthetic versions of
Pong, altered to have some visually difference. Next we experiment
on more challenging setting that transfer between different Atari
games. Figure 6 shows the selected tasks sample frames on dif-
ferent domain. For our experiments, the augmentation method are
use 30% inverted input frame color, and we combine our method
with Deep Q network (DQN) that introduced in [Mnih et al. 2015],
with hyper-parameters set constant ε = 0.1 for ε-greedy policy and
replay memory size of 100,000.

5.1 Pong Variants

The first evaluation domain is a set of synthetic variants of the Atari
game of Pong where the visuals have been altered, thus providing a
setting where we can be confident that there are transferable aspects
of the tasks. The variants of Pong are Noisy (Gaussian noise is
added to the inputs), Grid (fixed grid lines are add on input), Invert
(input color is inverted), Scale (input is scaled by 75% and with
black padding). Example frames are shown in Figure 6 (a).

Figure 4 shows the transfer progress in each variants, Random

Figure 6: Example frames from different domain. (a) Pong variants
including noisy, recoloured and scale transforms; (b) Atari games
offer a more challenging setting for transfer.

Baseline is random initialized DQN and directly train on target
task; Naive Baseline is naive transfer approach by initialize the
well-trained source task model parameters to target task network,
this approach is very common in computer vision domain that use
ImageNet [Deng et al. 2009] pre-trained model as new task initial
and perform full model fine-tune; Ours w/o Augmentation repre-
sent using only the method describe in Sec 4.1 to help learning on
new environments; and Ours indicate using both our method when
transferring and source environment pre-trained with augmentation
as initialization.

Figure 7: Transfer score matrix. The higher score means the better
transfer performance. Colours indicate transfer scores (clipped at
2).

For a more clearly look, we measure the transfer performance
by measuring area under the learning curve [Hanley and McNeil
1983], and the transfer score is then defined as the area under spec-



ify method divided by the area under Random Baseline, in other
words the transfer score is the relative performance of an architec-
ture compared with random initialize baseline (Random Baseline).

We can make some observations from these results. Overall speak-
ing, as shown in Figure 7, we can see that our method get a better
transfer scores in all experiments. Interestingly, the Naive Baseline
(initialize with Pong pre-trained) got transfer score are not pretty
good, indicate there would have negative transfer effect, especially
for Pong-invert case, when directly use the Pong pre-trained.

Our method provided an increase in learning speed, both with and
without augmentation used are much better than the Navie Baseline
approach. For our method with augmentation, the learning speed
get a significant improved compared to without it, showing that
using source task pre-trained with augmentation provide a better
initial guess in parameter space, thus can converge more faster.

We further look close at specified experiment cases, for Pong-
gauss, the difference between source and target environment is
shortest, we can find the prove that even with the Naive Baseline
method provide a very good transfer effect, although the trans-
fer scores reached the max (2.0), but using our method still beat
baseline on coverage time as shown in Figure 4; And for Pong-
invert case, it shows that Naive approach fails to learn on target
task, means that the source task parameters are not helpful (even be
painful) for this task thus have result on transfer score that close to
zero, means that in this case it is worse than random baseline, on the
other hands, our method without augmentation can minimize the
negative effect because the generator will trying to produce features
that similar with source task’s features, it help speed up learning a
better target task feature encoder. And for our method, it achieve
great performance at starting time is because that the source task is
trained with 30% inverted frame, in other words, the source agent
have learn Pong-invert at training time, thus it can handle this spec-
ified case well. For both Pong-grid and Pong-scale, the difficulty
of transfer is between gauss case and invert case, in general speak-
ing, our method get the best result, following by our method without
augmentation, and naive approach get worst results.

5.2 Cross Games Transfer

We next investigate the transfer between different Atari games, we
select 4 different games from Atari 2600 to perform cross game
transfer experiments, including Pong, Breakout, SpaceInvader and
DemonAttack. Pong and Breakout are consider as having some
similarity because both gameplay consists of trying to hit a moving
ball with a rectangular paddle. And SpaceInvader is consider sim-
ilar to DemonAttack since they both need to shoot some moving
enemies. In this experiments, we perform transfer between these
selected games.

Since in reinforcement learning scenario, it is normally able to get
reward on target environment, unlike standard transfer learning set-
ting [Sun and Saenko 2016; Tzeng et al. 2017; Ganin and Lempit-
sky 2015] that use unlabelled data to perform unsupervised learning
on target domain, we allow getting reward when training on target
environment.

The summary results are reported as transfer scores matrix, shown
in Figure 8, in this matrix we compare three different approaches ,
including naive baseline, ours w/o augmentation and ours method.

Overall, naive approach often got transfer score that smaller than
1, means that it need more training time compare to training on
target task directly, thus have negative transfer effect. For ours ap-
proaches, the transfer scores is much higher than naive approach, in
most of cases, ours approach helps learning faster on target tasks,

Figure 8: Cross game transfer score matrix. The higher score
means the better transfer performance. Colours indicate transfer
scores (clipped at 2). The X sign mean source and target task are
same and no need to transfer.

and in some cases although transfer score are not high, but com-
pare to naive approach that causing negative effect, ours method
eliminate the negative effect.

For our method with augmentation, the benefit from augmentation
are not so significant like our experiments in Pong variants de-
scribed in Sec. 5.1, in some case like Pong to Breakout and Pong
to DemonAttack, augmentation still helps the model learn faster
than without it, and in other cases, the performance with and with-
out augmentation did not shows a noticeable benefit.

Although we selected some similar games (Pong and Breakout,
SpaceInvader and DemonAttack), the results shows that the trans-
fer performance are not having obvious improve whether source
and target are consider similar, we believe that this is because
these Atari games are too different that the some similarity between
games could not take advantage when transferring.

6 Conclusion

In this works, we investigate the knowledge transfer for deep re-
inforcement learning scenario. Unlike previous works [Rusu et al.
2016; Parisotto et al. 2015] that need multiple source task for gen-
eralize and transfer to target task, we proposed a method that can
accelerate the training progress on new task with a single prior task
knowledge, furthermore, we found that using a deadly simple aug-
mentation method can help target task have a better initial guess
of model parameters, thus can have some improvement on learning
new tasks. And we proved that our apporach outperform baselines
in both easy and challenge cases by evaluating on popular bench-
mark Atari 2600 domain.



Source Target Method Training Steps
1 mil 2 mil 3 mil 4 mil 5 mil 6 mil 7 mil 8 mil 9 mil 10 mil

Pong

Breakout
Random 26 57 80 81 85 83 70 81 83 80

Naive 13 42 66 79 106 115 114 127 132 130
Ours 23 56 72 131 152 186 179 174 181 191

Space Invader
Random 233 350 501 555 622 650 622 670 650 688

Naive 234 376 522 578 615 648 630 656 650 588
Ours 269 405 524 613 623 676 643 708 685 720

Demon Attack
Random 270 1164 1770 1664 1865 2232 2265 2144 2052 2154

Naive 187 443 843 1109 1039 1035 1099 1030 914 1021
Ours 576 2333 2457 2618 3477 3370 3879 3655 3688 3852

Breakout

Pong
Random -15.9 -8.3 9.6 13.8 14.2 14.7 14.2 15.2 15.0 14.3

Naive -20.7 -16.8 -1.3 12.6 14.4 15.2 15.3 15.2 14.9 15.2
Ours -19.6 -6.0 9.0 13.4 14.9 14.9 16.4 15.4 14.1 15.4

Space Invader
Random 233 350 525 555 622 650 622 670 680 688

Naive 272 253 452 645 551 517 590 572 632 640
Ours 301 409 489 588 611 628 670 681 650 670

Demon Attack
Random 270 1164 1770 1664 1865 2232 2265 2144 2052 2154

Naive 116 940 1366 980 1158 1222 1150 1269 1302 1252
Ours 183 1688 2064 2614 2011 2376 2269 2550 2367 2262

Space Invader

Pong
Random -15.9 -8.3 9.6 13.8 14.2 15.7 14.2 15.2 15 14.3

Naive -14.5 -12.2 8.8 12.2 12.3 14.1 13.9 14 14.2 13.3
Ours -19 -17.4 0.3 12.5 15.5 14.2 14.5 15 15.1 16.8

Breakout
Random 26 57 80 81 85 83 70 81 83 80

Naive 31 47 71 100 125 126 100 122 125 133
Ours 12.8 37.6 87 112 171 168 173 188 191 178

Demon Attack
Random 270 1164 1770 1664 1865 2232 2265 2144 2052 2154

Naive 220 1354 1675 1589 1514 2107 2049 1820 2241 2194
Ours 173 933 1902 1707 1995 2255 2520 2444 2387 2414

Demon Attack

Pong
Random -15.9 -8.3 9.6 13.8 14.2 15.7 14.2 15.2 15 14.3

Naive -16.1 -13.4 0 8.5 10.6 10.7 9.9 9.4 8.1 8.9
Ours -13 -12.4 1 15.8 15.2 17.7 16.2 17.2 17.1 16.3

Breakout
Random 26 57 80 81 85 83 70 81 83 80

Naive 7 31 49 54 54 71 69 80 73 82
Ours 20 62 71 82 95 88 65 81 75 85

Space Invader
Random 233 350 525 555 622 650 622 670 680 688

Naive 220 381 502 580 562 574 620 581 618 621
Ours 275 393 540 625 638 575 632 621 611 680

Table 1: The full training progress of cross game transfer of 4 different games. ”Random” means directly train on target task; ”Naive” means
naive transfer by initialize the well-trained source task model parameters to target task network; ”Ours” means using method describe in
Sec 4 to help learning on new environments. We report the reward by average two runs of experiments. For each experiment, the bold text
indicate the highest average reward for that particular column.

References

BELLEMARE, M. G., NADDAF, Y., VENESS, J., AND BOWLING,
M. 2013. The arcade learning environment: An evaluation plat-
form for general agents. J. Artif. Intell. Res.(JAIR) 47, 253–279.

DENG, J., DONG, W., SOCHER, R., LI, L.-J., LI, K., AND FEI-
FEI, L. 2009. ImageNet: A Large-Scale Hierarchical Image
Database. In CVPR09.

FORTUNATO, M., AZAR, M. G., PIOT, B., MENICK, J., OS-
BAND, I., GRAVES, A., MNIH, V., MUNOS, R., HASSABIS,
D., PIETQUIN, O., BLUNDELL, C., AND LEGG, S. 2017. Noisy
networks for exploration. CoRR abs/1706.10295.

GANIN, Y., AND LEMPITSKY, V. 2015. Unsupervised domain
adaptation by backpropagation. In Proceedings of the 32Nd In-
ternational Conference on International Conference on Machine
Learning - Volume 37, JMLR.org, ICML’15, 1180–1189.

GOODFELLOW, I., POUGET-ABADIE, J., MIRZA, M., XU, B.,
WARDE-FARLEY, D., OZAIR, S., COURVILLE, A., AND BEN-
GIO, Y. 2014. Generative adversarial nets. In Advances
in Neural Information Processing Systems 27, Z. Ghahramani,
M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger,
Eds. Curran Associates, Inc., 2672–2680.

HANLEY, J. A., AND MCNEIL, B. J. 1983. A method of com-
paring the areas under receiver operating characteristic curves
derived from the same cases. Radiology 148, 3, 839–843.

LEVINE, S., FINN, C., DARRELL, T., AND ABBEEL, P. 2016.
End-to-end training of deep visuomotor policies. Journal of Ma-
chine Learning Research 17, 39, 1–40.

MNIH, V., KAVUKCUOGLU, K., SILVER, D., GRAVES, A.,
ANTONOGLOU, I., WIERSTRA, D., AND RIEDMILLER, M.
2013. Playing atari with deep reinforcement learning. arXiv
preprint arXiv:1312.5602.

MNIH, V., KAVUKCUOGLU, K., SILVER, D., RUSU, A. A., VE-



NESS, J., BELLEMARE, M. G., GRAVES, A., RIEDMILLER,
M., FIDJELAND, A. K., OSTROVSKI, G., ET AL. 2015.
Human-level control through deep reinforcement learning. Na-
ture 518, 7540, 529–533.

MNIH, V., BADIA, A. P., MIRZA, M., GRAVES, A., LILLICRAP,
T. P., HARLEY, T., SILVER, D., AND KAVUKCUOGLU, K.
2016. Asynchronous methods for deep reinforcement learning.
CoRR abs/1602.01783.

PARISOTTO, E., BA, J. L., AND SALAKHUTDINOV, R. 2015.
Actor-mimic: Deep multitask and transfer reinforcement learn-
ing. arXiv preprint arXiv:1511.06342.

RUSU, A. A., RABINOWITZ, N. C., DESJARDINS, G., SOYER,
H., KIRKPATRICK, J., KAVUKCUOGLU, K., PASCANU, R.,
AND HADSELL, R. 2016. Progressive neural networks. arXiv
preprint arXiv:1606.04671.

SHARMA, S., AND RAVINDRAN, B. 2017. Online multi-task
learning using active sampling. CoRR abs/1702.06053.

SUN, B., AND SAENKO, K. 2016. Deep coral: Correlation align-
ment for deep domain adaptation. In Computer Vision–ECCV
2016 Workshops, Springer, 443–450.

SUN, B., FENG, J., AND SAENKO, K. 2015. Return of frustrat-
ingly easy domain adaptation. CoRR abs/1511.05547.

SUTTON, R. S., AND BARTO, A. G. Reinforcement learning: An
introduction, vol. 1.

TZENG, E., HOFFMAN, J., SAENKO, K., AND DARRELL, T.
2017. Adversarial discriminative domain adaptation. arXiv
preprint arXiv:1702.05464.

VAN HASSELT, H., GUEZ, A., AND SILVER, D. 2015.
Deep reinforcement learning with double q-learning. CoRR
abs/1509.06461.

WATKINS, C. J., AND DAYAN, P. 1992. Q-learning. Machine
learning 8, 3-4, 279–292.

XIAO, T., LI, H., OUYANG, W., AND WANG, X. 2016. Learn-
ing deep feature representations with domain guided dropout for
person re-identification. In Computer Vision and Pattern Recog-
nition (CVPR), 2016 IEEE Conference on, IEEE, 1249–1258.

YIN, H., AND PAN, S. J. 2017. Knowledge transfer for deep
reinforcement learning with hierarchical experience replay. In
AAAI, 1640–1646.


